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Abstract. Few-Shot Class-Incremental Learning (FSCIL) aims to learn
new concepts with few training samples while preserving previously ac-
quired knowledge. Although promising performance has been achieved,
there remains an underexplored aspect regarding the basic statistical
principles underlying FSCIL. Therefore, we thoroughly explore the ap-
proximation risk of FSCIL, encompassing both transfer and consistency
risks. By tightening the upper bounds of these risks, we derive practi-
cal guidelines for designing and training FSCIL models. These guide-
lines include (1) expanding training datasets for base classes, (2) pre-
venting excessive focus on specific features, (3) optimizing classification
margin discrepancy, and (4) ensuring unbiased classification across both
base and novel classes. Leveraging these insights, we conduct compre-
hensive experiments to validate our principles, achieving state-of-the-art
performance on three FSCIL benchmark datasets. Code is available at
https://github.com/xwangrs/Approximation_FSCIL-ECCV2024.git.
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1 Introduction

Few-Shot Class-Incremental Learning (FSCIL) [4, 23, 34], an emergent learning
paradigm, aims to learn novel classes with limited training data, while preserving
the knowledge acquired from base classes. This paradigm faces two primary
issues: (1) the catastrophic forgetting of established base class knowledge when
integrating new information, and (2) the overfitting to few-shot novel classes.

To effectively address these issues, researchers have proposed various ap-
proaches, broadly categorized into three groups [34]: data-based [13, 17, 38],
structure-based [23,32,36], and optimization-based [2,4,35] approaches. Despite
their proven effectiveness, there still remains an underexplored aspect regarding
the basic statistical principles underlying FSCIL. Central to this gap is the ques-
tion: What are the key factors in solving FSCIL problems? To answer
this question, our research delves into the basic statistical principles of FSCIL,
aiming to guide the design and training of FSCIL models.
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(a) Transfer Risk (b) Consistency Risk

Fig. 1: The upper bounds of the transfer and consistency risks. In Fig. 1 (a),
the horizontal axis represents the number of training samples for base classes, whereas
the vertical axis quantifies the magnitude of the transfer risk. Similarly, in Fig. 1 (b),
the horizontal axis reflects the classification margin discrepancy, while the vertical axis
quantifies the magnitude of the consistency risk. The parameters η > 0 and κ > 0 serve
as dynamic scaling factors, regulating the transfer and consistency risks.

We begin with fundamental assumptions: Homogeneity, Regularity condi-
tions, and Realizability. These assumptions, grounded in practical scenarios, form
the foundation of our theory.

Based on these assumptions, we formulate the gap between empirically ob-
tained and theoretically optimal FSCIL models as an optimization problem,
whose objective function is defined as the Approximation Risk of FSCIL. This
risk includes two components 1: transfer risk and consistency risk. The transfer
risk [24] evaluates the efficacy of the shared representations in knowledge trans-
fer from base to novel classes. A low transfer risk indicates effective utilization
of base classes knowledge to compensate for the scarcity of novel class samples,
thereby preventing overfitting in these novel classes. Meanwhile, the consistency
risk measures performance drop when incorporating novel classes, with a low risk
signifying robust and stable performance throughout class-incremental tasks,
thereby preventing the catastrophic forgetting of base classes.

Leveraging statistical learning theory [6, 14, 21, 26], we explore the upper
bounds of transfer and consistency risks, then identifying their determinants2:

η · 1√
N︸ ︷︷ ︸

Transfer Risk

+ log(1 +
κ

exp(ν)
)︸ ︷︷ ︸

Consistency Risk

, (1)

where N denotes the number of training samples for the base classes; ν indicates
the classification margin discrepancy, defined as the infimum of classifier logits
for correct classifications minus the supremum of those for incorrect classifica-
tions; the parameters η and κ are the dynamic scaling factors for transfer and
consistency risks, respectively. We will further discuss and elaborate on methods
for minimizing these risks by tightening their upper bounds.
1 Proofs in Section 4.
2 Proofs in Section 5.
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In Fig. 1 (a), it is evident that increasing the number of training samples for
base classes leads to a significant reduction in the transfer risk. Theoretically, this
risk could potentially be minimized to a negligible level with a sufficiently large
and diverse dataset. However, in practical scenarios, gathering sufficient data
for base classes remains a challenge, thereby prompting reliance on foundation
models [19,31]. Crucially, for the Homogeneity assumption to hold, the marginal
distribution of the pre-trained data should align with that of the base class data.
Failing to meet this condition could lead to an increase in the transfer risk.

