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Abstract. Diffusion models have become a mainstream approach for
high-resolution image synthesis. However, directly generating higher-
resolution images from pretrained diffusion models will encounter un-
reasonable object duplication and exponentially increase the generation
time. In this paper, we discover that object duplication arises from fea-
ture duplication in the deep blocks of the U-Net. Concurrently, We
pinpoint the extended generation times to self-attention redundancy in
U-Net’s top blocks. To address these issues, we propose a tuning-free
higher-resolution framework named HiDiffusion. Specifically, HiDiffusion
contains Resolution-Aware U-Net (RAU-Net) that dynamically adjusts
the feature map size to resolve object duplication and engages Modified
Shifted Window Multi-head Self-Attention (MSW-MSA) that utilizes
optimized window attention to reduce computations. we can integrate
HiDiffusion into various pretrained diffusion models to scale image gen-
eration resolutions even to 4096×4096 at 1.5-6× the inference speed of
previous methods. Extensive experiments demonstrate that our approach
can address object duplication and heavy computation issues, achieving
state-of-the-art performance on higher-resolution image synthesis tasks.

Keywords: Higher-Resolution Image Synthesis · High-Efficiency Diffu-
sion

1 Introduction

Generative model has witnessed an explosion of diffusion models of growing
capability and applications [13, 32, 38–40]. Being trained on a large volume
of images (Laion 5B [37]), Stable Diffusion (SD) [30, 32] can generate fixed-
size (e.g. 512×512 for SD 1.5 [32]) high-quality images given text or other kinds
of prompts. However, it is limited to synthesizing images with higher resolu-
tions (e.g. 2048×2048). The limitation has two perspectives: (i) Feasibility.
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Fig. 1: 2048×2048 resolution images based on SDXL [30]. The first line of the text
indicates the generation methods, while the second line indicates the cost time and
inference speed relative to direct inference. Our Hidiffusion can generate reasonable and
realistic high-resolution images with high efficiency. Compared to previous methods,
ours exhibits richer fine-grained details and is 1.58× faster than Scalerafter [11], 4.18×
faster than DemoFusion [8]. Best viewed when zoomed in.

Diffusion models lack scalability in higher-resolution image generation. As il-
lustrated in the Direct Inference column of Fig. 1, when directly inferencing
to generate 2048×2048 resolution images for SDXL [30] that being trained on
1024×1024 resolution, the generated images exhibit unreasonable object dupli-
cation and inexplicable object overlaps. (ii) Efficiency. As resolution increases,
the time cost becomes more and more unacceptable. For example, SD 1.5 can
generate a 512×512 resolution image in only 3s, whereas it takes 165s to gen-
erate a 2048×2048 image on an NVIDIA V100 with 50 DDIM steps. The low
efficiency of diffusion models in higher-resolution synthesis makes it impractical
for real-world applications. We ask: Can Stable Diffusion efficiently syn-
thesize images with resolution beyond the training image sizes?

Existing methods answer feasibility question from three perspectives: (i) Col-
lecting enough higher-resolution images to retrain a diffusion model for higher-
resolution synthesis [30]. (ii) Leveraging additional super-resolution models [32,
44] to upscale low-resolution images. (iii) Modifying the operation [16] or ar-
chitecture [11] of U-Net, or creating a new synthesis schedule [8] for higher-
resolution synthesis in a tuning-free way. While those perspectives can mitigate
object duplication, the first two require large-scale high-resolution datasets and
the training process is costly. The tuning-free methods can leverage the power
of the pretrained diffusion model, but they suffer from insufficient image details
or low inference efficiency, as shown in Fig. 1.

In this paper, we aim to resolve object duplication and generate higher-
resolution images with fine details in a tuning-free way. Different from previous
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methods, we explore a new perspective by investigating the feature map in the U-
Net. Our observation reveals that the generated image is highly correlated with
the feature map of deep blocks in structures and feature duplication happens
in the deep blocks. The highly duplicated features guide the synthesis direc-
tion, resulting in object duplication. We propose a simple yet effective method
called Resolution-Aware U-Net (RAU-Net). RAU-Net involves Resolution-Aware
Downsampler (RAD) and Resolution-Aware Upsampler (RAU) to align the fea-
ture map size with the deep block of U-Net. In contrast to ScaleCrafter [11],
which attributes object duplication to the limited receptive field of convolutions
and requires determining the parameters of each convolution in U-Net, we dis-
cover feature duplication and propose a more concise solution RAU-Net that
modifies the parameters of only two convolutions. Therefore, RAU-Net can be
more readily integrated into various diffusion models. The slight modifications
can also better preserve the capabilities of the pretrained model, and conse-
quently retain more fine-grained image details. To further improve the higher-
resolution image quality, we propose a Switching Threshold to boost the fine
details of generated higher-resolution images. Our proposed approach requires
no further fine-tuning and can be seamlessly integrated into diffusion models.

