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9 Proofs

9.1 Preliminary

Notations. Vectors (e.g ., a) and matrices (e.g ., A) marked with a “hat” (e.g ., â
and Â) signify estimators of their corresponding population quantities, which are
represented with a superscript asterisk (a⋆ and A⋆). Furthermore, the symbol
F references a class of functions that perform task-specific mappings from Rr

to Rc, while H designates a class of feature mapping functions from Rd to Rr.
For the notation of integer sets, we adopt the convention [n] = {1, . . . , n}. The
notation Õ is employed to represent an expression that hides polylogarithmic
factors across all problem parameters.

Model Complexity. The measurement of complexity for a function class is
commonly evaluated by its Gaussian complexity, as shown in popular work [6,21,
24]. The definition of empirical and population Gaussian Complexity for a vector-
valued function class Q, comprising functions q(·) : Rd → Rr, and associated
with a data matrix X containing N datapoints, is presented as follows:

ĜX(Q) = Eg

[
sup
q∈Q

1

N

N∑
i=1

giq(xi)

]
, (13)

where g = {gi}i∈[N ] is a matrix of Gaussian random variables, each gi follow-
ing an independent and identically distributed normal distribution N (0, 1). The
population Gaussian complexity is estimated through the expectation GN (Q) =

EX[ĜX(Q)], which aggregates the empirical complexities over the dataset X.
In parallel, the Rademacher Complexities for the same function class Q can

be defined as:

R̂X(Q) = Eϵ

[
sup
q∈Q

1

N

N∑
i=1

ϵiq(xi)

]
, (14)

where ϵ = {ϵi}i∈[N ] is a matrix of random variables with each ϵi independently
and identically distributed according to the Rademacher distribution, which
equally assigns the values -1 and 1. The population Rademacher complexity,
RN (Q), is inferred through the expectation EX[R̂X(Q)], averaging the empiri-
cal complexities across the dataset X.

Referencing [14], we find the inequality:

GX(H) ≤ 2
√

logN ·RX(H), (15)

indicating a direct relationship between the Gaussian Complexity and the Rademacher
Complexity.

9.2 Proof of Theorem 1

Proof. In Eq. (6), the transfer risk ∆transfer quantifies the expected prediction
risk relative to the optimal counterpart. This risk is exclusively concerned with
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the shared representation and the task-specific mapping of the incremental task,
an aspect rigorously explored in [24]. Adapting Theorem 3 from [24] to the FSCIL
yields the following expression:

∆transfer ≤ O
(
Γ log(N) ·

[Γ (F) ·GN (H) +GN (F)

ρ

]
(16)

+ ΓGM (F) +
ΓDX0

ρN2
+B

[1
ρ
·
√

log(2/δ)

N
+

√
log(2/δ)

M

]
+ ϵ
)
. (17)

With this tailored formulation, we proceed to bound each of the complexity terms
detailed in this expression, elucidating their roles and upper bounds within the
FSCIL framework.

– For the calculation of GN (H), we consider a layer within an architecture-
agnostic neural network, expressed as:

h(l) = g(l)
(
h(l−1)

)
, (18)

where h(l) denotes the output at the l-th layer, and g(l) is the correspond-
ing layer function. On this basis, we apply the established result GX(H) ≤
2
√
logN ·RX(H) to determine the upper bound for GN (H):

NR̂X(h(xi)) = Eϵ

[
sup
h∈H

N∑
i=1

ϵih(xi)
]

(19)

≤ 1

λ
logEϵ

[
sup
h∈H

exp
(
λ

N∑
i=1

ϵih
(L)(xi)

)]
(20)

≤ 1

λ
logEϵ

[
sup
h∈H

exp
(
λ

N∑
i=1

∥ϵih(L)(xi)∥∞
)]

(21)

=
1

λ
logEϵ

[
sup
h∈H

exp
(
λ

N∑
i=1

∥ϵig(L)
(
h(L−1)(xi)

)
∥∞
)]
, (22)

where λ > 0 is identified as a tuning factor, and L represents the total
number of layers in the neural network. Assuming Z(l) = ∥h(l)∥∞