In exploring how N affects the transfer risk, it becomes imperative to fully
comprehend the role of the dynamic scaling factor η. From a theoretical per-
spective, η represents a multivariate polynomial that is related to the maximum
activation values across each layer of the neural networks. This could be inter-
preted as the model’s selective attention to specific features. An increase in η
values indicates a marked emphasis on certain features, often at the expense
of neglecting others, thereby increasing the transfer risk. This phenomenon is
known as the “supervision collapse” [3, 9]. To mitigate this issue, we propose to
maintain a balanced distribution of activation values across the network layers
to prevent extreme impulse values. Furthermore, our theoretical analysis indi-
cates that Vision Transformers (ViTs) [5], owing to their self-attention mecha-
nism [25], exhibit a lower transfer risk compared to Convolutional Neural Net-
works (CNNs) [8]. Thus, in addressing the FSCIL problem, our preference is
towards the deployment of ViT models.

Evidenced in Fig. 1 (b), a clear inverse relationship exists between the classi-
fication margin discrepancy and the consistency risk, indicating that enhancing
the inter-class discrimination of representations can theoretically diminish the
consistency risk to minimal levels. This requires models to maximize the clas-
sification margin discrepancy on base classes, ensuring comprehensive training
of these models. Moreover, our theory also indicates that the scaling factor κ
reaches its lower bound when the model exhibits unbiased classification across
both base and novel classes. Achieving this balance involves training classifiers
for each task independently before combining them into a unified classifier.

We summarize our contributions as follows:

– Theoretical Framework: We develop a new optimization theory that provides
a novel perspective for understanding and addressing challenges in FSCIL.

– Risk Analysis: We decompose the approximation risk of FSCIL into transfer
and consistency risks, defining their upper boundaries and and key determi-
nants, thereby offering guidance for model design and training.

– Practical Strategies: We propose practical guidelines to address the chal-
lenges in FSCIL. These include expanding training datasets for base classes,
preventing excessive focus on specific features, optimizing classification mar-
gin discrepancy, and ensuring unbiased classification across both base and
novel classes.

Informed by these insights, we achieve state-of-the-art performance on three
benchmark datasets, demonstrating the effectiveness of our theory.
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2 Related Work

Recently, FSCIL [23,28] has emerged as a paradigm to incrementally learn novel
classes with a limited number of samples, while preserving previously learned
knowledge. According to the survey [34], existing approaches can be broadly
categorized into three groups: data-based approaches [13,17,38], structure-based
approaches [23,32,36], and optimization-based approaches [2, 4, 35].

The data-based approaches address FSCIL from the perspective of train-
ing data, which involves data replay-based methods [13] and pseudo scenarios-
based methods [17, 38]. For example, Kukleva et al. [13] propose a three-stage
framework where the base and the novel class samples are efficiently replayed to
calibrate the classification bias. Zhou et al. [38] propose ForwArd Compatible
Training (FACT) for FSCIL, which preassigns multiple virtual prototypes in the
embedding space by creatively mixuping the known class samples, and Peng et
al. [17] have similar ideas about utilizing the Mixup [33] to expand the datasets.

The structure-based approaches address FSCIL from the perspective of net-
work architecture design, which involves dynamic structure-based methods [23,
32] and attention-based methods [36]. For example, Zhang et al. [32] propose
Continually Evolved Classifier (CEC) that employs a graph model to propagate
context information between classifiers for adaptation. Tao et al. [23] propose
to use a neural “gas” network to learn and preserve the topology of the feature
manifold formed by the base and the novel classes in FSCIL. Zhao et al. [36] pro-
pose an attention-based aggregation module that selectively merges predictions
from the base branch and the novel branch.

The optimization-based approaches address FSCIL from the perspective of al-
gorithm optimization, which involves representation learning-based methods [35]
and knowledge distillation methods [2, 4]. Zhao et al. [35] concentrate on the
dilemma between the slow forgetting of old knowledge and the fast adaptation
to novel knowledge. Then a multi-grained “slow vs fast” learning strategy is pro-
posed to cope with this dilemma from both intra-space and the inter-space. Dong
et al. [4] propose a exemplar relation distillation incremental learning framework
to balance the tasks of old-knowledge preserving and new-knowledge adaptation.
Cui et al. [2] propose to distill reliable knowledge from the reference model, then
implement an uncertainty-aware distillation module that combines uncertainty-
guided knowledge refinement with adaptive distillation.