Besides higher-resolution feasibility, efficiency is another important concern.
Numerous works focus on reducing the sampling step [20,23,24,27,35,38] and the
acceleration of diffusion U-Net [2, 20, 26]. These acceleration methods enhance
the inference efficiency but also compromise the generated image quality. In
this paper, we unearth that the dominant time-consuming global self-attention
in the top blocks exhibits surprising locality. Inspired by this observation, we
propose Modified Shifted Window Multi-head Self-Attention (MSW-MSA) and
replace the global self-attention with it in higher-resolution synthesis. This sub-
stitution needs no further fine-tuning. Compared to the previous local attention
method [22], our method uses large window attention and shifts windows across
timestep to accommodate diffusion models. Empirically, MSW-MSA achieves
significant acceleration without compromising image quality.

We combine RAU-Net and MSW-MSA into a unified tuning-free frame-
work for higher-resolution image generation, dubbed HiDiffusion. We conduct
qualitative and quantitative experiments to validate the effectiveness of our
method. Specifically, HiDiffusion can scale the resolution of SD 1.5 [32] and
SD 2.1 [32] from 512×512 to 2048×2048, scale SDXL Turbo [36] from 512×512
to 1024×1024, and scale SDXL [30] from 1024×1024 to 4096×4096. Moreover,
HiDiffusion is 1.5-2.7× faster than vanilla SD and is 1.5-6× faster than previous
methods in higher-resolution image generation. We hope this work can provide
valuable guidance for future research on the scalability of diffusion models.

2 Related Work

High-Resolution Image Synthesis. The application of diffusion models in
high-resolution image generation poses a significant challenge. Existing meth-
ods have primarily concentrated on diffusion in lower-dimensional spaces (la-
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tent diffusion) [32], or divided the generative process into multiple sub-problems
[14, 15, 41, 42]. Nevertheless, these solutions render the framework is highly in-
tricate. Recently, there has been a growing interest in exploring tuning-free ap-
proaches for variable-sized adaptation. [16] propose an attention scaling factor
for variable-sized image synthesis. MultiDiffusion [1] and SyncDiffusion [17] ma-
nipulated the generation process by binding together multiple diffusion genera-
tion processes. Despite their advancements, these approaches still exhibit object
duplication. Recently, ScaleCrafter [11] mitigates object duplication through re-
dilation that can dynamically adjust the convolutional receptive field during
inference. ScaleCrafter can effectively address object duplication but somewhat
degrades the image quality. DemoFusion [8] proposed a novel progressive gen-
eration schedule with skip residual and dilated sampling. It can generate high-
quality high-resolution images, but the long generation time limits its practical-
ity. Different from the previous method, we turn our attention to investigating
the properties of the feature map of U-Net. We discover that feature duplication
leads to object duplication and propose RAU-Net to effectively resolve it.

Diffusion Model Acceleration. As diffusion model training and inference
is time-consuming, particularly in the context of high-resolution images, various
methods [4, 19, 29] have been extensively investigated to accelerate the training
and inference of diffusion models. Unlike fast sampling approaches [23,35,38,40]
that improve sampling schemes to reduce the sampling step. ToMeSD [2], Snap-
Fusion [20] and DeepCache [26] speeded up an off-the-shelf diffusion model with-
out training by exploiting natural redundancy in diffusion models. However,
they all somewhat compromise image quality. In this paper, through the analy-
sis of the locality of global self-attention in the top blocks, we develop a simple
yet effective method MSW-MSA that significantly accelerates the generation of
higher-resolution images without the need for fine-tuning and does not compro-
mise image quality. Compared to previous local attention implementations [9,22],
MSW-MSA leverages locality observation, allowing it to better adapt to diffusion
models and achieve a superior trade-off between speed and quality.

