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Abstract. Video deblurring aims to enhance the quality of restored re-
sults in motion-blurred videos by effectively gathering information from
adjacent video frames to compensate for the insufficient data in a sin-
gle blurred frame. However, when faced with consecutively severe mo-
tion blur situations, frame-based video deblurring methods often fail to
find accurate temporal correspondence among neighboring video frames,
leading to diminished performance. To address this limitation, we aim to
solve the video deblurring task by leveraging an event camera with micro-
second temporal resolution. To fully exploit the dense temporal resolu-
tion of the event camera, we propose two modules: 1) Intra-frame fea-
ture enhancement operates within the exposure time of a single blurred
frame, iteratively enhancing cross-modality features in a recurrent man-
ner to better utilize the rich temporal information of events, 2) Inter-
frame temporal feature alignment gathers valuable long-range temporal
information to target frames, aggregating sharp features leveraging the
advantages of the events. In addition, we present a novel dataset com-
posed of real-world blurred RGB videos, corresponding sharp videos,
and event data. This dataset serves as a valuable resource for evaluating
event-guided deblurring methods. We demonstrate that our proposed
methods outperform state-of-the-art frame-based and event-based mo-
tion deblurring methods through extensive experiments conducted on
both synthetic and real-world deblurring datasets. The code and dataset
are available at https://github.com/intelpro/CMTA.
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1 Introduction

Motion blur is a common artifact caused by dynamic movements within a scene
or camera motion during exposure. Motion deblurring, which aims to reverse the
blurring process, presents significant challenges due to variations in blur inten-
sity influenced by scene structure and depth. To achieve high-quality deblurring,
video deblurring has emerged, leveraging information from neighboring frames
instead of relying solely on a single blurred image. However, identifying tem-
poral correspondence between blurred video frames becomes challenging with
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extreme motion blur, hindering the extraction of valuable information from ad-
jacent frames and impeding performance improvement.

Event cameras [9], with their extremely low latency (on the order of mi-
croseconds), can offer high-quality guidance for motion deblurring due to their
ability to capture high-temporal resolution of brightness change. To effectively
utilize the advantages of the events, several event-guided motion deblurring
works [15, 36, 50] have been introduced. While these works have typically ex-
plored cross-modal feature fusion methods across different modalities, there has
been limited work on leveraging the abundant temporal information in videos.

To obtain high-quality results, we emphasize the event camera’s tempo-
ral continuity, focusing on its interaction with video frames that exhibit long-
term temporal dependencies. Unlike previous event-guided motion deblurring
works [36,43,50], which relied on a single blurry image and corresponding events
on its exposure time, we further design precise temporal feature alignment meth-
ods between neighboring video frames by leveraging the advantages of event data.
Specifically, we propose novel modules from two perspectives: intra-frame (in-
teraction between events and frames within the exposure time) and inter-frame
(interaction between different frames) perspectives.

From an intra-frame perspective within exposure time, we propose a Cross-
modal Recurrent Intra-frame Feature Enhancement (CRIFE) module to better
leverage the rich temporal information of the events by mutually interacting
the blur frame and event features within the duration of exposure time. In
this module, we perform recurrent attention-based feature enhancement using a
transformer [38] that better captures long-range pixel dependencies.

In temporal feature alignment with the second perspective, we propose a
novel event-guided temporal feature alignment module, effectively leveraging rich
temporal characteristics of the events. Conventional frame-based temporal fea-
ture alignment methods rely on optical flow [28] or deformable convolution [5,58].
While optical flow and deformable convolutions aid in achieving temporal fea-
ture alignment, the high computational complexity of these operations makes
it challenging to execute them at a higher spatial scale. Therefore, video frame
alignment, generally conducted at lower spatial scales, leads to sub-optimal de-
blurring results due to the lack of spatial contexts of features. To overcome
these limitations, our temporal feature alignment module avoids relying on op-
tical flow or deformable convolution by effectively leveraging the temporally
dense advantages of the events. Therefore, we can effectively perform temporal
feature alignment across multiple visual scales as we do not rely on these com-
plex operations but rather efficiently leverage the temporal information from the
events. As a result, our temporal feature alignment module demonstrates a sig-
nificant performance improvement in event-guided video deblurring tasks. Since
we have introduced a pioneering method for aligning temporal features using the
advantages of the events, it is expected to be effectively applicable to various
event-guided video restoration tasks (e.g ., event-guided video super-resolution).

Finally, we propose a novel video deblurring dataset, the EVRB dataset,
composed of high-quality RGB and event data. It consists of real-world blurry
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videos generated by extreme motion and corresponding sharp videos for gener-
alized applications in real-world scenarios. The network trained on the EVRB
dataset can be directly applicable to real-world scenarios, making it a valuable
resource for event-guided deblurring research.