Beyond the above approaches, we explore the basic statistical principles un-
derlying FSCIL, then conclude with practical guidelines for the design and train-
ing of FSCIL models.

3 Preliminary

Problem Definition. FSCIL involves a base task followed by a sequence of
incremental tasks, each identified by a unique task identifier t. Each task is
constituted by a distinct training set, X t

train, and a testing set, X t
test, which are

associated with their respective distinct label spaces Yt, such that ∀i, j with
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i ̸= j, Yi ∩ Yj = ∅. For a particular task t, training is confined to X t
train, while

testing is performed across all encountered tasks. Notably, X 0
train encompasses a

substantial number of samples for the base task, while X t>0
train are limited to M

samples per task.
To tackle FSCIL, popular work [17,30–32] assumes a shared feature represen-

tation, enabling knowledge transfer from the base to incremental tasks. Building
upon this premise, we introduce the following:

Assumption 1 (Homogeneity) In FSCIL, the data pairs {(xt,i, yt,i)} for each
task t, are i.i.d. drawn from a distribution Pt over X t × Yt:

Pt(x, y) = Px(x) · Py|x(y|f⋆
t ◦ h⋆(x)), (2)

where h : Rd → Rr denotes a shared feature representation, and ft : Rr → Rc

represents a task-specific mapping. Crucially, this assumption entails that all
tasks are subject to an identical marginal distribution Px, indicative of a unified
dataset shared across the tasks.

4 Approximation Risk of FSCIL Models

As explicated in existing work [23,32], the training procedure for FSCIL models
is roughly partitioned into two distinct phases: the base and incremental phases.

Base Phase. During the base phase, the primary objective is the learning
of an optimal shared representation h in conjunction with the base classifier f0.
This is accomplished by minimizing the empirical risk R̂base:

R̂base(f0,h) =
1

N

N∑
i=1

ℓ(f0 ◦ h(x0,i), y0,i), (3)

where ℓ(·, ·) symbolizes the loss function; x0,i ∈ X 0
train and y0,i ∈ Y0. The com-

position operator ◦ denotes the consecutive application of functions such that
f0 ◦ h(x) = f0(h(x)). If Assumption 1 holds and the dataset size N is suffi-
ciently large (N ≫ 1), the estimator (f̂0, ĥ), derived from the minimization of
R̂base, serves as an effective proxy for the optimal function pair (f⋆

0 , h
⋆). This

base phase is crucial in forming a robust baseline for the learning agent, en-
abling a seamless transition and effective integration with the novel information
presented in subsequent incremental learning tasks.

Incremental Phase. The incremental training process continues with a
sequence of incremental tasks, where the learning agent learns the task-specific
classifier ft by minimizing empirical risk R̂novel over M new training samples 3:

R̂novel([f0, ft],h) =
1

M

M∑
m=1

ℓ([f0, ft] ◦ h(xt,m), yt,m), (4)

3 For brevity in our theoretical exposition, we confine this discussion to a single in-
cremental task; nevertheless, the principles delineated here are also applicable to
sequential tasks.
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where [f0, ft] signifies the concatenation of the base and incremental classifiers;
xt,m ∈ X t

train and yt,m ∈ Yt. The challenge herein lies in the fact that for M ≪
N , the estimator ([f̂0, f̂t], ĥ), obtained from minimizing h ∈ H fails to estimate
their underlying counterparts ([f⋆

0 , f
⋆
t ], h

⋆). To address this limitation, we assess
the efficacy of the estimator ([f̂0, f̂t], ĥ) by its excess risk on the incremental task
t, defined as the approximation risk of FSCIL:

∆AR =Rnovel([f̂0, f̂t], ĥ)−Rnovel([f
⋆
0 , f

⋆
t ],h

⋆). (5)

Approximation Risk. To clarify the approximation risk, we deconstruct
∆AR = ∆transfer +∆Rnovel

4. These components are defined as:

∆transfer = Rnovel(f̂t, ĥ)−Rnovel(f
⋆
t ,h

⋆), (6)

∆Rnovel = Rnovel([f̂0, f̂t], ĥ)−Rnovel(f̂t, ĥ). (7)

Within this framework, ∆AR is deconstructed into two principal components:
∆transfer and ∆Rnovel. The former signifies the transfer risk, assessing the ex-
pected prediction risk when transferring knowledge to novel tasks. The latter
encapsulates the adaptation risk, which particularly measures the divergence
between the composite classifier [f0, ft] and the task-specific classifier ft.