3 Method

3.1 Preliminaries

U-Net architecture. The neural backbone of Stable Diffusion is implemented
as a U-Net [6,32,33], which contains several Down Blocks, Up Blocks, and a Mid
Block, as shown in Fig. 2a. The Mid Block remains unchanged in our method.
Consequently, we omit it for the sake of simplicity. Each Down Block and Up
Block can be written respectively as:

y = D(F(x, t, p)), (1)
y = U(F(x, t, p)), (2)

where x is the latent feature, t is the timestep, p is the prompt, F incorporates
ResNet [10] layers and Vision Transformer [7] layers, which maintain the dimen-
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Fig. 2: Comparison between vanilla Stable Diffusion’s U-Net architecture and our pro-
posed HiDiffusion RAU-Net architecture on 1024×1024 resolution with SD 1.5 [32].
Parameters in all blocks are frozen. The main difference lies in the blue Blocks (differ
in the dimensions of feature map) and orange Blocks (Our proposed RAD and RAU
modules are incorporated into Block 1.).
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Fig. 3: The framework of HiDiffusion.
sions of the feature map. D(∗) represents the downsampler and U(∗) represents
the upsampler. D(∗) and U(∗) in vanilla U-Net are computed as:

D(x) = C3,1,2,1(x), (3)

U(x) = C3,1,1,1(interp(x, 2)), (4)

where Ck,p,s,d means convolution filter with kernel size as k, padding size as p,
stride as s, dilation rate as d. interp(x, β) denotes an interpolation function that
upsample the resolution by a factor of β.

Content generation over timestep. The diffusion model progressively per-
forms the denoising process according to the noise schedule. Recent research [5,
13, 25, 32, 43] has found that the diffusion model displays varying denoising be-
havior over timestep. Diffusion models denoise from structures to details. They
generate the low-frequency component in the early denoising stage and the high-
frequency component in the late denoising stage.
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Fig. 4: 1024×1024 resolution images based on SD 1.5 [32]. We visualize the output
feature map of U-Net blocks of the 30th step (50 DDIM steps). UB: Up Block. The
object structure of the generated images (the last column) is highly correlated with
the feature of the deep blocks (UB4, UB3, UB2) in the U-Net. Feature duplication
happens when directly generating higher-resolution images and the duplicated features
guide the generation direction to object duplication. HiDiffusion can mitigate feature
duplication, enabling the generation of reasonable high-resolution images.

3.2 HiDiffusion

The HiDiffusion framework comprises two components: Resolution-Aware U-Net
(RAU-Net) and Modified Shifted Window Multi-head Self-Attention (MSW-
MSA). The RAU-Net is designed to overcome object duplication when scaling
to higher resolution. MSW-MSA is introduced to improve the inference effi-
ciency of diffusion for higher-resolution image synthesis. The overall framework
of HiDiffusion is present in Fig. 3. For each method, we initially present the mo-
tivation experiments and then introduce our methods. This section is based on
the 1024×1024 resolution image generation with SD 1.5 [32]. For other models
and extreme resolution, please refer to the appendix for details.

Resolution-Aware U-Net. In this work, we investigate the feature map in
the U-Net, aiming to uncover the cause of object duplication and resolve it.
Obeservation. The generated image is highly correlated with the feature map
of deep blocks in structures and feature duplication happens in the deep blocks.
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We provide empirical evidence to demonstrate this observation in Fig. 4. We
discover that the the structure of the generated image follows the structural in-
formation of the feature maps of the deep blocks. The top block of the U-Net only
maps the feature map of deep blocks to noise estimation. We also discover that
feature duplication happens in the deep blocks of the U-Net, meaning that the
features contain repeated structural information. The highly duplicated features
guide the generation direction, resulting in object duplication in the image.

Based on the observation, we aim to reduce the feature duplication in the deep
blocks to generate higher-resolution images. As the higher-resolution feature size
of deep blocks is larger than the corresponding size in training, these blocks
may fail to incorporate feature information globally to generate a reasonable
structure. We contend that if the size of the higher-resolution features of deep
blocks is reduced to the corresponding size in training, these blocks can generate
reasonable structural information and alleviate feature duplication.

