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Fig. 1: Select HiDiffusion samples for various diffusion models, resolutions, and aspect
ratios. HiDiffusion enables pretrained diffusion models to generate higher-resolution
images surpassing the training image size without further training or fine-tuning and
can effectively accelerate the inference. Best viewed when zoomed in.
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In the appendix, we present the following details associated with HiDiffusion:
– Visualization of feature duplication across inference steps.
– More ablations about the components of HiDiffusion, including the effect of

RAU-Net and MSW-MSA, the RAU operation, the position of RAD and
RAU, the Switching Threshold, the window size of MSW-MSA.

– Details about SD 2.1, SDXL, SDXL-Turbo settings.
– Details about extreme resolutions (2048×2048 for SD 1.5, SD 2.1, 4096×4096

for SDXL).
– Comparison to training at higher resolution.
– Extensions to image-to-image task.
– More visualization results, including comparisons to diffusion acceleration

and high-resolution synthesis methods.

A Feature Duplication across Inference Step

When directly inferring to generate higher-resolution images using pretrained
diffusion models, we observed the feature duplication phenomenon at the 30th
inference step. This section presents feature visualization across different infer-
ence steps to demonstrate that feature duplication arises at almost every infer-
ence step, as shown in Fig. 2. Even when the input latent is extremely noisy in
the early denoising stages, such as the 1st inference step, direct inference still
leads to conspicuous feature duplication, as shown in the UB 3 output of the
1st inference step. When the input latent is less noisy, for instance, at the 45th
inference step, more severely pronounced feature duplication emerges. The fea-
ture duplication impacts the trajectory of image generation, ultimately causing
object duplication in the final output image (the updated latent at the 50th
inference step). Compared to direct inference, our HiDiffusion effectively alle-
viates feature duplication at each inference step and can generate reasonable
higher-resolution images in a tuning-free way.

B More Ablation Results

B.1 The Effect of RAU-Net and MSW-MSA

We have analyzed the impact of RAU-Net and MSW-MSA in the main pa-
per. Here we provide the qualitative comparison of all possible combinations, as
shown in Fig. 3.

B.2 The RAD Operation

In the main paper, RAD is achieved by altering the stride, padding, and dilation
of the original downsampler’s convolution. Alternatively, We can add an extra
adaptive pooling and keep the convolution unchanged, which can be written as:

R(C3,1,2,1(x), α) = ada_pool(C3,1,2,1(x),
α

2
). (1)
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Fig. 2: The feature map visualization across different inference steps based on SD 1.5.
The image resolution is 1024×1024 and we adopt 50 DDIM steps.
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Fig. 3: The effect of RAU-Net and MSW-MSA based on SD 1.5. The resolution is
1024×1024.

This method can also achieve the goal of resolution-aware downsampling. for
the 1024×1024 resolution generation, α is set as 4. In this section, we investi-
gate which methods can generate higher-quality images. We present quantitative
comparison in Tab. 1. Compared to the additional pooling operation, the method
used in the main paper exhibits better performance in both FID and CLIP-Score.

Method FID↓ CLIP-Score↑

Adaptive pooling 26.73 0.304
Larger stride 21.81 0.307

Table 1: Quantitative evaluation of two variants of resolution-aware operation in zero-
shot text-guided image synthesis on ImageNet based on SD 1.5. The resolution is
1024×1024.

B.3 The impact of the position of RAD and RAU

Our main idea is to introduce RAD and RAU to dynamically downsample the
feature map. We insert the RAD and RAU into Block 1, Block 2, and Block 3
respectively to examine the impact of the Resolution-aware sampler at differ-
ent locations, as shown in Tab. 2. There is a minor quantitative metric differ-
ence between different locations. However, we visually observe that incorporating
RAD and RAU in Block 1 can better mitigate object duplication, as illustrated
in Fig. 4.
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Block 1 Block 2 Block 3

Fig. 4: Qualitative comparison between different positions of RAD and RAU based on
SD 1.5. The resolution is 1024×1024.

Position Block 1 Block 2 Block 3

FID 21.81 20.84 21.26
CLIP-Score 0.307 0.307 0.305

Table 2: Quantitative evaluation of the position of RAD and RAU in zero-shot text-
guided image synthesis on ImageNet based on SD 1.5. The resolution is 1024×1024.

B.4 The Switching Threshold
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Fig. 5: Quantitative evaluation of different T1 in zero-shot text-guided image synthesis
on ImageNet based on SD 1.5. The resolution is 1024×1024.

The Switching Threshold determines when to switch from RAU-Net to vanilla
U-Net. We explore the impact of different thresholds on the performance of HiD-
iffusion. The quantitative results are shown in Fig. 5. T1=0 indicates that RAU-
Net is not utilized, while T1=50 indicates that RAU-Net is used in the entire
denoising process. When T1 is between 10 and 40, we improve the performance
in metric evaluation. The qualitative comparison demonstrates that T1 ranging
from 10 to 50 can effectively alleviate object duplication, with T1 = 20 yielding
the optimal performance, as shown in Fig. 6. Therefore, we select T1 = 20 as the
default setting.