Beyond ∆AR, FSCIL additionally necessitates the consistent performance
across incremental tasks. This is formally represented by a constraint encapsu-
lating the adaptation risk pertaining to the base classifier:

∆Rbase = Rbase([f̂0, f̂t], ĥ)−Rbase(f̂0, ĥ). (8)

In synthesis, the final version of the approximation risk is represented by Eq.
(5), incorporating the constraint given by Eq. (8), and is achieved by applying
the penalty method:

min
f0,ft,h

∆transfer︸ ︷︷ ︸
Transfer Risk

+∆Rnovel + γ∆Rbase︸ ︷︷ ︸
Consistency Risk

, (9)

where γ represents the penalty coefficient.

5 Theoretical Results And Applications

In this section, the basic statistical principles underlying FSCIL are presented.
Initially, we make the following standard, mild regularity assumptions on the loss
function ℓ(·, ·), the function class of tasks F , and the function class of shared
representations H.

Assumption 2 (Regularity conditions) The following conditions hold:

– The loss function ℓ(·, ·) is B-bounded, and ℓ(·, y) is Γ -Lipschitz for all y ∈ Y.
4 Proof In Appendix 9.4
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Fig. 2: Architecture-Agnostic Modifications to FSCIL Models. Specific ad-
justments are indicated in red.

– The function f is Γ (F)-Lipschitz regarding the ℓ2 distance for any f ∈ F .
– The composed function f ◦ h is bounded: supx∈X |f ◦ h(x)| ≤ DX , for any

f ∈ F ,h ∈ H.

Furthermore, the realizability assumption is adopted, positing that the true
task functions and the true representation are contained in F and H, respectively.

Assumption 3 (Realizability) The true representation h⋆ is encompassed by
H. Concurrently, for all tasks considered—both base and incremental—the true
task-specific functions f⋆

t are also contained in F .

Based on Regularity and Realizability assumptions, we analyze transfer learn-
ing risk ∆transfer and consistency risk ∆Rnovel + γ∆Rbase in Eq. (9) separately.

5.1 Transfer Risk

Theorem 1. (Proof in Appendix 9.2) If Assumptions 2 and 3 hold, and the base
task is (ρ, 0) diverse, with probability 1 − 2δ, the transfer risk ∆transfer in Eq.
(9) is bounded by:

Õ
(Γ
ρ

· Γ (F) · 4D
L∏

l=1

Z(l)

√
log 2J

N
+

ΓDX0

ρN2
+B

[1
ρ
·
√

log(2/δ)

N
+

√
log(2/δ)

M

])
,

where N and M quantify the number of training samples of the base and in-
cremental task t respectively; ∥x∥ ≤ D; L is the depth of the neural network;
Z(l) = ∥h(l)∥∞

∥h(l−1)∥∞
, where h(l) denotes the feature representations of the l-th layer.

Application. To bridge the basic statistical principles and the practical
guidelines, we undertake the subsequent analysis:

(1) From Theorem 1, it becomes apparent that the quantity N , representing
the number of training samples for the base task, primarily influences the upper
bound of the transfer risk. As N increases, the upper bound tightens at a rate
proportional to O( 1√

N
). This relation shows that expanding training datasets

for base classes is the most straightforward and potent strategy for addressing
the FSCIL challenge, especially when the initial dataset is insufficiently large.
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In scenarios where expanding the data pool is not feasible, the adoption of a
foundation model [19,27] becomes a strategic alternative, which is substantiated
by our analysis of the transfer risk.

(2) Theoretically, the upper bound of transfer risk is proportional to
∏L

l=1 Z(l),
where Z(l) is the ratio of the infinity norm of features at layer l to that at layer
l − 1. While reducing

∏L
l=1 Z(l) could lower transfer risk, it might impair the

feature extraction, so we do not adopt this modification. In original ResNets and
ViTs, each layer typically includes Layer or Batch Normalization, standardizing
feature means to 0 and variances to 1. However, this normalization does not limit
the infinity norm of features, potentially causing excessively large values in some
dimensions and increasing Z(l), then raising transfer risk. To mitigate this, we
constrain each layer’s features to [−1, 1], setting Z(l) = 1. Since normalization
centers most feature values around zero, we introduce the tanh function to cap
them. The tanh function bounds values within [−1, 1] and has a slope of 1 at zero,
effectively constraining extreme values without significantly impacting original
models. Similarly, we also use norm + tanh to constrain the representation h.

