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1 Overview

To make our PointRegGPT self-contained, we provide additional details in this supple-
mentary document, including:

– Implementation details.
– Evaluation metrics.
– Additional quantitative experiment results.
– More visualization.
– Limitations and future works.

2 Implementation Details

To train our diffusion model and depth correction module, the depth maps are resized
to a resolution of 256×256, using downsampling of nearest interpolation and center-
cropping. The depth range is clipped to [0m, 10m] and then scaled to [−1, 1]. We train
our diffusion model using 32 GeForce RTX 2080 Tis with a batch size of 128 for 2, 000k
iterations. For the forward process, we set T = 1000 and use the sigmoid schedule [12]
for βt. For the reverse process, following [16], we set T = 250 to accelerate the gen-
eration process. To train our depth correction module, we use 8 GeForce RTX 2080
Tis with a batch size of 32 for 50 epochs. We use the Adam optimizer with an initial
learning rate of 1e−4, which is decayed by 0.95 for each epoch.

For the generation of point cloud registration datasets, the threshold τm is set to
0.99. Following [11], the generated point cloud is downsampled to a voxel size of
0.025m. To minimize domain gaps, we design a ground-truth-based transformation
generation strategy, sampling ground-truth transformations from the 3DMatch train-
ing set with turbulence added for randomness and diversity. We also exploit a random-
based transformation generation strategy to simulate point clouds from video frames:
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rotations are randomly sampled from uniform distributions, [− π
24 ,

π
24 ] for pitch and

[− π
12 ,

π
12 ] for yaw; translations are randomly sampled from a Gaussian distribution with

σ = 1
3m. Both of these two strategies can generate reliable transformations. The point-

cloud pairs whose bidirectional overlap ratio is under 10% or have a point cloud with
a point number under 1, 000 are abandoned. To evaluate the effectiveness of our gener-
ative dataset, we choose the previous state-of-the-art methods [11, 15, 20] as baselines,
and train them using the generative dataset as an additional dataset, following all the
training and testing protocols but increasing the total training epochs, i.e., 60 epochs
for PREDATOR [11]/GeoTrans [15] and 30 epochs for CoFiNet [20].

3 Evaluation Metrics

Following the existing works, we give the details on the evaluation metrics we employed
for point cloud registration.
(i) Registration Recall (RR) is the fraction of successfully registered point-cloud pairs.
A point-cloud pair is said to be successfully registered when its transformation error is
lower than threshold τ1. In addition, the transformation error is defined as the root mean
square error of the ground-truth correspondences C∗, to which the estimated transfor-
mation Test(·) has applied:

RMSE =

√√√√ 1

|C∗|
∑

(p∗
x,q∗

y)∈C∗

∥Test(p∗
x)− q∗

y∥22, (1)

RR =
1

M

M∑
i=1

[
RMSEi < τ1

]
, (2)

where px and qy denote the x-th point in source P and y-th point in target Q, respec-
tively; [·] is the Iversion bracket; and M is the number of all point-cloud pairs.
(ii) Inlier Ratio (IR) is the fraction of inlier correspondences among all hypothesized
correspondences C. A correspondence is regarded as an inlier if the distance between
the two points is lower than a certain threshold τ2 under the ground-truth transformation
Tgt(·):

IR =
1

|C|
∑

(px,qy)∈C

[
∥Tgt(px)− qy∥2 < τ2

]
. (3)

(iii) Feature Matching Recall (FMR) is the fraction of point-cloud pairs whose IR >
threshold τ3:

FMR =
1

M

M∑
i=1

[
IRi > τ3

]
. (4)

(iv) Relative Rotation Error (RRE) is the geodesic distance in degrees between the
estimated and ground-truth rotation matrices Rest and Rgt:

RRE = arccos

(
trace(RT

est ·Rgt − 1)

2

)
. (5)
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(v) Relative Translation Error (RTE) is the Euclidean distance between estimated
and ground-truth translation vectors test and tgt:

RTE = ∥test − tgt∥2. (6)

(vi) Transformation Recall (TR) is the fraction of successfully registered point-cloud
pairs, similar to RR but using a different definition of successful registration:

TR =
1

M

M∑
i=1

[
RREi < τ4 and RTEi < τ5

]
. (7)

TR is also called RR in [2, 15], while we follow [5, 17] to use TR to avoid ambiguity.
Following [3, 5, 11, 15, 19], we set τ1 = 0.2m, τ2 = 0.1m, τ3 = 0.05, τ4 =

15◦, and τ5 = 0.3m for evaluation on the 3DMatch and 3DLoMatch benchmarks.
Following [5, 17], we set τ1 = 0.5m, τ2 = 0.2m, and τ3 = 0.05 for evaluation on the
ETH benchmark.

