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A Implementation Details

We provide further details on the implementations of our pipeline (Sec. 3.1∼3.2)
and the formulation of ComA (Sec. 3.3) in our main paper.

A.1 Rendering Object from Multi-Viewpoints

For static type objects, we install 8 weak perspective cameras around the object
with 45◦azimuth intervals. For dynamic type objects, we install 4 weak perspec-
tive cameras with 90◦ azimuth intervals. The elevation is set constant within [0◦,
30◦] range, where the values differ by category. For dynamic objects, we perturb
the object with random rotations and translations. Specifically, we uniformly
sample the rotation in the form of euler angle, where yaw, pitch, and roll are
uniformly sampled from a predefined range. Random translations are sampled
in a similar way, where each component of 3D displacement is sampled from a
predefined range. Note that we set weak perspective camera scale and additional
z-direction displacement of camera as hyperparameters. We repeat the rendering
procedures 10 times with different perturbations, resulting in 40 distinct views.

A.2 Inpainting Mask Selection

Via thorough experiments, while the inpainting pipeline is quite robust to initial
masks, we found that initial mask selection is beneficial for avoiding failure cases
as shown in Fig. S.1. Specifically, we build strategies for selecting appropriate
positions and sizes of masks to prevent generating: (1) hallucinated objects,
which typically occurs when initial mask do not overlap with the rendered object;
(2) ambiguous interactions, when inpainting masks are too small compared to
the object, generating humans ignoring the relative scale with respect to object.

The strategy starts by rendering the inpainting masks while rendering the
object, using the same camera parameters. For each camera, we place an upright

* Indicates equal contribution
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Fig. S.1: Experiments for Mask Selection. While our Adaptive Mask Inpainting
method is quite robust to initial masks as shown in the right (green box), our inpainting
mask selection strategy helps avoid generating failure cases shown in the left (red box).

Fig. S.2: Diversity of 3D HOI Samples and Interaction Type. We initially
create multiple HOI prompts and inpainting masks, which allows us to generate diverse
3D HOI samples with different interaction types by selecting the prompt and masks.

window perpendicular to the xy plane, also perpendicular to the xy projection
of the camera’s front vector. For each mask, the center of the intersection with
z = 0 plane lies within the xy projection of the 3D object. Note that the strides of
the upright windows with respect to x, y direction are given as hyperparameters,
along with the height and width of the window. We render these upright windows
using assigned cameras to obtain 2D rectangular masks, consequently used as
inpainting masks that occlude the original object. To reduce the number of
unnecessary masks (e.g., masks that do not cover the object but mostly the
background), we only retain the masks if the Intersection over Union (IoU)
between the mask and the original object lies within the predefined range, also
given as hyperparameters.

A.3 Prompt Generation

We design a generalizable pipeline to generate human-object interaction prompts
even when the category of the object is unknown. We utilize GPT4v [14], where
we input the rendered object image and the following query template:

Generate at most 3 simple subject-verb-object prompt where subject’s
word is exactly ‘1 person’ and object’s image is given. You should use
diverse and general word but no pronoun for subject. Generated prompt
must align with common sense. Verb must be simple as possible, and
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should depict physical interaction between subject and object. Also, only
the interaction with given object is allowed, and no other objects should
be introduced in the prompt.

For 3D objects of which category is already known (generally for objects obtained
from SketchFab [21]), we use ChatGPT [13] to generate prompts for human-
object interaction using the following query template:

Generate at most 3 simple subject-verb-object prompt where subject’s
word is exactly ‘1 person’ and object’s word is exactly ‘{category}’. You
should use diverse and general word but no pronoun for subject. Gener-
ated prompt align with common sense. Verb must be simple as possible,
and should depict physical interaction between subject and object. Also,
only the interaction with given object is allowed, and no other objects
should be introduced in the prompt.

We do not augment the prompt except “full body” at the end, where we em-
pirically find this augmentation useful when generating the whole human body
instead of a zoom-in shot of body parts (e.g., face, hand). The generated prompts
usually describe different types of HOI, which allows our pipeline to generate di-
verse 3D HOI samples by altering the input prompt or varying inpainting masks
in multiview renderings, as shown in Fig. S.2.