Besides, DX 0 represents the highest probability value of the predicted out-
come, exhibiting a positive correlation with the upper bound. The essential strat-
egy to reduce this bound involves calibrating the model to ensure its predictions
are tempered, thereby preventing overconfidence. In conclusion, the analysis of
both

∏L
l=1 Z(l) and DX 0 shows that preventing excessive focus on specific

features is an effective strategy for addressing FSCIL challenge. As shown in
Fig. 2, we propose three architecture-agnostic modifications:

– Incorporation of the tanh activation function subsequent to each normaliza-
tion layer in the original models;

– Integration of the layer normalization and tanh activation function prior to
the generation of shared representations;

– Application of the label smooth in the training process.

Remark. The term Z(l) = ∥h(l)∥∞
∥h(l−1)∥∞

quantifies the ratio of maximal acti-
vation value in the l-th layer compared to that in the (l − 1)-th layer. It serves
as an indicator of the proportional activation dynamics spanning all dimensions
between consecutive layers. This metric emphasizes the need for a balanced
distribution of activation values throughout the network layers to inhibit the
incidence of impulse activation. Such regulation ensures that the model main-
tains an equitable emphasis on all features, thereby supporting the underlying
expectation of DX 0 for the model to prevent overconfidence in its predictions.

Corollary 1 (Proof in Appendix 9.3). Under conditions from Theorem
1, Vision Transformers (ViTs) exhibit lower transfer risks than Convolutional
Neural Networks (CNNs).

Remark. This finding substantiates the efficacy of ViTs in leveraging shared
representations for novel tasks, underscoring their robustness in transfer learn-
ing scenarios. Furthermore, the reduced transfer risk with ViTs as compared to
CNNs suggests a pivotal architectural advantage that may inform future devel-
opments in neural network design.
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5.2 Consistency Risk

Theorem 2 (Proof in Appendix 9.5). If Assumptions 2 and 3 hold, and
given K0 and Kt classes in the base and incremental tasks respectively, the con-
sistency risk ∆Rnovel + γ∆Rbase in Eq. (9) is upper-bounded by:

log

(
(1 +

K0

Kt
vt)(1 +

Kt

K0
v0)

γ

)
, (10)

where vt and v0 involve supremum and infimum of logits:

vt = exp (sup(ϕt→0)− inf(ϕt→t)) , (11)
v0 = exp (sup(ϕ0→t)− inf(ϕ0→0)) . (12)

The classifier logits ϕt→0, ϕt→t, ϕ0→0, and ϕ0→t respectively quantify how sam-
ples from task t and the task 0 (base task) are classified, either correctly or
in-correctly.

Application. Building on the above analysis about the transfer risk, we
proceed with the following detailed analysis about the consistency risk:

(3) From Theorem 2, we observe that the consistency risk is inherently tied
to the classification margin discrepancy of the model, which is quantified by
the difference between the infimum of the classifier logits for correct classification
and the supremum for incorrect classification. It infers that the consistency risk
approaches nullity as the predictive accuracy of the model approaches perfection.

(4) The upper bound of the consistency risk represents a balance between
vt and v0. Introducing a bias in categorization leads to inverse variations in vt
and v0, indicating that ensuring unbiased classification across both base
and novel classes can completely nullify the consistency risk. This implies
strategically designed biases might reach the minimal risk bound but are not
optimally efficient. Key lies in improving classification margin discrepancy while
maintaining a balanced classification bias.

6 Experiments

6.1 Datasets and Implementation Details

Datasets. Our study employs three diverse datasets: mini -ImageNet [20], CI-
FAR100 [12], and CUB200 [29]. The mini -ImageNet, a subset of ImageNet [20],
includes 600 images from 100 classes, split into 60 base and 40 novel classes.
These novel classes are divided into 8 incremental tasks, each a 5-way 5-shot
task. CIFAR100 comprises 100 classes with 600 images each, partitioned into 60
base and 40 novel classes, the latter organized into 8 incremental 5-way 5-shot
tasks. CUB200, containing 11,788 images of 200 bird species, is split into 100
base and 100 novel classes, with the latter arranged into 10 incremental 10-way
5-shot tasks. In this work, when the model is trained from scratch, the image
sizes for mini -ImageNet, CIFAR100, and CUB200 are set at 84 × 84, 32 × 32,
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Table 1: Classification Accuracy (%) on CUB200 in the 10-Way 5-Shot FS-
CIL Setting. The notation ViT-B/16 specifically denotes the ViT-Base model [5] with
a designated patch size of 16. The symbols ⋄ and † signify models derived from the
CLIP [19] and those pre-trained on the ImageNet-1K dataset respectively. The symbol
↓ is employed to indicate that lower values are more desirable.