Inspired by this motivation, we propose Resolution-aware U-Net (RAU-Net),
a simple yet effective method to dynamically resize the features to match the
deep blocks. An illustrative comparison of the vanilla SD 1.5 U-Net and RAU-Net
in generating 1024×1024 resolution images is presented in Fig. 2. We incorporate
our Resolution-Aware Downsapler (RAD) in Down Block 1 as a substitute for
the original downsampler, and likewise, we replace the original upsampler with
the Resolution-Aware Upsampler (RAU) in Up Block 1. RAD downsamples the
feature map to guarantee the dimensions of the resulting feature map align with
those of the corresponding training images, thereby matching with the deep
blocks. On the other hand, RAU simply upsamples the feature size to the desired
resolution. Specifically, the RAD and RAU can be written as follows:

RAD(x, α) = R(C3,1,2,1(x), α), (5)

RAU(x, β) = C3,1,1,1(interp(x, β)), (6)

where α is the downsampling factor, β is the upsampling factor. R(∗) can be
achieved by adjusting the conventional downsampler parameters:

R(C3,1,2,1(x), α) = C3,p,α,d(x), (7)

or achieved by using adaptive pooling:

R(C3,1,2,1(x), α) = ada_pool(C3,1,2,1(x),
α

2
). (8)

We mainly choose the first variant in this paper. We conduct ablations about
RAD in the appendix. RAU can be simply achieved with an upscale interpo-
lation such as bilinear interpolation. For 1024×1024 image generation, we need
to downsample the feature map by a factor of 4 to match the deep blocks, i.e.,
α = 4. This downsampling factor is twice the downsampling factor of the con-
ventional downsampler. We set d = 2, p = 2. For RAU, we only need to adjust
the interpolation factor to 4. Compared to the original samplers, both RAD and
RAU do not introduce additional trainable parameters. Therefore, RAD and
RAU can be integrated into vanilla U-Net without further fine-tuning.
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(a) Operation consumption. (b) Mean attention distance.

Fig. 5: Analysis of the time consumption and mean attention distance. (a) The self-
attention operation of Block 1 significantly dominates the time consumption. (b) A
pronounced locality is evident in the self-attention mechanism of the top blocks.

Upon incorporating RAU-Net into SD 1.5 [32], we address the object dupli-
cation problem. But we also bring blurry images with bad details (please refer
to the appendix). As mentioned in 3.1, diffusion models denoise from structures
to details. Our RAU-Net introduces additional downsampling and upsampling
operations, leading to a certain degree of information loss. In the early stages
of denoising, RAU-Net can generate reasonable structures with minimal impact
from information loss. However, in the later stages of denoising when generat-
ing fine details, the information loss in RAU-Net results in the loss of image
details and a degradation in quality. Consequently, we establish a Switching
Threshold T1, such that when the denoising steps t < T1, RAU-Net is em-
ployed, conversely, when the denoising steps t ≥ T1, vanilla U-Net is utilized.
This simple adjustment can effectively counteract the information loss brought
about by RAU-Net, significantly improving the image quality. Moreover, we ob-
served that the parameter T1 is not sensitive, with settings between 10 and 40 for
1024 × 1024 generation yielding notably superior performance with 50 DDIM
steps. Please refer to the appendix for details.

Modified Shifted Window Attention Stable Diffusion combined with RAU-
Net is capable of generating higher-resolution images with high quality. However,
it still faces an efficiency challenge: unaffordable slow speed in generating higher-
resolution images. In this section, we revisit the consumption and properties of
operations in U-Net, trying to accelerate the diffusion model.
Obeservation. The self-attention of the top blocks takes the dominant consump-
tion. However, it demonstrates locality.

Given a latent feature map with 128×128 (corresponding to 1024×1024 res-
olution in pixel space), Fig. 5a shows the time consumption of each operation
in SD 1.5. It can be observed that self-attention, especially in Block 1 (i.e.
Down Block 1 and Up Block 1), takes the dominant consumption. Driven by
previous local self-attention works in vision [22, 28], we visualize the mean at-
tention distance for each head across different timesteps of Block 1 (top block)
and Mid Block (deep block), as shown in Fig. 5b. We surprisingly find that the
self-attention mechanism in the top blocks demonstrates a pronounced locality.
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Certain heads are observed to attend to approximately half of the image, while
others focus on even more confined regions close to the query location.