∥h(l−1)∥∞
, we can

further refine the upper bound as follows:

NR̂X(h(xi)) ≤
1

λ
logEϵ

[
sup
h∈H

exp
(
λ

N∑
i=1

Z(L)∥ϵih(L−1)(xi)∥∞
)]

(23)

≤ 1

λ
logEϵ

[
exp

(
Z · λ

N∑
i=1

∥ϵixi∥∞
)]
, (24)

where Z =
∏L

l=1 Z(l). Additionally, let xi,j denote the j-th coordinate of
xi, where j ranges from 1 to J . Exploiting the symmetry, we can elegantly
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reformulate the expectation within the log as follows:

Eϵ

[
exp

(
Zλ

N∑
i=1

∥ϵixi∥∞

)]
= Eϵ

[
exp

(
Zλ ·max

j

∣∣∣∣∣
N∑
i=1

ϵixi,j

∣∣∣∣∣
)]

(25)

≤
J∑

j=1

Eϵ

[
exp

(
Zλ ·

∣∣∣∣∣
N∑
i=1

ϵixi,j

∣∣∣∣∣
)]

, (26)

where | · | signifies the absolute value operation. By harnessing the principles
of symmetry and the linearity of expectation, the aforementioned expression
can be effectively upper bounded as follows:

J∑
j=1

Eϵ

[
exp

(
Zλ

N∑
i=1

ϵixi,j

)
+ exp

(
−Zλ

N∑
i=1

ϵixi,j

)]
(27)

= 2

J∑
j=1

Eϵ

[
exp

(
Zλ

N∑
i=1

ϵixi,j

)]
(28)

= 2

J∑
j=1

N∏
i=1

Eϵ [exp (Zλϵixi,j)] (29)

= 2

J∑
j=1

N∏
i=1

exp (Zλxi,j) + exp (−Zλxi,j)

2
(30)

≤ 2

J∑
j=1

exp

(
Z2λ2

N∑
i=1

x2
i,j

)
(31)

≤ 2J max
j

exp

(
Z2λ2

N∑
i=1

x2
i,j

)
, (32)

we then reintroduce the derived term into Equation (24), completing the
analytical process:

1

λ
logEϵ

[
exp

(
Z · λ

N∑
i=1

∥ϵixi∥∞
)]

≤ 1

λ
log

(
2J max

j
exp

(
Z2λ2

N∑
i=1

x2
i,j

))
(33)

=
log(2J)

λ
+ Z2λmax

j

N∑
i=1

x2
i,j . (34)

By selecting λ =

√
log(2J)

Z2 maxj
∑N

i=1 x2
i,j

, we are able to establish an upper bound

for the preceding expression:

NR̂X(H) ≤ 2Z

√√√√log(2J)max
j

N∑
i=1

x2
i,j , (35)



On the Approximation Risk of FSCIL 21

consequently, this yields the following result:

ĜX(H) ≤ 2
√

logN · R̂X(H) (36)

≤ 4Z
√
logN

N

√√√√log(2J)max
j

N∑
i=1

x2
i,j (37)

≤ 4D

L∏
l=1

Z(l)

√
logN log 2J

N
, (38)

where ∥x∥∞ ≤ D.
– For the calculation of GN (F), we derive:

GN (F) =
1

N
Eg

[
sup
f∈F

N∑
i=1

gif(xi)
]

(39)

≤ 1

N
Eg

[ N∑
i=1

gi
]
= 0. (40)

Similarly, for GM (F), it follows that:

GM (F) ≤ 1

M
Eg

[
sup
f∈F

M∑
i=1

gif(xi)
]
≤ 1

M
Eg

[ M∑
i=1

gi
]
= 0. (41)

In conclusion, after incorporating all Gaussian complexity terms into Eq.
(16), setting ϵ = 0, and omitting the polylogarithmic factors, the upper bound
for ∆transfer can be expressed as:

Õ
(Γ
ρ

· Γ (F) · 4D
L∏

l=1

Z(l)

√
log 2J

N
+

ΓDX0

ρN2
+B

[1
ρ
·
√

log(2/δ)

N
+

√
log(2/δ)

M

])
.