B.5 The Window Size of MSW-MSA

The window size determines the receptive field of self-attention. We compare the
performance from the small window size proposed in Swin Transformer to our



6 Shen Zhang et al.

𝑇ଵ=0 𝑇ଵ=10 𝑇ଵ=20 𝑇ଵ=30 𝑇ଵ=40 𝑇ଵ=50

Fig. 6: Qualitative comparison between different T1 based on SD 1.5. The resolution
is 1024×1024.
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Fig. 7: Qualitative comparison between different window sizes based on SD 1.5. The
resolution is 1024×1024.

proposed large window size based on SD 1.5, as shown in Tab. 3. As the win-
dow size gradually increases, the performance improves. We achieve the optimal
balance between efficiency and image quality when the window size is half the
height and width of the feature map. The qualitative results are shown in Fig. 7.

C Details about Other Models settings.

As SD 1.5 and SD 2.1 share the same U-Net architecture, the settings of SD 2.1
are consistent with those of SD 1.5.

An illustrative comparison of the vanilla SDXL U-Net and RAU-Net for
SDXL in the context of generating 2048×2048 resolution images is presented
in Fig. 8. We incorporate RAD and RAU in Block 2 and set α = β = 4 to
match the deep blocks of U-Net. In contrast to SD 1.5 and SD 2.1’s U-Net,
Down Block 1 and Up Block 1 of SDXL only consist of two and three ResNet
blocks, respectively. If we choose to incorporate the RAD and RAU in Block 1,

Window size 4 16 32 64

Latency (s) 7.07 7.09 7.44 8.26
FID 417.15 53.02 22.37 21.81
CLIP-Score 0.225 0.295 0.307 0.307

Table 3: Quantitative evaluation of the window size in zero-shot text-guided image
synthesis on ImageNet based on SD 1.5. The resolution is 1024×1024.
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Fig. 8: Comparison between vanilla SDXL’s U-Net and our proposed HiDiffusion RAU-
Net for SDXL. Parameters in all blocks are frozen. The main difference lies in the blue
Blocks (differ in the dimensions of feature map) and orange Blocks (Our proposed RAD
and RAU modules are incorporated into Block 2).
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Fig. 9: Comparison between vanilla SDXL-Turbo’s U-Net and our proposed HiDiffu-
sion RAU-Net for SDXL-Turbo. Parameters in all blocks are frozen. The main difference
lies in the blue Blocks (differ in the dimensions of feature map) and orange Blocks (Our
proposed RAD and RAU modules are incorporated into Block 2.).

the ResNet Blocks in Block 1 are insufficient to effectively handle the resolution
change caused by the interpolation function in RAD, resulting in the synthesis
of blurry images. We present the qualitative comparison between inserting RAD
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Fig. 10: The framework of image synthesis with extreme resolution (2048×2048 for
SD 1.5 and SD 2.1, 4096×4096 for SDXL). Pro RAU-Net: progressive RAU-Net.

Block 2Block 1

Fig. 11: 2048×2048 resolution comparison between inserting resolution-aware samplers
into Block 1 and Block 2 based on SDXL.

and RAU in Block 1 and inserting RAD and RAU in Block 2 in Fig. 11. In the
experiment of the main paper, We set T1 = 20 for 50 DDIM steps. The classifier-
free guidance scale is 7.5. Since Block 1 of SDXL U-Net does not contain self-
attention, we incorporate MSW-MSA into Block 2. We set the window size as
(64, 64). The predefined set of shift strides is {(0, 0), (16, 16), (32, 32), (48, 48)}.
For 4096×4096 resolution generation, please refer to Sec. D.

The U-Net architecture of SDXL-Turbo and SDXL are very similar, except for
the differences in input and output dimensions, as shown in Fig. 9. We introduce
the setting of SDXL-Turbo in brief. We incorporate the RAD and RAU into
Block 2. The inference step is 4 and we set T1 = 2. Classifier-free guidance is
not used. We set the window size as (32, 32). The predefined set of shift strides
is {(0, 0), (8, 8), (16, 16), (24, 24)}.