According to this observation, it is suggested to propose local self-attention
for efficient computation. We delve into how to design local attention to ensure
acceleration while maintaining image quality. Based on window attention [22], we
propose Modified Shifted Window Attention (MSW-MSA), a simple yet effective
approach for lossless acceleration to replace the original global attention. Specifi-
cally, MSW-MSA has two modifications: (i) Large window attention. Fig. 5b
indicates that the mean attention distance of the top blocks is local but not
very small. This suggests that the small window attention utilized in vision
field [22] may not be suitable for the diffusion model. To achieve a balance be-
tween acceleration and image quality, we opt for a larger window attention. The
experimentally validated window size is (H/2,W/2), where H and W respec-
tively represent the height and width of the input feature (please refer to the
appendix for the results from small to large window sizes). (ii) Shift window
operation across timestep. Window shift operation is needed to introduce
cross-window connections. However, Stable Diffusion transformer block has only
one self-attention module that is unable to process window attention and shift
window attention successively. To apply shift window operation, we propose to
shift different strides based on the timesteps. Specifically, we adopt a random
selection strategy, where at each timestamp, we randomly select a stride param-
eter from a fixed set of shift strides. This approach enables the integration of
information from diverse windows. Our MSW-MSA can be written as:

y = MSW-MSA(x,w, s(t)) + x, (9)

where w is the window size, s(t) is the shifted stride function dependant on the
timestep t.

We substitute the global self-attention in Block 1 with MSW-MSA. It is
worth noting that while other blocks can integrate MSW-MSA, the resulting ef-
ficiency gains are not substantial. Experiments demonstrate that our MSW-MSA
approach can significantly reduce time consumption without compromising
image quality in higher-resolution image synthesis.

4 Experiments

4.1 Experiment Settings

In this work, we evaluate the performance of our HiDiffusion on SD 1.5 [32],
SD 2.1 [32], SDXL Turbo [36] and SDXL [30]. We apply our approach to text-
guided image synthesis on higher resolution ranging from 4× to even 16× times
the training image resolution. For quantitative evaluation, we use Frechet Incep-
tion Distance (FID) [12] to measure the realism of the output distribution. FID
downsamples all images to a common size of 299, which ignores high-resolution
details. We further use patches FID (pFID) [3] to evaluate image details. CLIP
Score [31] is proposed to evaluate the alignment between image and text. We
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ImageNet COCO

Method Resolution Latency (s) ↓ FID ↓ pFID ↓ CLIP ↑ FID ↓ pFID ↓ CLIP ↑

SD 1.5

1024 × 1024

16.23 25.55 36.36 0.295 38.21 49.20 0.309
SD 1.5 + HiDiffusion 8.26(1.96×) 21.81 30.86 0.307 21.36 31.59 0.323

SD 2.1 12.99 24.63 36.15 0.299 31.33 37.43 0.314
SD 2.1 + HiDiffusion 7.33(1.77×) 22.34 32.71 0.309 20.77 31.51 0.326

SDXL Turbo 5.72 74.23 76.08 0.300 23.45 35.10 0.325
SDXL Turbo+ HiDiffusion 4.65(1.23×) 27.76 32.63 0.317 20.89 32.90 0.330

SD 1.5

2048 × 2048

165.76 53.03 35.96 0.284 78.53 42.82 0.286
SD 1.5 + HiDiffusion 58.38(2.83×) 27.33 33.42 0.307 28.93 34.70 0.321

SD 2.1 118.32 60.60 41.64 0.281 82.74 47.62 0.289
SD 2.1 + HiDiffusion 45.33(2.61×) 30.67 37.14 0.305 32.87 35.76 0.320

SDXL 84.24 27.48 30.67 0.300 28.71 32.44 0.318
SDXL + HiDiffusion 53.29(1.58×) 22.22 28.27 0.314 20.89 29.21 0.332

SDXL†
4096 × 4096 769.65 118.30 89.96 0.277 - - -

SDXL + HiDiffusion† 286.97(2.68×) 64.12 74.91 0.299 - - -

Table 1: Comparison of vanilla Stable Diffusion and our Hidiffusion in zero-shot text-
guided image synthesis on ImageNet and COCO dataset. † means we generate 1K
images for quantitative evaluation due to the heavy computational burden.

compare our HiDiffusion with other methods on ImageNet [34] and COCO [21]
datasets. Without further elaboration, we generate 10K (10 per class) images to
compute metrics for ImageNet evaluation and generate 40,504 (1 caption per im-
age) images from COCO 2014 validation captions to compute metrics for COCO
evaluation. We use xFormers [18] by default. The model latency is measured on
a single NVIDIA V100 with a batch size of 1.