(42)

The determinant of ∆transfer is:

η · 1√
N

, (43)

where η = Γ
ρ · Γ (F) · 4D

∏L
l=1 Z(l)

√
log 2J .

9.3 Proof of the Corollary 1

According to Theorem 1, the transfer risk is encapsulated within the boundary:

Õ
(Γ
ρ

· Γ (F) · 4D
L∏

l=1

Z(l)

√
log 2J

N
+

ΓDX0

ρN2
+B

[1
ρ
·
√

log(2/δ)

N
+

√
log(2/δ)

M

])
.

(44)



22 X. Wang et al.

Notably, the term
∏L

l=1 Z(l) only involves the architecture of the backbones.
Considering the two dominant types of backbone, Vision Transformers (ViTs)
and Convolutional Neural Networks (CNNs), these architectures often incorpo-
rate layer or batch normalizations, thereby ensuring Z(l) ≈ 1. This implies that
increasing the number of layers does not necessarily increase the transfer risk,
as long as the infinity norm of the output of each layer remains stable.

Particularly in ViTs, there exist serveral self-attention layers, defined as:

h(l+1) = softmax
(
h(l)WaW

T
a h(l)

)
h(l), (45)

where Wa is the parameter of the self-attention layer.

The softmax function applied to h(l)WaW
T
a h(l) produces a normalized, non-

negative weight matrix. Thus, h(l+1) is a convex combination of rows in h(l). A
key property of convex combinations is that the infinity norm of the resultant
vector will not exceed that of the individual vectors being combined. Therefore,
in the self-attention layer:

Z(l) ≤ 1. (46)

This analysis suggests that ViTs, equipped with the self-attention mechanism,
potentially exhibit better transferability compared to other architectures.

9.4 Proof of the Eq. (5)

Proof.

∆AR = Rnovel([f̂0, f̂t], ĥ)−Rnovel([f
⋆
0 , f

⋆
t ],h

⋆)

=Rnovel([f̂0, f̂t], ĥ)−
(
Rnovel(f̂t, ĥ)−Rnovel(f̂t, ĥ)

)
−Rnovel([f

⋆
0 , f

⋆
t ],h

⋆)−
(
Rnovel(f

⋆
t ,h

⋆)−Rnovel(f
⋆
t ,h

⋆)
)

=Rnovel(f̂t, ĥ)−Rnovel(f
⋆
t ,h

⋆)︸ ︷︷ ︸
∆transfer

+Rnovel([f̂0, f̂t], ĥ)−Rnovel(f̂t, ĥ)︸ ︷︷ ︸
∆Rnovel

−
(
Rnovel([f

⋆
0 , f

⋆
t ],h

⋆)−Rnovel(f
⋆
t ,h

⋆)
)︸ ︷︷ ︸

0

=∆transfer +∆Rnovel. (47)
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9.5 Proofs in the Theorem 2

Proof. ∆Rnovel encapsulates the adaptation risk, quantifying the divergence be-
tween the composite classifier and the task-specific classifier:

∆Rnovel =Rnovel([f̂0, f̂t], ĥ)−Rnovel(f̂t, ĥ) (48)

=E

[
1

M

M∑
m=1

ℓ([f̂0, f̂t] ◦ ĥ(xt,m), yt,m)

]

− E

[
1

M

M∑
m=1

ℓ(f̂t ◦ ĥ(xt,m), yt,m)

]
(49)

=E

[
1

M

M∑
m=1

ℓ([f̂0(ĥ(xt,m)), f̂t(ĥ(xt,m))], yt,m)

]

− E

[
1

M

M∑
m=1

ℓ(f̂t(ĥ(xt,m)), yt,m)

]
. (50)

Defining W0 and Wt as the classifier parameters for the base task and the in-
cremental task t respectively, the aforementioned expression can be reformulated
as follows:

E

[
1

M

M∑
m=1

ℓ([Ŵ0ĥ(xt,m), Ŵtĥ(xt,m)], yt,m)

]

− E

[
1

M

M∑
m=1

ℓ([Ŵtĥ(xt,m)], yt,m)

]
(51)

=E

[
1

M

M∑
m=1

K0+Kt∑
i=1

−yt,m,i log(σi[Ŵ0ĥ(xt,m), Ŵtĥ(xt,m)])

]

− E

[
1

M

M∑
m=1

Kt∑
i=1

−yt,m,i log(σi[Ŵtĥ(xt,m)])

]
, (52)

where K0 and Kt represent the number of classes in the base and incremental
task respectively, and σi[·] denotes the i-th coordinate of the softmax function
σ applied to [·]. Define zt→0 =

∑K0

i=1 exp(ϕ0,i) for the base task with K0 base
classes, and zt→t =

∑Kt

i=1 exp(ϕt,i) for the incremental task with Kt novel classes.
Additionally, set zj = exp(ϕt,j). Here, ϕ signifies the logits of the classifier, t
indicates that the sample is associated with the task t, and i or j specify the
respective coordinate of the logits. If the correct label is j, then the above can
be reformulated:

∆Rnovel = E

[
1

M

M∑
m=1

(
log(

zt→0 + zt→t

zj
)− log(

zt→t

zj
)

)]
(53)

= E

[
1

M

M∑
m=1

log(1 +
zt→0

zt→t
)

]
. (54)
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Similarly, we can derive the following:

∆Rbase = E

[
1

N

N∑
n=1

log(1 +
z0→t

z0→0
)

]
. (55)

Thus, the consistency risk can be expressed as:

E

[
1

M

M∑
m=1

log(1 +
zt→0

zt→t
)

]
+ γE

[
1

N

N∑
n=1

log(1 +
z0→t

z0→0
)

]
. (56)

Utilizing Jensen’s inequality, the preceding expression can be upper bounded
as follows:

1

M

M∑
m=1

log(1 + E
[
zt→0

zt→t

]
) + γ

1

N

N∑
n=1

log(1 + E
[
z0→t

z0→0

]
). (57)

Substituting the definition of z into the above equation, we replace the ex-
pectations with their approximations:

1

M

M∑
m=1

log

(
1 +

K0 exp(ϕt→0)

Kt exp(ϕt→t)

)
+ γ

1

N

N∑
n=1

log

(
1 +

Kt exp(ϕ0→t)

K0 exp(ϕ0→0)

)
, (58)

where ϕt→0 represents the average logit for samples from incremental task t
when evaluated for the base task 0; ϕt→t denotes the average logit for samples
within task t, reflecting its internal classification performance; ϕ0→t indicates
the average logit for base task samples classified in the context of incremental
task t; and ϕ0→0 signifies the average logit for samples from the base task when
classified within the base task. The preceding expression can be upper bounded
by:

log

(
1 +

K0

Kt
vt

)(
1 +

Kt

K0
v0

)γ

(59)

where vt = exp (sup(ϕt→0)− inf(ϕt→t)), and v0 = exp (sup(ϕ0→t)− inf(ϕ0→0)).
To find the determinant of the consistency risk, three reasonable assumptions

were posited:

γ = 1, (60)

vt =
Kt

K0
exp(−ν), (61)

v0 =
K0

Kt
exp(−ν), (62)

where ν denotes the classification margin discrepancy, quantified by the differ-
ence between the infimum of the classifier logits for correct classification and the
supremum for incorrect classification.
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Table 3: Classification Accuracy (%) on mini-ImageNet in the 5-way 5-
shot FSCIL Setting. The notation ViT-B/16 denotes the ViT-Base model [5] with
a designated patch size of 16. The symbols ⋄ and † signify models derived from the
CLIP [19] and those pre-trained on the ImageNet-1K dataset, respectively. The symbol
↓ indicates preference for lower values.