A.4 Adaptive Mask Inpainting

The full pipeline of Adaptive Mask Inpainting algorithm is described in Algo-
rithm. S.1. We use a publicly available inpainting diffusion model (RealisticVi-
sion [18, 19]) in our implementation, although we note that our adaptive mask
algorithm can be applied to any inpainting diffusion model. We use classifier-free
guidance scale of 11.0, and apply DDIM [22] scheduler of T = 50 timesteps with
denoising strength set between 0.9 ∼ 1.0.

As the sequence of denoised image latents {xt}0t=T progresses (i.e., t : T −→ 0),
the quality of the predicted denoised image x̂0 improves over progress of the
timestep, thus the low-level structure of the target prompt (i.e., human) becomes
more apparent (as shown in Fig. 4). This allows us to ground the inpainting
region for the next timestep (mt−1) around that low-level structure by predicting
the segmentation region using off-the-shelf segmentation model [8]. Note that
we use the initial inpainting mask (mdefault) if the structure is not detected. We
dilate the predicted human mask to tolerate the imperfectness of the generated
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Algorithm S.1 Adaptive Mask Inpainting
Latent Diffusion Model: ϵθ
Latent VAE Decoder: D
Segmentation Model: S
DDIMSchedule: {αt}Tt=1

Dilation Schedule: {nt}Tt=1, Dilation Kernel: k
Inputs: Prompt (c), Initial Mask (mdefault), Image (Iorig)
Initialize Noise Latent: xT ∼ N (0, I)
Initialize Adaptive Mask: mT ←− mdefault

for t=T, ..., 1 do
x̂0 = 1√

ᾱt
(xt −

√
1− ᾱtϵθ(xt; c,mt, Iorig, t))

if t ∈ ProvokeSchedule then
s = S(D(x̂0))
if s ̸= ∅ then

mt−1 = Dilate(s;nt, k)
else

mt−1 = mdefault

end if
else

mt−1 = mt

end if
xt−1 = DDIMStep(xt, x̂0, t)

end for
return D(x0)

structure during early steps, using 3× 3 kernel k with nt times repeat:

k =

1 1 1
1 1 1
1 1 1

 , nt =



20 50 ≥ t > 45

10 45 ≥ t > 40

5 40 ≥ t > 35

4 35 ≥ t > 30

3 30 ≥ t > 25

2 25 ≥ t > 20

1 20 ≥ t > 15

0 15 ≥ t > 0

(S.1)

We also employ “Provoke Schedule” (refer to Algorithm. S.1) for faster generation
speed. The provoke scheduler determines whether to skip the mask adaptation
step (t ∈ ProvokeSchedule) or not (t ̸∈ ProvokeSchedule) during timestep t.
Specifically, we use the following schedule:

ProvokeSchedule = {t | (40 ≥ t ≥ 2 and t is even) or t = 45} (S.2)
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A.5 Lifting 2D Affordance to 3D

Number of Joints Used. We use Hand4Whole [11] to predict 3D humans
from images (Fhuman in Eq. 1). The model returns 1 global rotation (for pelvis
joint) and 54 human joint rotations following the SMPL-X [15] format; which
consists of 21 body joints, 15 + 15 hand joints, 1 jaw joint, and 1 + 1 eye joints.
We add 21 OpenPose [2] joints (“nose”, “right eye”, “left eye”, “right ear”, “left
ear”, “left big toe”, “left small toe”, “left heel”, “right big toe”, “right small toe”,
“right heel”, “left thumb”, “left index”, “left middle”, “left ring”, “left pinky”, “right
thumb”, “right index”, “right middle”, “right ring”, “right pinky”) and exclude 11
original joints (“spine1”, “spine2”, “spine3”, “left foot”, “right foot”, “left collar”,
“right collar”, “head”, “jaw”, “left eye smplhf”, “right eye smplhf”), resulting in
1 + 54 + 21− 11 = 67 joints.