Besides, we report Fréchet Inception Distance (FID) [8] and Minimal Matching
Distance (MMD) [1] for realism evaluation. When calculating MMD scores, we exploit
Chamfer Distance to measure the distance between point clouds.

4 Additional Quantitative Experiment Results

4.1 Additional Evaluation Results

We present additional experiments that evaluate our method. Note that we present these
additional experiments because different existing methods use different evaluation met-
rics/approaches.

Table 1: Registration results on 3DMatch and 3DLoMatch following the metrics used in [14]. The
best and second-best results are marked in bold and underlined. Compared with SIRA-PCR [5],
our method achieves comparable results on 3DMatch and surpasses it in RR on 3DLoMatch.

Model
3DMatch 3DLoMatch

RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓ RR ↑

PREDATOR [11] 2.72 0.078 91.8 4.44 0.116 62,4
Lepard [14] 2.48 0.072 93.5 4.10 0.108 69.0
PREDATOR [11] + ICP 2.06 0.062 92.3 3.46 0.098 65.2
Lepard [14] + ICP 1.96 0.060 93.9 3.17 0.089 71.3
MTR [4] 1.32 0.043 95.1 2.49 0.072 75.4

GeoTrans [15] 1.84 0.061 94.1 2.86 0.086 76.1
+ SIRA-PCR [5] 1.80 0.059 95.4 2.74 0.084 79.4
+ Ours 1.87 0.061 95.0 2.78 0.086 80.2

Following [4, 14], we report the RRE, RTE, and RR which are averaged on all scan
pairs, different from the more commonly-used scene-wise averages proposed by [11].
As shown in Tab. 1, boosted by our generative dataset, GeoTrans [15] achieves the RR
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Table 2: Registration results on 3DMatch and 3DLoMatch following the metrics used in [2,
13, 15, 17, 21]. —: the results are not released. The best and second-best results are marked in
bold and underlined. Compared with SIRA-PCR [5], our method achieves comparable results on
3DMatch and surpasses it in RR on 3DLoMatch.

Model
3DMatch 3DLoMatch

RRE ↓ RTE ↓ TR ↑ RRE ↓ RTE ↓ TR ↑

FGR [22] 2.82 8.36 78.6 5.28 12.98 20.0
DGR [7] 2.40 7.48 91.3 4.17 10.82 43.8
DHVR [13] 2.25 7.08 91.9 4.14 12.56 54.4
PointDSC [2] 2.06 6.55 93.3 3.87 10.39 56.1
SC2PCR [6] 2.08 6.55 93.3 3.77 10.46 57.8
RoReg [17] 1.84 6.28 95.5 3.09 9.30 72.0
MAC [21] — — 95.7 — — 78.9

GeoTrans [15] 1.98 5.69 95.0 2.98 8.55 77.5
+ SIRA-PCR [5] 1.91 5.66 97.0 2.88 8.48 80.8
+ Ours 1.96 5.78 96.5 2.94 8.63 81.6

comparable with current state-of-the-art methods MTR [18] and SIRA-PCR [5] on the
3DMatch benchmark, and even outperforms them on the 3DLoMatch benchmark by 4.8
pp and 0.8 pp, respectively. Note that it is meaningless to compare the RRE and RTE
when RR or TR is not comparable, as RRE and RTE are computed within successfully
registered pairs, so they are not discussed in this section.

To fairly compare with [2,6,7,13,21,22], we report the TR, which is defined under
the threshold of RRE < 15◦ and RTE < 0.3m. As shown in Tab. 2, GeoTrans outper-
forms the current state-of-the-art method RoReg [17] and MAC [21] on both 3DMatch
and 3DLoMatch. Compared with SIRA-PCR [5], our method achieves comparable re-
sults on 3DMatch and surpasses it in RR on 3DLoMatch by 0.8 pp.

The additional evaluation results in Tab. 1 and Tab. 2 show the robust boost under
different metrics. In summary, without additional data sources as used in rendering-
based dataset [5], our method achieves comparable results on 3DMatch and better re-
sults on 3DLoMatch, boosting GeoTrans [15] to outperform the current state-of-the-art
methods.

Table 3: Comparison of transformation generation strategies

Methods
3DMatch 3DLoMatch

FMR ↑ IR ↑ RR ↑ FMR ↑ IR ↑ RR ↑

baseline (GeoTrans) 97.8 69.2 91.4 88.0 42.3 73.5
random-based strategy 98.0 70.9 91.7 88.9 44.8 75.5
ground-truth-based strategy 98.0 71.6 91.9 89.4 44.9 76.5
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For transformation sampling, we design two different strategies, a ground-truth-
based strategy and a random-based strategy. As shown in Tab. 3, the ground-truth-based
strategy performs better since fewer domain gaps will be introduced in this way.

