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1 Implementation

1.1 Network Architecture

Structured Auto-decoder. We adopt the decoder architecture of StyleSDF
and EVA3D for each structured local NeRFs. For each subnetwork, multiple
MLP, and FiLM SIREN activation [18] layers are stacked alternatively, and at
the end of each subnetwork, two branches are used to separately estimate SDF
value and RGB value. Different numbers of network layers for different body
parts are assigned empirically: 4 layers for Head; 3 layers for Shoulder + Upper
Spine, Middle Spine, Lower Spine; 2 layers for Right Upper Arm, Right Arm,
Right Hand, Left Upper Arm, Left Arm, Left Hand, Right Upper Leg, Right
Leg, Right Foot, Left Upper Leg, Left Leg, Left Foot with a similar design as
EVA3D, whereas we adopt a more light-weight architecture with fewer layers for
each subnetwork. The detailed diagram can be found in [6]. We render human
features at 128× 128 resolution by volume rendering using the structured auto-
decoder.
Global Style Mixer. We utilize a receptive field of 4 in the experiments, i.e.
upsampling the 128×128 renderings to 512×512 images. We employ two convo-
lution blocks each containing a bilinearly upsampling step and two convolutional
layers with a kernel size of 3 to upsample the images by a factor of 4.
Latent Size. Depending on the scale of the training dataset, the latent size
is 128 × 128 × 16 for UBCFashion [24], 128 × 128 × 24 for RenderPeople [20],
64× 64× 24 for THUman2.0 [22], and 64× 64× 32 for DeepFashion [11].
Discriminator. We adopt the discriminator architecture of PatchGAN [3,7] for
adversarial training. Note that different from EG3D [1] that applies the image
discriminator at both resolutions, we only supervise the final rendered images
with adversarial training and supervise the volumetric features with reconstruc-
tion loss.
Diffusion Model. Our diffusion model is based on the UNet architecture of [12],
with four ResNet [5] blocks and a base channel of 128.

1.2 Optimization of Auto-decoder

StructLDM is trained to optimize renderers G1, G2 and structured embeddings
Z. Given a ground truth image Igt, we predict a target RGB image I+RGB with
the following loss functions:
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Pixel Loss. We enforce an ℓ1 loss between the generated image and ground
truth as Lpix = ∥Igt − I+RGB∥1.
Perceptual Loss. Pixel loss is sensitive to image misalignment due to pose esti-
mation errors, and we further use a perceptual loss [8] to measure the differences
between the activations on different layers of the pre-trained VGG network [17]
of the generated image I+RGB and ground truth image Igt,

Lvgg =
∑ 1

N j

∥∥gj (Igt)− gj
(
I+RGB

)∥∥
2
, (1)

where gj is the activation and N j the number of elements of the j-th layer in
the pre-trained VGG network.
Adversarial Loss. We leverage a multi-scale discriminator D [21] as an adver-
sarial loss Ladv to enforce the realism of rendering, especially for the cases where
estimated human poses are not well aligned with the ground truth images.
Face Identity Loss. We use a pre-trained network to ensure that the renderers
preserve the face identity on the cropped face of the generated and ground truth
image,

Lface = ∥Nface (Igt)−Nface

(
I+RGB

)
∥2, (2)

where Nface is the pre-trained SphereFaceNet [10].
Volume Rendering Loss. We supervise the training of volume rendering at
low resolution, which is applied on the first three channels of IF , Lvol = ∥IF [:
3]− IDgt∥2. IDgt is the downsampled reference image.
Latent Regularization. To allow better learning of the latent diffusion model,
we regularize the latent with L2 regularization and TV loss.
Geometry Regularization Loss. Following EVA3D [6], we predict the delta
signed distance function (SDF) to the body template mesh. Therefore, we penal-
ize the derivation of delta SDF predictions to zero Leik = Ex[∥∇(∆d(x))∥22] [4].

The networks were trained using the Adam optimizer [9]. It takes about
3.5 days to train an auto-decoder from about 80K images on UBCFashion on 4
NVIDIA V100 GPUs, and about 3 days to train a diffusion model (based on [12])
with 4 NVIDIA V100 GPUs.

1.3 Training Data Precessing

UBCFashion [24] contains 500 sequences of fashion videos, and we uniformly
extract about 80K images from these videos as training data. We render 24
multi-view images for RenderPeople [20] and THUman2.0 [22], which yield about
190K images and 12K images separately. For DeepFashion [11], we directly use
the pre-processed subset with 8K images from EVA3D [6] as our training data.
We crop and resize the images to 512× 512 for training.

1.4 Part-aware Diffusion

Benefiting from the semantic design of latent space, StructLDM supports local
editing by part-aware diffusion in inference. Given a part mask M ∈ [0, 1] and
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Fig. 1: Trade-off between reconstruction fidelity and generation quality on DeepFash-
ion [11]. Row 1: reconstruction results by auto-decoder. Row 2: latent visualization by
Principal Component Analysis (PCA). Row 3: generation results.

reference latent y0, we generate xt−1 from noised xt based on the estimated
value for x0, namely x̄

(t)
0 , which is refined to get x̂

(t)
0 :

min
x̂

(t)
0

∥∥∥x̂(t)
0 − x̄

(t)
0

∥∥∥
2
+ λ

∥∥∥(1−M)⊙
(
y0 − x̄

(t)
0

)∥∥∥
2

(3)

where ⊙ denotes the Hadamard product, λ = 0.5 is a hyper-parameter control-
ling the balance between the diffusion prior and the degradation constraint. It
admits a closed-form solution:

x̂
(t)
0 =

x̄
(t)
0 + λ(1−M)2 ⊙ y0

1+ λ(1−M)2
(4)

which can be optimized using SGD when a closed-form solution is not feasible.
The part-aware latent diffusion is similar to image inpainting in [23]. All the
mathematical operations are pixel-wise.
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Fig. 2: Comparisons on THUman2.0 [22]. The geometry
is visualized as normal/depth maps at 128×64 resolution.