Method Backbone Accuracy in each session(%) DR↓(%)0 1 2 3 4 5 6 7 8 9 10
CEC† [32] ResNet18 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28 31.07
MCNet† [10] ResNet18 77.57 73.96 70.47 65.81 66.16 63.81 62.09 61.82 60.41 60.09 59.08 23.84
FACT† [38] ResNet18 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 24.98
ALICE† [17] ResNet18 77.4 72.7 70.6 67.2 65.9 63.4 62.9 61.9 60.5 60.6 60.1 22.35
CABD† [37] ResNet18 79.12 75.63 73.21 69.93 68.32 66.30 65.15 64.96 64.20 64.03 63.81 19.35
NC-FSCIL† [30] ResNet18 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 26.12
SAVC† [22] ResNet18 81.85 77.92 74.95 70.21 69.96 67.02 66.16 65.30 63.84 63.15 62.50 23.64
LDC† [15] ResNet18 77.89 76.93 74.64 70.06 68.88 67.15 64.83 64.16 63.03 62.39 61.58 20.94
CoCoOp⋄ [39] ViT-B/16 80.3 77.1 75.8 73.9 72.4 68.2 65.2 63.9 61.1 60.3 57.2 28.76
Prompt⋄ [31] ViT-B/16 84.3 83.2 80.9 79.2 77.7 72.4 72.1 69.9 68.8 67.4 66.8 20.76
ours† ResNet18 79.87 77.36 74.92 70.62 70.64 68.55 68.14 67.93 66.73 66.67 65.69 17.75
ours⋄ ViT-B/16 86.46 84.21 82.67 79.79 79.52 77.32 76.71 77.16 75.76 75.56 75.22 13.00
ours† ViT-B/16 86.69 85.38 84.34 82.43 83.08 81.07 81.38 81.42 81.21 81.11 81.30 6.22

and 224×224 respectively. In scenarios utilizing a foundation model, the images
from all three datasets are resized to 224× 224.

Implementation Details. Following previous work [23,34], and guided by
our theory, we select ViTs as our primary models across all datasets. Specifically,
we utilize two ViT-B/16 variants: one from CLIP [19] and another pre-trained
on ImageNet-1K. During the base phase, we train the ViT models on the base
classes for 50 epochs using the AdamW optimizer. The learning rate is initially
set to 0, then linearly rises to 0.00001 during the first 20 epochs, followed by
a linear decrease back to 0 for the rest of the epochs. For a fair comparison,
ResNet18 serves as an auxiliary model across datasets, trained on base classes
for 500 epochs using AdamW. The learning rate for ResNet18 follows a similar
pattern: beginning at 0, increasing linearly to 0.1 within the first 50 epochs,
and subsequently diminishing back to 0. In the incremental phase, we freeze the
backbone and update only the task-specific classifiers.

Evaluation Metrics. Following precedents [16,23], our evaluation employs
Top-1 classification accuracy across cumulative testing sets after each learning
session. While traditional models often employ the Performance Drop (PD) met-
ric, defined as PD = (A0 −AN ), where A0 and AN represent the accuracies at
the initial and final sessions, we propose a refined metric. Recognizing that model
forgetting encompasses both the volume of initially acquired knowledge and the
extent of subsequent knowledge loss, we introduce the Performance Drop Rate
(DR), calculated as DR = (A0−AN )/A0. This metric more accurately captures
the effect of knowledge loss, factoring in the initial knowledge base.

6.2 Comparison with State-of-the-Art Methods

We benchmark our model against state-of-the-art performances on three datasets:
CUB200, CIFAR100, and mini -ImageNet, with results in Fig. 3 and detailed
CUB200 data in Table 1 (see supplementary materials for other datasets).
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Fig. 3: Comparison with State-of-the-Art on Three Datasets: CUB200,
mini-ImageNet, and CIFAR100. For detailed performance metrics, please see Ta-
ble 1 and refer to our supplementary material.

Table 1 shows that our ViT model (CLIP) achieves an improvement of 8.42%
in the final session compared to the sub-optimal method, and the DR met-
ric decreases by 7.76%. When ImageNet-1K is used for pre-training, our ViT
model records a boost of 17.49% in the last session compared to the second best
method, with a DR reduction of 13.13%. As for ResNet18, our ResNet18 model
exhibits a 1.88% improvement in the final session over the sub-optimal ResNet18
model, with a 1.6% reduction in the DR metric. These results indicate a decrease
in catastrophic forgetting and overfitting, attributed to the application of our
guiding principles for reducing the approximation risk.