Method Backbone Accuracy in each session(%) DR↓(%)0 1 2 3 4 5 6 7 8
CEC [32] ResNet18 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 33.85
MCNet [10] ResNet18 72.33 67.70 63.50 60.34 57.59 54.70 52.13 50.41 49.08 32.14
FACT [38] ResNet18 72.56 69.63 66.38 62.77 60.6 57.33 54.34 52.16 50.49 30.42
ALICE [17] ResNet18 80.6 70.6 67.4 64.5 62.5 60.0 57.8 56.8 55.7 30.89
CABD [37] ResNet18 74.65 70.70 66.81 63.63 61.36 58.14 55.59 54.23 53.39 28.48
SAVC [22] ResNet18 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 29.60
NC-FSCIL [30] ResNet12 84.02 76.80 72.00 67.83 66.35 64.04 61.46 59.54 58.31 30.60
CoCoOp⋄ [39] ViT-B/16 94.2 93.4 90.2 86.6 85.2 84.1 83.8 83.6 82.7 12.21
Prompt⋄ [31] ViT-B/16 95.4 94.4 93.4 93.1 92.1 91.4 91.4 90.7 90.0 5.66
ours ResNet18 84.23 81.33 77.01 74.62 71.66 68.74 65.97 63.83 62.17 26.19
ours⋄ ViT-B/16 93.16 93.15 91.17 90.54 90.53 90.04 89.05 89.13 89.04 4.42
ours† ViT-B/16 93.73 92.75 91.82 91.22 90.87 91.25 90.51 90.52 90.48 3.47

To simplify Eq. (59), and incorporate the classification bias α into ρ, the
determinant of the consistency risk can be expressed as:

log(1 +
κ

exp(ν)
), (63)

where κ is given by exp(α) + 1
exp(α) .

Notably, when α = 0, which implies no bias between the base and novel
classes, κ reaches its minimum.

10 Supplementary Experiments

10.1 Implementation Details

Building on prior research [5], our scratch-trained ViT models utilize masked
patch prediction for self-supervision to boost performance. Inspired by [33], we
implement vanilla mixup in our training. Additionally, following [22], auto aug-
mentation is applied to refine our training process. For label smoothing, we
adjust the smoothing factor to 0.5.

10.2 Comparative Experiments

As shown in Table 3 and 4, the performance of our models mirrors trends with
those observed on the CUB200 dataset. This indicates the adaptability and effi-
cacy of our approach in enhancing the training process, even amidst the distinct
characteristics and challenges presented by each dataset. Notably, our models
demonstrate their flexibility and robustness in addressing dataset-specific issues
such as category overlap, small image sizes, and lack of background information.



26 X. Wang et al.

Table 4: Classification Accuracy (%) on CIFAR100 in the 5-way 5-shot FS-
CIL Setting. The notation ViT-B/16 specifically denotes the ViT-Base model [5] with
a designated patch size of 16.

Method Backbone Accuracy in each session(%) DR↓(%)0 1 2 3 4 5 6 7 8
CEC [32] ResNet20 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 32.75
MCNet [10] ResNet20 73.30 69.34 65.72 61.70 58.75 56.44 54.59 53.01 50.72 30.80
FACT [38] ResNet20 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 30.16
SAVC [22] ResNet20 78.77 73.31 69.31 64.93 61.70 59.25 57.13 55.19 53.12 32.56
ALICE [17] ResNet18 79.0 70.5 67.1 63.4 61.2 59.2 58.1 56.3 54.1 31.52
CABD [37] ResNet18 79.45 75.63 72.00 68.09 65.54 62.59 60.76 58.35 56.56 28.81
NC-FSCIL [30] ResNet12 82.52 76.82 73.34 69.68 66.19 62.85 60.96 59.02 56.11 32.00
CoCoOp⋄ [39] ViT-B/16 82.2 78.5 76.7 74.7 73.2 71.7 71.0 70.3 69.9 14.96
Prompt⋄ [31] ViT-B/16 86.5 84.2 81.8 79.73 78.0 77.1 76.0 74.7 74.4 13.99
ours ResNet18 82.56 78.44 75.18 69.61 67.33 64.70 63.64 62.23 60.50 26.72
ours⋄ ViT-B/16 89.46 86.41 84.04 82.14 80.73 79.17 78.02 77.12 75.50 15.60
ours† ViT-B/16 89.55 86.96 85.60 83.20 83.00 82.40 81.93 81.02 79.24 11.51