Finding Inlier Set. We utilize a semi-consistent largest inlier set obtained from
the generated 2D HOI image set {Id}Dd=1 to uplift the given generated 2D HOI
image Iref to 3D. To find the inlier set, we first choose target image set Itarget
from {Id}Dd=1, consisting of images which is generated from different views and
shows high consistency with reference image Iref. Specifically, we first triangu-
late human joints for every pairs of {Iref, Iother}, where Iother ∈ {Id}Dd=1 is the
image generated from different view with Iref. We choose the best Ntriangulation
images which the triangulated 3D human joints shows less re-projection error on
reference image than threshold τtriangulation, constructing Itarget.

For every image Itarget in the target image set Itarget and the correspond-
ing 3D human joints obtained via triangulation of Iref and Itarget, we find the
number of inliers images which shows less re-projection error than τransac, de-
noted as ntarget. We use the inlier set which shows maximum ntarget for the
further depth optimization. In practice, we set τtriangulation = 100, τransac = 100,
Ntriangulation = 400, and use mean squared joint error on pixel space for all
re-projection error.

Initializing Depth. We initialize 7 human candidates equispaced along the
orthographic ray, where we place 4th candidate (center candidate) to the posi-
tion that minimizes the average distance between the pelvis joint and all object
vertices. The distance between human candidates is proportional to the width of
the human along the orthographic camera ray, where we set the multiplier as 0.3.
We initialize the depth using the human candidate with maximum IoU between
the rendered human mask and the predicted human segmentation mask.

Optimization Settings. For optimization, we set λcollision = 400, and use
Adam [6] optimizer with learning rate 1× 10−2 for 200 iteration to optimize L.

Filtering. We filter out the 3D human samples if (1) the IoU between the
human rendering and predicted human segmentation is below 0.3 or over 0.8,
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(2) number of inliers after RANSAC [3] is below τinlier (which varies from 1 ∼ 50,
based on the given 3D object), or (3) the intersection volume over human volume
is higher than 0.01.

A.6 Learning Comprehensive Affordance

Canonicalization from nh
j , p

o−→h to n, p. We address 2 types of 3D object
(including 3D human): (1) the object is assumed rigid, meaning that current
object can be obtained via applying rigid transformation Toriginal−→current ∈
SE(3) on the original object; or (2) the object is non-rigid (e.g., 3D human),
meaning that no original object exist, and also the rigid transformation. We
provide the canonicalization procedure that addresses both cases.

Given the human surface normal nh
j and relative position po−→h, we rotate

them the same amount when rotating the object surface normal no
i to face

n̂ = [0, 0, 1]T Specifically, we canonicalize the human normal nh
j to n following:

n = (no
i · n̂)nh

j + (nh
j · no

i )n̂− (nh
j · n̂)no

i + [
nh
j · (no

i × n̂)

1 + no
i · n̂

](no
i × n̂) (S.3)

and similarly, we canonicalize the relative position po−→h to p following:

p = (no
i ·n̂)po−→h+(po−→h·no

i )n̂−(po−→h·n̂)no
i+[

po−→h · (no
i × n̂)

1 + no
i · n̂

](no
i×n̂) (S.4)

The canonicaliation procedure described in Eq. S.3 and Eq. S.4 preserves the
length of the vector (∥n∥ = ∥nh

j ∥ & ∥po−→h∥ = ∥p∥) and preserves the orienta-
tion with respect to the object normal (no

i ·nh
j = n̂ ·n & no

i ·po−→h = n̂ ·p). Also,
the procedure above describes the movement of human normal nh

j and relative
position po−→h following the object normal, when the object normal is taking the
“shortest path” to n̂ along the sphere surface S2. Note that for the case of rigid
object, we transform the current object (and corresponding human) back to the
original state using (Toriginal−→current)−1 before applying Eq. S.3 and Eq. S.4.
For non-rigid objects (e.g., human mesh), we directly apply Eq. S.3 and Eq. S.4.

Additional Details. We sample 1000 points from human mesh and object
mesh using Poisson Disk Sampling [10]. For human mesh, we find the closest
vertex of SMPL-X [15] and save the vertex indices as the human mesh is not
rigid and geometry may alter when the pose differs. We set the domain of p as
30×30×30 voxelgrid with each voxel the size of 0.04, and the domain of n as an
equispaced spherical grid with 250 points, where the domain points are obtained
via Fibonacci Spirals [4]. To save memory during quantitative evaluation (which
only compares contact scores with previous approaches), we only accumulate
e−∥p∥ instead of using full voxelgrid since fcontact from Eq. 6 only requires relative
distance ∥p∥ to compute. We fit the Gaussian kernel with σ = 0.2 for the domain
of n, and σ = 0 (quant) / σ = 0.1 (qual) for the domain of p. Note that the
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Fig. S.3: Statistics on Generated Samples. We report the number of generated
2D HOI images (gray) and 3D HOI samples (red) for BEHAVE objects, which we use
in both qualitative and quantitative evaluation.