From Fig. 3, similar trends are observed on the mini -ImageNet and CI-
FAR100, though the improvements of ViTs are less pronounced. This obser-
vation can be attributed to mini -ImageNet being a subset of ImageNet, which
violates the standard FSCIL setting, and to the unique image characteristics of
CIFAR100, such as smaller image size and lack of background, which differ from
the typical natural image distributions used in pre-training.

Remarkably, even though CLIP has a broader pre-training dataset compared
to ImageNet-1K, performance with CLIP remains consistently lower. This phe-
nomenon might be explained by the significant difference between the marginal
distributions of the three benchmark datasets and the data used for pre-training
of CLIP. Conversely, ImageNet-1K aligns more closely with these distributions,
better fulfilling the Homogeneity assumption in our study.

6.3 Ablation Study

In this section, we assess the impact of four key components of our ViT model
on the CUB200 dataset (see supplementary materials for ResNet18). Detailed
in Table 2, these components show varied performance effects. The FT strategy
exhibits the lowest Top-1 accuracy (38.01% in the final session) and highest DR
metric (40.99%), indicating a pronounced bias towards novel classes and substan-
tial consistency risk. Conversely, FR strategy results in improved Top-1 accuracy
(52.41%) and lower DR metric (36.63%), yet struggles with catastrophic forget-
ting. The DS strategy, separating training of base and novel classifiers, is the
most effective in reducing bias and consistency risk.
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Table 2: Ablation Study on CUB200 in the 10-Way 5-Shot FSCIL Set-
ting. With ViT-B/16 as the backbone, our study encompasses: “Stabilize”, enhacing
output stability via tanh function after normalization; “Constrain”, limiting represen-
tation values using layer normalization and tanh function; “LS” (Label Smoothing) to
reduce model overconfidence; and “BC” (Base Classifier), employing Fine-Tuning (FT),
Freezing (FR), and Discarding (DS) in the incremental phase.

Stabilize Constrain LS BC Accuracy in each session(%) DR↓(%)0 1 2 3 4 5 6 7 8 9 10
FT 64.42 59.32 55.04 50.62 48.91 45.22 43.97 42.13 40.59 39.50 38.01 40.99
FR 82.71 76.36 71.33 66.95 64.88 61.03 58.94 57.48 55.75 54.12 52.41 36.63
DS 87.05 83.50 81.00 77.66 76.56 74.12 73.00 73.17 72.32 71.87 70.97 18.47

✓ DS 87.15 84.41 81.65 78.11 77.46 75.18 74.44 73.87 73.17 72.97 72.07 17.30
✓ DS 86.77 84.02 81.56 78.31 77.63 75.44 74.39 74.48 73.40 73.11 72.29 16.69

✓ DS 87.49 84.09 82.19 78.56 77.93 75.49 75.53 74.67 73.46 73.42 72.77 16.82
✓ ✓ DS 87.51 84.03 81.92 78.43 78.22 75.74 75.91 75.19 73.59 73.83 73.34 16.19
✓ ✓ DS 87.63 84.13 81.77 78.05 78.00 75.80 75.40 74.79 74.43 74.25 73.71 15.88

✓ ✓ DS 87.46 84.53 82.77 79.32 78.96 76.62 76.85 75.87 74.54 74.47 73.98 15.41
✓ ✓ ✓ DS 86.46 84.21 82.67 79.79 79.52 77.32 76.71 77.16 75.76 75.56 75.22 13.00

(a) ResNet18 (b) ViT-S

Fig. 4: Impact of Dataset Size in Transfer Risk with ResNet18 and ViT-S/6
Backbones Trained from Scratch on mini-ImageNet. In both subfigures, the
horizontal axis represents the dataset size per base class, while the vertical axis lists
training techniques. These include Data Augmentation [1, 7, 11] and Mixup [18, 33],
essential for expanding the training dataset.

Integration of the tanh function for layer stabilization improves the DR metric
by about 1%, mitigating overfitting. Similarly, constrained feature representa-
tions through layer normalization and tanh function slightly decrease base class
accuracy but enhance the DR metric by 1%, indicating reduced overfitting. Im-
plementing label smoothing technique raises both base classification accuracy
and DR metric by 1%, attributed to lowering transfer risk.