We introduce the parameter setting of SD 1.5, please refer to the appendix
for the parameter setting of other models. For 1024×1024 generation, we incor-
porate RAD and RAU in Block 1 and set α = β = 4. We set the window size as
(64, 64). The predefined set of shift strides is {(0, 0), (16, 16), (32, 32), (48, 48)}.
All experiments are conducted with 50 DDIM steps. The classifier-free guid-
ance scale is 7.5. The switching threshold T1 is set as 20. When extended to
2048×2048, we can simply set α = 8. However, a sharp change in resolution
caused by interpolation may bring blurriness, hence we adopt a progressive ap-
proach by incorporating RAU and RAD with α = β = 4 into Block 1 and Block
2, respectively, This allows the feature map to gradually match the deep blocks.
Please refer to the appendix for more details.

4.2 Main results

In this section, We incorporate our method into SD 1.5 [32], SD 2.1 [32], SDXL
Turbo [36] and SDXL [30] to evaluate the effectiveness of our method. SD 1.5 and
SD 2.1 are capable of generating images with 512×512 resolution. We integrate
HiDiffusion into them to scale the resolution to 1024×1024 and 2048×2048. We
use HiDiffusion to scale the generation resolution of SDXL Turbo to 1024×1024.
For SDXL, which is trained for generating 1024×1024 images, we incorporate our
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Fig. 6: Qualitative comparison with other methods based on SDXL [30]. The input
prompt is located to the right of the original image. The first line of text in the image
indicates the image resolution, while the second line indicates the inference speed rel-
ative to direct inference. Best viewed when zoomed in.

method to scale the resolution to 2048×2048 and 4096×4096. Besides fixed as-
pect ratios, we also generate images with various aspect ratios, such as 512×2048,
1280×1024 and 2048×4096, and so on, please refer to the appendix. We com-
pare our method with vanilla SD and the higher-resolution synthesis methods
ScaleCrafter [11] and DemoFusion [8]. For the acceleration of diffusion model,
we compare the diffusion acceleration method Token Merge for Stable Diffusion
(ToMeSD) [2] and DeepCache [26] with our proposed MSW-MSA. Moreover, we
compare our method with super-resolution method for a thorough evaluation,
even though the latter requires a large number of high-resolution images and
extra training efforts to train a super-resolution model.

Comparision with vanilla SD. In Fig. 6, we show qualitative compari-
son between the vanilla SD (direct inference) and our method. It can be easily
seen the vanilla SD suffers from object duplication and degradation in visual
quality as well. In contrast, our HiDiffusion mitigates the duplication problem
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ImageNet COCO

Backbone Method Resolution Latency (s) ↓ FID ↓ pFID ↓ CLIP ↑ FID ↓ pFID ↓ CLIP ↑

SD 1.5 ScaleCrafter [11]

1024 × 1024

17.94 54.90 74.39 0.302 81.68 87.32 0.318
HiDiffusion (ours) 8.26 50.14 65.80 0.307 80.73 84.19 0.322

SD 2.1 ScaleCrafter [11] 14.58 57.87 75.39 0.303 80.02 84.69 0.321
HiDiffusion (ours) 7.33 50.20 68.69 0.309 79.19 82.47 0.325

SD 1.5 ScaleCrafter [11]

2048 × 2048

287.89 65.04 86.83 0.299 98.30 104.49 0.309
HiDiffusion (ours) 58.38 53.35 65.95 0.307 86.15 86.82 0.319

SD 2.1 ScaleCrafter [11] 216.48 78.12 102.14 0.295 110.75 122.49 0.299
HiDiffusion (ours) 45.33 57.71 72.09 0.306 88.56 87.07 0.317