Table 4: Comparison in data augmentation

Methods
3DMatch 3DLoMatch

FMR ↑ IR ↑ RR ↑ FMR ↑ IR ↑ RR ↑

baseline (GeoTrans) 97.8 69.2 91.4 88.0 42.3 73.5
UDGE [9] 97.5 68.2 90.4 84.8 39.4 70.3
Ours 98.0 71.6 91.9 89.4 44.9 76.5

Our PointRegGPT can be deemed as a data augmentation method. From such a
perspective, we compare it with another similar approach, UDGE [9]. UDGE [9] is for
transfer learning but performs limited when it is used for data augmentation, since no
new geometric structure is generated by only augmenting existing data, as is shown in
Tab. 4. Our method can generate new geometric structures through diffusion models,
thus effectively boosting the performances of baseline methods.

In Tab. 5, we compare our depth correction module with other possible solutions
for the point penetration problem. TSDF can fuse tens of depth maps to densify a point
cloud to an extremely high density. With such a density of point clouds, the point pen-
etration problem will disappear during re-projection, thus generating datasets without
artifacts, boosting the performance consistently as shown in Row (c) of Tab. 5. Nev-
ertheless, the corresponding extrinsic matrix is required for each depth map, and the
process of TSDF is really time-consuming. A handcrafted filter is proposed in [10] to
tackle the point penetration problem. It works well in many easy cases but fails in chal-
lenging cases, which generates unreliable training data and causes a performance drop
on 3DLoMatch. On the contrary, our depth correction module can solve challenging
cases to stabilize the generative results by avoiding artifact generation.

As the total training epochs are increased when the baselines [11,15,20] are trained
with the additional generative dataset, we also try increasing the total epochs to the same
numbers when the baselines are trained on 3DMatch without the additional data, but
no improvement is observed, which means simply increasing training epochs without
adding more data is noneffective.

4.2 Time Consumption

Adhering to the official implementations without any modifications, the time consump-
tion for 3D point cloud registration remains consistent across all baselines. For data gen-
eration, each pair of point clouds (out of 100 pairs tested) takes an average of 252.75ms
for depth correction and 7, 889.57ms for the reverse diffusion process. These timing
measurements were rigorously validated, using a single GeForce RTX 2080 Ti for test-
ing purposes.
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Table 5: Ablation studies of different methods to solve the point penetration problem. The best
and second-best results are marked in bold and underlined.

Methods
3DMatch 3DLoMatch

FMR ↑ IR ↑ RR ↑ FMR ↑ IR ↑ RR ↑

(a) baseline [15] 97.7 70.3 91.5 88.1 43.3 74.0
(b) w/o depth correction 98.5 70.6 91.3 87.8 42.6 73.5
(c) w/ TSDF 98.4 71.6 92.8 88.9 44.8 75.5
(d) w/ handcrafted filter [10] 97.7 71.5 91.6 88.0 43.4 71.9
(e) w/ depth correction 98.0 71.6 91.9 89.4 44.9 76.5

4.3 Realism Measurement

To quantitatively measure realism, we calculate FID and MMD scores between syn-
thetic and real data. Tab. 6 shows that our generated data is more realistic than the
rendering-based SIRA-PCR [5].

Table 6: Realism comparison with rendering-based data

Datasets Type FID ↓ MMD (cm) ↓

SIRA-PCR [5] Rendering-based 7.21 12.49
Ours Generative 3.47 8.21

4.4 Overlap Ratio Distribution

Figure 1 shows the overlap ratio distribution of our data, which indicates the diversity
of transformations and overlap ratios in our generative dataset.

P
ro

po
rt

io
n

Overlap Ratio

Fig. 1: Visualization of the overlap ratio distribution

5 More Visualization

5.1 Qualitative Comparison with Various Baselines

We provide more qualitative results with various baselines [11, 15, 20] in Fig. 2, Fig. 3,
and Fig. 4, respectively. All of these are challenging cases on 3D(Lo)Match and ETH.
Specifically, the overlapped structures are highly fragmented, e.g., Case (b) and Case (c)
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in Fig. 2, as well as Case (b) and Case (d) in Fig. 3, which are hard to recognize. Besides,
repeated structures with ambiguity can cause failure cases, e.g., Case (b), Case (c), and
Case (d) in Fig. 4. Plus, extreme noises are made up of the luxuriant leaves of bushes
and woods in outdoor scans, e.g., Case (f) in both Fig. 3 and Fig. 4, encompassing and
blurring the meaningful structures which are helpful for registration. Boosted by our
PointRegGPT, these cases can be properly solved by baseline methods [11, 15, 20].