Combining these components yields superior performance, highlighting their
synergistic effect in FSCIL.

6.4 Dataset Size in Transfer Risk

In this section, we empirically investigate the correlation between dataset size
and transfer risk in neural networks, focusing on ResNet18 and ViT-S/6 archi-
tectures. Fig. 4 (a) and (b), show a clear correlation between increased dataset
size per class and improved final accuracy for both models. This supports the
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Base Classes Novel Classes
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0.80 0.89 0.58 0.88 0.13 0.15 0.40

ViT
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CNN*

0.520.290.480.740.360.970.93

CNN*

0.98 0.99 0.53 0.88 0.17 0.15 0.49

CNN

0.98 0.99 0.53 0.88 0.17 0.15 0.49

CNN

Fig. 5: Visualization of ResNet18 and ViT-S/6 on mini-ImageNet. Images are
divided by a red dotted line: left for base classes and right for novel classes. Beneath
each image, the predicted probability is numerically displayed. The star symbol denotes
models in our implementation. In ViT visualizations, image brightness reflects attention
level. Darker images signify attention concentrated on specific patches, while brighter
ones indicate a more global attention on the whole image.

idea that increasing the dataset size (N) effectively tightens the upper bound of
transfer risk, thereby enhancing models’ capacity for incremental learning.

When direct sample collection is limited, Data Augmentation and Mixup
techniques present a viable alternative. These methods create additional sam-
ples, enriching the training dataset. This is evident in Figures 4 (a) and (b),
where both ResNet18 and ViT-S models show significant performance gains with
these techniques. This reinforces our theory: indirect sample generation via Data
Augmentation and Mixup can enhance model transferability, mirroring the ad-
vantages of direct sample collection.

6.5 Analysis of the Model Overconfidence

In this section, we provide a visual results to illustrate the influence of prediction
confidence on transfer risk. The first and third rows of Fig. 5 indicate that
models (CNNs or ViTs) naturally focus on small, highly discriminative regions
within base class samples, which leads to overconfidence in these predictions.
This propensity leads to misclassification during the transfer of models to novel
classes, a phenomenon commonly referred to as supervision collapse.

Our approach aims to temper the model’s over-reliance on base class pre-
dictions. As evidenced in the second and fourth rows of Fig. 5, lowering the
probability for base class predictions enables the model to cover broader re-
gions. This expanded scope assists in focusing on distinctive features of novel
classes, thus enhancing prediction accuracy for these classes.
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(a) -30.84 (b) -15.78 (c) -10.18 (d) -3.5

Fig. 6: The t-SNE visualizations of the logits for test samples on mini-ImageNet, under
varying degrees of Classification Margin Discrepancy, are depicted with distinct colors
representing different classes. The architectures for Fig. (a), (b), and (c) are based on
ViT-S/6 models, each trained from scratch. Conversely, Fig. (d) employs a ViT-B/16
backbone, which is pre-trained on the ImageNet dataset.

6.6 Classification Margin Discrepancy

As demonstrated in Fig. 6, we observe a progressive enhancement in the sep-
arability of logits for test samples, correlating with an incremental increase in
the Classification Margin Discrepancy. This trend not only signifies a reduction
in the consistency risk but also marks a significant step towards achieving more
reliable and robust classification performance in FSCIL settings. These findings
empirically validate our theoretical framework, suggesting that optimizing for
classification margin discrepancy directly contributes to mitigating consistency
risks and enhancing model adaptability across incremental learning tasks.

7 Conclusion

In conclusion, we have conducted a thorough exploration on the approximation
risk of FSCIL. By focusing on mitigating transfer and consistency risks and tight-
ening their upper bounds, we have developed practical guidelines for the design
and training of FSCIL models. These guidelines have expanded training datasets
for base classes, optimized classification margin discrepancy, prevented excessive
focus on specific features, and ensured unbiased classification across both base
and novel classes. Our extensive experiments have validated these principles,
culminating in state-of-the-art performance on three benchmark datasets.

8 Limitation

In this paper, Homogeneity and Regularity conditions are foundational assump-
tions. Homogeneity, based on the i.i.d assumption, indicates samples in a dataset
share similar characteristics like hues and lighting. Regularity involves bounded-
ness for model convergence and the Lipschitz condition, crucial for representation
learning. Practically, comparative experiments show that even when the pre-
training and FSCIL benchmark datasets have different marginal distributions,
our methods still achieve better results, albeit with smaller gains. This indicates
that our theory generally holds but comes at the cost of some practicality.
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