SDXL
ScaleCrafter [11] 85.83 49.97 72.64 0.310 82.14 90.45 0.329
DemoFusion [8] 222.79 48.36 66.41 0.311 85.92 85.59 0.331

HiDiffusion (ours) 53.29 47.01 62.29 0.315 84.66 84.58 0.333

SDXL
ScaleCrafter [11]

4096 × 4096
1298.39 78.90 102.63 0.305 - - -

DemoFusion [8] 1735.58 58.93 76.53 0.311 - - -
HiDiffusion (ours) 286.97 64.12 74.91 0.307 - - -

Table 2: Comparison of high-resolution generation method and our HiDiffusion in
zero-shot text-guided image synthesis on ImageNet and COCO dataset.

and holds more realistic image structures simultaneously. The quantitative re-
sults are shown in Tab. 1. Our approach outperforms vanilla SD in both qual-
ity and image-text alignment. We achieve much better metric scores across all
experiment settings, especially for the images with much higher resolution (a
significant FID improvement from 78.53 to 28.93 for SD 1.5 on COCO dataset
with 2048×2048 resolution). Furthermore, HiDiffusion significantly accelerates
diffusion inference. For instance, when incoporating HiDiffusion, SDXL is 2.68×
faster than the vanilla model when generating images with 4096×4096 resolution.

Comparison with higher-resolution synthesis methods. We present
a qualitative comparison between ScaleCrafter [11], DemoFusion [8] and our
method in Fig. 6. We observe that all three methods can generate reasonable
structures. But our method can generate much richer details than ScaleCrafter
and DemoFusion. Tab. 2 shows quantitative results. We generate 1K images for
both ImageNet and COCO evaluations due to the heavy computational burden.
Our method outperforms ScaleCrafter across almost all models and achieves
comparable or better performance than DemoFusion. It is worth noting that we
significantly surpass ScaleCrafter and DemoFusion in efficiency: HiDiifusion is
1.5-5× faster than ScaleCrafter and is 4-6× faster than DemoFusion.

Comparison with diffusion super-resolution models. Instead of di-
rectly generating higher-resolution images using a single diffusion model, a more
commonly used approach in the community is to generate images with original
resolution using Stable Diffusion and scale them to higher resolution using an
extra super-resolution model. Although this approach requires additional high-
resolution training datasets and extensive training efforts to train a large super-
resolution model, we compare it for a thorough comparison, despite the inherent
unfairness to our one-stage and training-free method. We compare our method
with a pretrained Stable Diffusion super-resolution model LDM-SR [32]. Tab. 3
shows the quantitative results. In terms of generation efficiency, our method out-
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Method Resolution Latency (s) ↓ FID ↓ pFID ↓ CLIP ↑

SD 1.5 + LDM-SR∗

1024 × 1024

18.61 17.56 36.39 0.307
SD 1.5 + HiDiffusion 8.26(2.25×) 21.81 30.86 0.307
SD 2.1 + LDM-SR∗ 18.48 18.54 37.99 0.308
SD 2.1 + HiDiffusion 7.33(2.52×) 22.34 32.71 0.309

SD 1.5 + LDM-SR∗

2048 × 2048

73.03 17.32 35.57 0.308
SD 1.5 + HiDiffusion 58.28(1.25×) 27.33 33.42 0.307
SD 2.1 + LDM-SR∗ 72.90 18.16 41.87 0.308
SD 2.1 + HiDiffusion 45.33(1.61×) 30.67 37.14 0.304
SDXL + LDM-SR∗ 57.28 46.73 68.98 0.315
SDXL + HiDiffusion 53.29(1.07×) 47.01 62.29 0.315

SDXL + LDM-SR∗
4096 × 4096 227.57 57.04 79.66 0.315

SDXL + HiDiffusion 286.97 64.12 74.91 0.307

Table 3: Comparison of diffusion super-resolution and our method in zero-shot text-
guided image synthesis on ImageNet dataset. ∗ is a two-stage method, requiring extra
high-resolution datasets and training efforts to train a large super-resolution model.
Our approach is one-stage and can generate high-resolution images without any extra
high-resolution data collection and training costs.

performs LDM-SR significantly when based on SD 1.5 and SD 2.1. On SDXL,
our speed is roughly on par with that of LDM-SR. Both LDM-SR and our
method are capable of generating plausible structures. However, our method ex-
hibits lower pFID. This indicates that the images generated by our method are
more detailed. We visualize the synthesized samples in Fig. 6. Compared with
LDM-SR, a distinction can be observed in terms of visual image detail quality.
Our method directly generates content on a 2048×2048 or 4096×4096 canvas,
resulting in higher richness, sharper characteristics, and fine-grained details.