Fig. 3: Qualitative genera-
tions on DeepFashion [11].

2 Additional Experimental Results

2.1 The Effect of Latent Mapping for Reconstruction and
Generation

Autodecoding human latents from single images is challenging due to sparse
observations. Fig. 1 shows the reconstruction results, latent visualizations, and
generation results. It is observed that the learned latents are noisy and unfriendly
for latent diffusion, i.e., the generations are noisy. Instead, we employ a mapping
network to smooth the unobserved body parts in the latent space, which yields
smoother latents and enables realistic generations. Though the latent mapping
improves the generation quality, it degrades the reconstruction fidelity, which
imposes challenges of learning auto-decoders from single images. The mapping
network consists of 3 convolutional layers with a kernel size of 5, whereas the
mapping network is not required for datasets of video sequences or multi-view
images such as UBCFashion, RenderPeople, and THUman2.0.

2.2 Experimental Results on DeepFashion

Qualitative and Quantitative Results. Existing auto-decoder-based meth-
ods generally require multi-view images or video sequences of objects to train an
auto-decoder [14]. Instead, with the structured latent representation, we show
that it is even possible to auto-decode 3D humans from single images on Deep-
Fashion [11], as shown in Fig. 3, where our method generates realistic human im-
ages with reasonable geometry reconstructions (e.g., normal, depth). The quan-
titative results are shown in Tab. 1. Our method outperforms existing 3D GAN
methods, including StyleSDF [15], EG3D [1], ENARF-GAN [13], and achieve
comparable results as the publicly released EVA3D. However, the best perfor-
mances of AG3D and EVA3D achieve lower FID.
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Table 1: Quantitative results on DeepFashion. For reference, we report the quantita-
tive results from the EVA3D (marked by ‘*’) and the AG3D paper (marked by ‘◦’).

FID ↓ DeepFashion

StyleSDF∗ [15] 92.40

EG3D∗ [1] 26.38

ENARF-GAN∗ [13] 77.03

EVA3D∗ [6] 15.91

EVA3D(Public)◦ [6] 20.45

AG3D◦ [2] 10.93

Ours 20.82

2.3 Editing in-the-wild images.

As shown in Fig. 4, to edit in-the-wild (cross-dataset) Internet images 1○, an
inversion step 2○ is performed, and images are edited via part-aware diffusion:
3○ a new pose rendering, 4○ new identity, 5○ shoes, 6○ T-shirts, 7○ pants. Part-
aware editing can also be applied for generated humans 8○ 9○, i.e., transferring
the style of the Internet images (T-shirt 8○), and editing the shoes 9○.

2.4 Efficiency

Similar to most latent diffusion models e.g ., Stable Diffusion [16], ours is not
trained end-to-end. It takes about 3.5 days to train an auto-decoder from about
80K images on UBCFashion and 3 days for latent diffusion on 4 NVIDIA V100
GPUs, more efficient than EVA3D [6] (5 days on 8 V100). In inference, our
rendering network runs at 9.17 FPS to render 5122 resolution images on a V100
GPU, 1.94× faster than AG3D. It takes about 127.55 s to sample 64 latents
using DDIM [19] with 100 steps on one V100 GPU. Once trained, a new video
sample can be added by inversion as shown in Fig. 5. Source video 1 and 2, with
110 frames each, take 1.75 min and 7.01 min (for complexity in hair) on 8 V100
to inverse respectively.

3 Limitation and Future Work

Limitation. 1) We train models from scratch as in EVA3D/AG3D/ PrimDiff.
The lack of a diverse in-the-wild human dataset with accurate registration is
a common problem in this field. Due to the limited scale and dataset bias,
diversity is not comparable to 2D diffusion models [16]. However, we outperform
the baselines EVA3D and AG3D in diversity. 2) Limited by the auto-decoder
training, it is challenging to learn from single-view 2D image collections [14],
e.g ., DeepFashion [11]. However, the structured latent representation makes it
possible to auto-decode 3D humans from single images on DeepFashion, as shown
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Fig. 4: Editing in-the-wild images. To edit in-the-wild images 1○, we first apply inver-
sion 2○, and edit the images via part-aware diffusion.

in Fig. 3, where our method generates realistic human images with reasonable
geometry reconstructions (e.g ., normal, depth).
Future Work. As discussed in Sec. 2.2, our framework is capable of auto-
decoding 3D human latents from single images, and future work would be to
improve the performances on DeepFashion.
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Fig. 6: Qualitative results on RenderPeople. For our method, normal and depth maps
at 128× 64 resolution are rendered by our volumetric renderer.
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