Gaussian kernel for n is computed using geodesic metrics, where we assume the
radius of spherical grid as 1. Finally, we set nb = 106 when computing forientation
from Eq. 7.

B Additional Details on Experiments

Preprocessing Intercap [5]. Since Intercap [5] does not provide texture for the
3D objects, we generate the texture for the objects using TEXTure [17] where the
stylization prompts are generated via ChatGPT [13] using the following query:

Give a simple appearance description of an object of given categories as
a form of “a {category}, {appearance description}”.

Method for Aggregating Contact Maps. When aggregating N samples to
compute Pij ’s for all pairs of i-th object point and j-th human point, we also
count the number of times when ∥p∥ < dthres, which we denote as N ij

sig. To
create a holistic contact map, we aggregate the contact values derived from Pij

only if N ij
sig/N > τsig, assuming such ij pairs show significant contact. When

aggregating the contact values, we simply choose the maximum value between
ij pairs. We set dthres = 0.1, τsig = 0.05 in our implementation.

Statistics of 2D HOI Images and 3D HOI Samples We report statistics on
the generated 2D HOI images and 3D HOI samples. Fig. S.3 presents statistics
on the BEHAVE [1] dataset objects, which were used for both qualitative and
quantitative evaluation. We generate images with varying mask regions, text
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Fig. S.4: Additional Qualitative Results. Our method can be applied to various
3D objects obtained from diverse sources.
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prompts, and seeds in multiview renderings, resulting in a minimum of 7200,
a maximum of 18600, and an average of 14965.15 images. After filtering out
malicious data, we finally obtain a minimum of 198, a maximum of 6011, and an
average of 2198.5 3D HOI samples for learning ComA. The overall acceptance
ratio is 14.69%, meaning that we need approximately 7 images to obtain a single
3D HOI sample.

Additional Qualitative Results. We report additional qualitative results
in Fig. S.4. As we utilize the affordance knowledge inherent in pre-trained 2D
diffusion models, we are able to learn ComA for uncommon categories (e.g.,
horse, swing, toilet, cart) which are not typically addressed in traditional 3D
HOI datasets [1, 5].

Details on Application. We use SMPL-X [15] model to optimize global ori-
entation, translation, body pose, and hand pose. For the body pose, we optimize
pose embedding following VPoser [15] to leverage pose prior loss Lpprior and an-
gle prior loss Laprior which helps generating plausible pose. We define orientation
loss Lorientation as average normalized cosine similarity between maximum prob-
ability direction (while object is fixed) obtained from ComA and human vertex
normal for all human vertices. We also define contact loss Lcontact as a chamfer
distance between each contact points of human and object obtained from ComA.
The total loss is defined as below:

Lopt = λ1Lpprior + λ2Laprior + λ3Lorientation + λ4Lcontact (S.5)

In practice, we use λ1 = 1 × 10−6, λ2 = 3.17 × 104, λ3 = 1 × 1012, and λ4 =
2.6× 1011.

C Limitations & Future Works

Spatial Bias in Inpainting Diffusion Models. Our method utilizes inpaint-
ing diffusion models [18, 19] to insert humans into object images; however, the
diffusion model may possess spatial biases, which may alter the inpainting results
as the properties of inpainting mask (e.g., center location, aspect ratio, resolu-
tion) differs. For example, diffusion model may not be able to generate humans
if the objects that usually interact with hands (e.g., sports ball) are rendered on
the bottom side of the image. Future research can further improve the spatial
bias in diffusion models, or the mask selection procedure to reduce the number
of unnecessary generations.
Incorrect HOI Prompt Generation. During the prompt generation step,
there is a chance for the vision-language model [14] to misidentify the object in
the image, resulting in incorrect HOI prompts that describe implausible situa-
tions for the given object.
Limits and Potentials of Adaptive Mask Inpainting. We propose an Adap-
tive Mask Inpainting algorithm to preserve the original object during inpainting.
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Fig. S.5: Results of ComA for Small Object. While our pipeline captures plau-
sible affordance even for small objects (such as cup), the results show low granularity
compared to big objects.