Comparison with diffusion acceleration method. We compare our
method with ToMeSD [2] and DeepCache [26]. The comparison is implemented
at the resolutions of 1024×1024 and 2048×2048 based on SD 1.5 with RAU-Net.
Tab. 4 shows the quantitative results on ImageNet [34]. Our proposed MSW-
MSA outperforms ToMeSD and DeepCache across almost all metrics. Although
ToMeSD and DeepCache have achieved significant acceleration, they have also
compromised image quality. In contrast, our MSW-MSA can achieve or even sur-
pass the acceleration effects of ToMeSD and DeepCache without compromising
image quality. Please refer to the appendix for the visual sample comparison.

4.3 Ablation study

We ablate the components of HiDiffusion on 1024×1024 resolution image gener-
ation based on SD 1.5. Tab. 5 shows quantitative results of all possible combi-
nations. It can be seen that both RAU-Net and MSW-MSA bring improvements
in performance and speed. RAU-Net uses RAD to adjust the feature size to
the training dimensions, resulting in speed benefits. Meanwhile, the window at-
tention in MSW-MSA prevents an overwhelming number of tokens from global
interaction, thereby reducing token homogenization and enhancing performance.
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Method Resolution Latency (s) FID ↓ pFID ↓ CLIP ↑

Baseline

1024×1024

14.31 22.93 32.80 0.307
ToMeSD [2] 8.73 22.76 35.23 0.305
DeepCache (interval=3) [26] 6.62 25.31 35.61 0.306
DeepCachee (interval=2) [26] 8.49 24.07 33.89 0.306
MSW-MSA (ours) 8.26 21.80 30.86 0.307

Baseline

2048×2048

151.58 28.21 33.79 0.306
ToMeSD [2] 67.02 27.49 34.38 0.305
DeepCache (interval=3) [26] 70.70 34.49 42.13 0.305
DeepCache (interval=2) [26] 90.20 32.72 41.44 0.307
MSW-MSA (ours) 58.38 27.33 33.42 0.307

Table 4: Quantitative evaluation of diffusion acceleration methods and our proposed
MSW-MSA in zero-shot text-guided image synthesis on ImageNet. Baseline indicates
SD 1.5 with RAU-Net.

RAU-Net MSW-MSA Latency (s) FID ↓ pFID ↓ CLIP ↑

16.23 25.55 36.36 0.295
✓ 14.31 22.93 32.80 0.307

✓ 10.15 23.28 33.84 0.297
✓ ✓ 8.26 21.81 30.86 0.307

Table 5: Ablation about the components of HiDiffusion with SD 1.5 in zero-shot text-
guided image synthesis on ImageNet.

This perspective is discussed in [16]. When both are used simultaneously, the
optimal result can be achieved. We provide visual samples in the appendix.

5 Conclusion

In this paper, we propose a tuning-free framework named HiDiffusion for higher-
resolution image generation. HiDiffusion includes Resolution-Aware U-Net (RAU-
Net) that makes higher-resolution generation possible and Modified Shifted Win-
dow Multi-head Self-Attention (MSW-MSA) that makes higher-resolution gen-
eration efficient. Empirically, HiDiffusion can be incorporated into SD 1.5 [32],
2.1 [32], XL [30], and XL Turbo [36], and scale them to generate 1024×1024,
2048×2048, or even 4096×4096 resolution images, while significantly reducing
inference time. Compared to previous higher-resolution generation methods, we
can generate images with richer details in less inference time. We hope our work
can bring insight to future works about the scalability of diffusion models.

Limitations and future work: Our approach involves directly harnessing
the intrinsic potential of Stable Diffusion without any additional training or fine-
tuning, hence some inherent issues posed by Stable Diffusion persist, such as the
requirement for prompt engineering to obtain more promising images. Further-
more, we can explore better ways to integrate with super-resolution models to
achieve more amazing generation outcomes.
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