5.2 Qualitative Comparison of Depth Correction

We provide more qualitative results for depth correction. As shown in Fig. 5, hand-
crafted filter [10] can solve part of the point penetration problem but fails in many diffi-
cult cases. Our deep correction module can solve the problem better by a learning-based
approach. However, the vanilla U-Net cannot solve the problem perfectly, leaving some
wrong values when the threshold is low, i.e., τm = 0.50, or eliminating too many right
values to break the integrity of structures when the threshold is high, i.e., τm = 0.99,
due to the lack of awareness of 3D structures. Our depth augmentation enhances the
ability of the depth correction module, improving the performance. Whether the depth
correction module is with or without the depth augmentation module, the wrong values
caused by the penetrated points can be better eliminated with a higher threshold τm.
Thus, we set τm = 0.99 for better generated results.

5.3 Visualization of Generated Data

In this section, Fig. 6 provides a visual illustration of the data generated in our study.
We successfully produced diverse content in the non-overlapping regions of the point
clouds, while ensuring 3D consistency in the overlapping regions. For a comparison,
we selected the nearest real-world sample from 3DMatch. The source point cloud in
3DMatch is constructed using a TSDF fusion from multiple depth maps, including the
specific depth map that corresponds to the source point cloud in our generated samples.

6 Limitations and Future Works

Our PointRegGPT can rigorously guarantee 3D consistency and generation quality in
overlap regions. However, due to indeterminacy during the reverse process of diffusion
models, the generated results out of overlap regions are unpredictable, which causes
unstable quality of generative data. Some generated cases are textureless or without
meaningful structures, which may have a negative effect on models trained on them. A
filter rejecting the bad cases in generative datasets could make a difference. Besides, as
both the depth generation and the depth correction use a similar U-Net-like backbone,
it is possible to reformulate the two parts into a one-step process. We will leave both of
them for future work.
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(a)

(c)

(e)

(b)

(d)

(f)

Input PREDATOR PREDATOR+ours Ground-Truth Input PREDATOR PREDATOR+ours Ground-Truth

Fig. 2: Qualitative comparison on (a), (b) 3DMatch, (c), (d) 3DLoMatch, and (e), (f) ETH. As
can be seen, our PointRegGPT can make PREDATOR [11] perform better in these challenging
cases, e.g., highly fragmented structures in (b) and (c).

(a)

(c)

(e)

(b)

(d)

(f)

Input CoFiNet CoFiNet+ours CoFiNet CoFiNet+oursGround-Truth Input Ground-Truth

Fig. 3: Qualitative comparison on (a), (b) 3DMatch, (c), (d) 3DLoMatch, and (e), (f) ETH. As
can be seen, the performance of CoFiNet [20] in these challenging cases, e.g., highly fragmented
structures in (b) and (d), as well as extreme noises in (f), is enhanced by our PointRegGPT.

(a)

(c)

(e)

(b)

(d)

(f)

Input GeoTrans GeoTrans+ours Ground-Truth Input GeoTrans GeoTrans+ours Ground-Truth

Fig. 4: Qualitative comparison on (a), (b) 3DMatch, (c), (d) 3DLoMatch, and (e), (f) ETH. As
can be seen, GeoTrans [15] is boosted by our PointRegGPT to solve many challenging cases,
e.g., repeated structures with ambiguity in (b-d), and extreme noises in (f).
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(a) Input (b) Handcrafted
(d) w/


Depth Augment.
(f) w/


Depth Augment.
(c) w/o


Depth Augment.
(e) w/o


Depth Augment.

Fig. 5: Supplementary comparison for depth correction with different settings. As shown in the
figure, the handcrafted filter [10] fails in challenging cases. Besides, under different thresholds
τm, the depth correction module with the depth augmentation module outperforms the one with-
out the depth augmentation module. Additionally, the depth correction module with a higher
threshold, i.e., τm = 0.99, can eliminate the wrong values caused by the penetrated points better
than a lower threshold, i.e., τm = 0.5.
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(a) Nearest Real-World Sample (b) Generated Sample 1 (c) Generated Sample 2

w/ Same View

(d) Generated Sample 3

w/ Diff. View

Fig. 6: Visual illustration of the generated data: the source point clouds (yellow) and the tar-
get/generated point clouds (blue). (a) Nearest real-world sample from 3DMatch, created by TSDF
fusion from multiple depth maps. (b) Generated sample 1, the source point cloud of which is con-
verted from one of the depth maps used in the nearest real-world sample. (c) Generated sample 2,
obtained under the same view as the generated sample 1. (d) Generated sample 3, obtained under
a view different from the generated sample 1.
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