However, the method depends on a segmentation model to adapt the inpainting
mask, and the errors during segmentation may affect the inpainting results. For
example, if the segmentation model predicts part of the object as human due to
various reasons (e.g., the texture of the object is similar to the texture of the
generated human), the algorithm may not work well as the following inpainting
mask also occludes the object. One potential approach for improvement is to use
better segmentation models, such as Grounded SAM [7,9].

While we use adaptive mask inpainting only for the human insertion task,
the algorithm can be applied to any categories the segmentation model allows,
opening possibilities such as open-vocabulary object insertion into scene image.
Bias due to Filtering. Employing heavy filtering at the end of the pipeline may
result in bias. For example, filtering out humans with high collision may cause
the remaining samples to “slide out” the object, especially if the object is complex
and is highly likely to collide given the plausible posture (e.g., motorcycle). One
alternative is applying soft filtering (i.e., applying confidence weights instead of
removing images with hard thresholds).
Large Memory Consumption. ComA returns distributions for each pair of
human and object points, which leads to large memory consumption when the
resolution of human and object mesh is high; forcing us to downsample the hu-
man and object mesh. The limited resolution may cause the representation to
lack details, especially when modeling interactions with dexterous objects. It is
worth exploring the use of implicit 3D representation for human and object sur-
faces (e.g., SDF [12], DMTet [20]), as such representations model the continuous
surface as function.
Low Granularity for Small Objects. Although our ComA pipeline captures
affordance even for small objects (e.g., cup interacting with hand and mouth, as
shown in Fig. S.5), the lack of granularity compared to big objects is an existing
challenge to solve.
Modelling Hand-Object Interactions. Diffusion models often struggle to
produce high-quality images of hands. Future research could benefit from using
diffusion models trained specifically on hand images to improve hand generation
and employing close-view cameras focused on hands for better modeling.
Possible Improvements in ComA. We introduce ComA as a new repre-
sentation for affordances and use it to deduce contact information. Although
our method for deriving contact is well-founded, there are opportunities for en-
hancement. Specifically, incorporating pressure modeling could extend ComA’s
applicability to deformable objects. Additionally, the concept of orientational af-
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Fig. S.6: Single Image HOI Reconstruction for Any Object using ComA.
We can directly replace the contact heuristics in PHOSA [23] and apply additional
orientation loss from ComA, which allows PHOSA [23] to scale to unseen objects.

fordance needs refinement. The current approach effectively measures orientation
preference using a negated entropy term, but it fails to identify the underlying
reasons for this preference. For instance, while chair feet often orient towards
the ground, attributing this tendency to the object itself overlooks the influence
of gravity. A valuable future research direction would involve distinguishing and
quantifying the reasons behind orientational tendencies.
Expanding to Non-Watertight Mesh. ComA can be easily extracted from
non-rigid mesh (e.g., human mesh), as long as the mesh provides a closed surface
and surface normal can be defined. One possible future direction is to improve
ComA to be easily extractable from any 3D surfaces (mesh or other surface rep-
resentations), including non-watertight mesh, and sharp meshes where defining
surface normal is non-trivial.
Evaluation Metrics. There’s potential to explore more complex metrics to
accurately assess the effectiveness of our method, particularly when evaluating
the volumetric quality of 3D humans and objects to support the use of 2D-to-3D
conversion methods.
Potential Applications. Our new method and ComA provides multitudes of
possible applications, as demonstrated in Sec. 4.5. We list potential downstream
applications: (1) Large-scale 3D affordance dataset generation; (2) Single im-
age HOI reconstruction for any 3D object (as shown in Fig. S.6); (3) Object
recognition from 3D human posture (similar to Object Pop-up [16]); (4) Ac-
tion recognition from human-object interaction sequence; (5) Application for
robotics, especially for humanoids.
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