D Details about extreme resolutions

For SD 1.5 and SD 2.1, generating images with 2048×2048 resolution is a signif-
icant challenge, considering that this resolution is already 16 times the training
image resolution. RAU-Net can generate images with 2048×2048 resolution by
simply setting α = β = 8, as shown in Fig. 12b. However, β = 8 implies that
RAU upsamples the feature map by a factor of 8 using an interpolation function.
This abrupt resolution change brought by interpolation leads to the generation
of blurry images, as illustrated in Fig. 14a. To tackle the issue, we adopt a pro-
gressive variant of RAU-Net, as shown in Fig. 12c. We incorporate RAU and
RAD with α = β = 4 into Block 1 and Block 2, respectively. This allows the
feature map to gradually align with the deep blocks of U-Net, thus circumvent-
ing the blurriness issue caused by a large interpolation factor. For 4096×4096
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Fig. 12: U-Net variants of SD 1.5 and SD 2.1. (a) Vanilla U-Net. (b) RAU-Net. (c)
Progressive RAU-Net.
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Fig. 13: U-Net variants of SDXL. (a) Vanilla U-Net. (b) RAU-Net. (c) Progressive
RAU-Net. The parameter settings of (c) are same with Fig. 12.
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(a) (b)

Fig. 14: 2048×2048 resolution samples generated by (a) Directly set α = 8 in Block 1
of RAU-Net. (b) The final progressive method. The diffusion model version is SD 1.5.

Direct Inference

HiDiffusion

Input

Fig. 15: SDEdit task of 1024×1024 resolution based on SD 1.5.

Direct Inference

HiDiffusion

Input

Fig. 16: ControlNet task of 1024×1024 resolution based on SD 1.5.

resolution generation of SDXL, we also adopt progressive RAU-Net, as shown
in Fig. 13c. We incorporate RAU and RAD with α = β = 4 into Block 1 and
Block 2, respectively.
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Fig. 17: The qualitative comparison between different diffusion acceleration methods
based on SD 1.5. The resolution is 1024×1024. The baseline is SD 1.5 with RAU-Net.

As described in the main paper, matching the feature map size with the deep
blocks of U-Net can generate coherent object structures while potentially affect-
ing image details. Therefore, when generating images with extreme resolution, we
gradually reduce the usage of resolution-aware samplers throughout the denois-
ing process for finer image detail. Specifically, we employ Progressive RAU-Net
in the early stage, followed by RAU-Net in the middle stage, and finally vanilla
U-Net in the later stage. We establish two thresholds T1 and T2: when denoising
steps t < T1, We use progressive RAU-Net; when T1 ≤ t ≤ T2, We use RAU-Net
; when t > T2, vanilla U-Net is used. We present the framework in Fig. 10 and
generated samples in Fig. 14b. In the experiment of the main paper, We set
T1 = 15 and T2 = 35 for 50 DDIM steps. We incorporate MSW-MSA into Block
1 for SD 1.5 and SD 2.1, and into Block 2 for SDXL. We set the window size as
(128, 128). The predefined set of shift strides is {(0, 0), (32, 32), (64, 64), (96, 96)}.
The classifier-free guidance scales of SD 1.5, SD 2.1, and SDXL are all 7.5.

E Comparison to Training at Higher Resolution

Method Resolution Latency (s) ↓ FID ↓ pFID ↓ CLIP ↑ Params ↓

SDXL 1024 × 1024 15.29 20.30 31.20 0.314 3.5B
SD 1.5 + HiDiffusion 8.26(1.85×) 21.81 30.86 0.307 1.1B

Table 4: Comparison with training at the higher resolution.

Tab. 4 shows the comparison between HiDiffusion with SD 1.5 (trained
with 512×512 images) and SDXL (trained with 1024×1024 images). HiDiffusion
achieves comparable image quality and higher efficiency compared to models
trained on datasets with 1024×1024 resolution.
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F Image-to-image Task

HiDiffusion also works well in image-to-image tasks including SDEdit and Con-
trolNet, as shown in Figs. 15 and 16.

G More Visualization Results

G.1 Comparison to Diffusion Acceleration Methods

In the main paper, We have demonstrated the effectiveness of our MSW-MSA
compared to other diffusion acceleration methods. Here we provide the qualita-
tive comparison between MSW-MSA and other methods, as shown in Fig. 17.
Compared to other methods, the generated images by our method are more con-
sistent with the baseline. Furthermore, we surpass other methods in terms of
details and local features.

G.2 Comparison to High-Resolution Synthesis Method

We present more comparison results with LDM-SR, ScaleCrafter, and Demofu-
sion based on SDXL to demonstrate the effectiveness of HiDiffusion, as shown
in Figs. 18 and 19. HiDiffusion outperforms ScaleCrafter and DemoFusion in
local details, while compared to LDM-SR, HiDiffusion achieves comparable or
even better performance.
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Fig. 18: More qualitative comparison with other methods based on SDXL. The input
prompt is located to the right of the original image. The first line of text in the image
indicates the image resolution, while the second line indicates the inference speed rel-
ative to direct inference. Best viewed when zoomed in.
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In the depths of a 
mystical forest, a 

robotic owl with night 
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watches over the 
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Fig. 19: More qualitative comparison with other methods based on SDXL. The input
prompt is located to the right of the original image. The first line of text in the image
indicates the image resolution, while the second line indicates the inference speed rel-
ative to direct inference. Best viewed when zoomed in.
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