10.3 Ablation Study

In this section, we evaluate the influence of four components of our ResNet18
model on the mini -ImageNet dataset, as detailed in Table 5. These components
demonstrate diverse impacts on performance. Specifically, expanding the base
class training dataset enhances accuracy by approximately 10% per session and
decreases the DR metric by around 7%. This finding underscores the effective-
ness of dataset expansion for addressing the FSCIL challenge, aligning with our
theoretical insights. Moreover, stabilization, constraint application, and label
smoothing each contribute positively to FSCIL performance to different extents,
underscoring their significance and reaffirming our theoretical analysis.

10.4 Model Overconfidence

Observations of Fig. 7 (a) and (b) reveal a notable shift in the prediction ac-
curacy of our model: a decrease of approximately 10% in the accuracy for base
class predictions and an increase of around 12% in the accuracy for new class pre-
dictions. This shift highlights the enhanced transferability of our model, which
is primarily attributed to the designed moderation in confidence levels. Similar
trends are evident in Fig. 7 (c) and (d).
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Table 5: Ablation Study on mini-ImageNet in the 5-Way 5-Shot FSCIL Set-
ting. With ResNet18 as the backbone, our study encompasses: “Stabilize”, enhacing
output stability via tanh function after normalization; “Constrain”, limiting represen-
tation values using layer normalization and tanh function; “LS” (Label Smoothing)
to reduce model overconfidence; “Expand”, expanding the dataset through the use of
mixup techniques [18,33] and various data augmentation methods [1, 7].

Stabilize Constrain LS Expand Accuracy in each session(%) DR↓(%)0 1 2 3 4 5 6 7 8
70.70 65.75 61.90 58.42 55.30 52.37 49.88 47.68 45.95 35.01

✓ 69.41 64.63 60.71 57.14 54.73 51.88 49.25 47.10 46.32 33.27
✓ 69.60 64.92 60.98 57.62 54.65 51.80 49.42 47.50 46.34 33.42

✓ 68.53 63.55 59.68 56.42 53.45 50.77 48.37 46.62 45.16 34.10
✓ ✓ 72.73 67.33 63.11 59.33 56.36 53.30 50.63 48.41 46.93 35.47
✓ ✓ 72.41 67.63 63.71 60.14 56.73 53.88 51.25 49.10 47.32 34.65

✓ ✓ 72.11 67.16 63.04 58.80 55.57 53.56 50.98 48.97 47.30 34.41
✓ ✓ ✓ 73.23 68.33 64.01 60.62 57.66 54.74 51.97 49.83 48.17 34.22

✓ 80.02 77.44 72.89 70.35 67.10 64.41 61.40 59.26 57.20 28.52
✓ ✓ 81.22 78.52 73.42 71.57 68.35 65.94 62.98 60.09 58.70 27.73

✓ ✓ 79.80 77.70 73.35 71.28 68.20 65.45 62.38 59.78 57.88 27.47
✓ ✓ 81.42 78.89 74.71 72.05 69.68 66.44 63.74 61.83 60.06 26.23

✓ ✓ ✓ ✓ 84.23 81.33 77.01 74.62 71.66 68.74 65.97 63.83 62.17 26.19

(a) CNN (b) CNN⋆

(c) ViT (d) ViT⋆

Fig. 7: Probability Distribution of Correct Predictions with ResNet18 and
ViT-S/6 Backbones on mini-ImageNet. The horizontal axis represents the index
of each test sample, while the vertical axis denotes the probability of correct prediction.
Each subfigure is divided by a red line; the left segment displays base class test samples,
and the right segment displays novel class samples. The average accuracy for base class
samples is marked by a purple line, and that for novel class samples is marked by a
green line. Besides, the symbol ⋆ denotes the model in our implementation.
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