2 Related Works

2.1 Video Deblurring

Early works [1, 35] employed CNNs that take the concatenation of adjacent
frames as input to address video deblurring. Subsequently, to better leverage
temporal information, approaches have emerged that employ 3D convolutions [26,
47], temporal alignment modules with deformable convolutions [39] and optical
flow [14, 25, 40, 46]. As an alternative video alignment method, some works uti-
lize RNN [11,42,53] and transformer [18,19] structures to propagate information
from long-range video frames. However, as the intensity of motion blur in the
video increases, frame-based video alignment methods struggle to achieve accu-
rate video alignment, leading to sub-optimal deblurring results.

2.2 Event-guided Motion Deblurring

An event camera can effectively be used for motion deblurring as it records mo-
tion information corresponding to the brightness differences with high temporal
resolution. Efforts to utilize event cameras for motion deblurring [8, 13, 15, 20,
27, 36, 37, 43, 48–50] have been actively ongoing. Recent studies have focused on
effectively fusing event and image features of different modalities. To this end,
Sun et al . [36] employed a transformer architecture for feature fusion. Zhang et
al . [50] effectively combined modalities using a multi-scale architecture. In ad-
dition, there are also attempts to address motion deblurring by assuming chal-
lenging and general scenarios [8, 15, 33]. However, these studies have primarily
focused on single image deblurring and do not exploit the long-range temporal
information demonstrated in previous video deblurring tasks. To effectively ac-
quire information that may be missing from sparse events, we introduce a novel
method for accurate temporal alignment with events, utilizing information from
surrounding adjacent frames in video deblurring.

3 Event-based Video Deblurring Dataset for Real-world
Blur

3.1 Limitation of Synthetic Blur Dataset

Typically, the blurred images synthesis procedure adheres to the methodology
outlined in [22–24, 34, 35], involving the averaging of consecutive video frames
within a fixed-size window. However, as recent studies [31,52,54] have discussed,
blur synthesis based on discrete signals may result in shutter artifacts even when
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Fig. 1: Illustration of a hybrid camera system for real-world event-based video de-
blurring dataset. S and B denote the cameras for acquiring sharp and blur videos,
respectively. (a): The triple-axis camera system to capture real-world blur. (b): A dia-
gram of our hybrid camera system. (c): Samples from our EVRB dataset with natural
blur.

averaging high-frame-rate videos. Furthermore, simply averaging sharp images
disregards essential elements in the blurred images such as pixel saturation [30],
limitations due to dynamic range, and physical noise [41, 51] in data acquired
during exposure time. Furthermore, in the case of the event-guided motion de-
blurring research, existing works have enhanced the synthetic aspects by using
event simulator [29]. To address these limitations, recent works have attempted
to acquire real-world blur datasets using hybrid camera systems [3, 31, 52–54].
Meanwhile, to generalize event-based motion deblurring, Sun et al . [36] intro-
duced the ReBlur dataset acquired in a high-precision optical laboratory using
an electronic-controlled slide-rail system. However, despite these successes, the
ReBlur dataset has limitations due to its indoor setting, a lack of dynamic ob-
jects, and the absence of high-quality RGB data as it is acquired using the
DAVIS sensor [2]. Additionally, the sequences are relatively short(minimum six
blurred frames in the sequence), making it challenging for use in event-guided
video deblurring. We have acquired a new EVRB dataset for evaluating event-
guided image and video deblurring methods in real-world blurry videos. The
EVRB dataset was captured using a customized hybrid system consisting of two
RGB cameras and one event camera. This system encompasses a range of blur
magnitude from slight to extreme in various urban environments.

3.2 Triple-axis Hybrid Camera System

As shown in Fig. 1, we design a hybrid camera system to enable the acquisition
of different data sources to be geometrically aligned. Two RGB cameras and one
event camera are geometrically aligned using two 50/50 cube beam splitters, re-
sulting in a minimal baseline. We perform pixel-wise alignment between multiple
cameras based on the homography calculated by extrinsic calibration for precise
alignment. For the synchronization of the multiple cameras, we use an external
trigger system. Each camera receives the falling and rising edges of the trigger
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Fig. 2: Overall framework of CMTA is divided into two main components: Cross-
modal Recurrent Intra-frame Feature Enhancement (CRIFE) and Event-guided Cas-
caded Inter-frame Temporal Feature Alignment (ECITFA). s is the scale factor for
multi-scale features. In the figure of the ECITFA module, the description was per-
formed for the case of P=2 for simplicity.

signal and acquires data synchronized with the period of the signal. This exter-
nal trigger can precisely control the exposure times of the two RGB cameras,
enabling us to capture paired sharp and blurred video frames. Furthermore, for
photometric alignment, we physically adjust the amount of incoming light for
both cameras to equalize the total irradiance of the multiple cameras using a
neutral density filter.

4 Method

4.1 Overview

The overview of the proposed framework is illustrated in Fig. 2. Given consecu-
tive blurred video frames {Bk} and sets of event streams corresponding to the
exposure time of each video frame {Ek}, where k ∈ {t−P, . . . , t, . . . , t+P}, our
goal is to estimate the latent sharp video frame St. To utilize the event stream
{Ek} corresponding to the exposure time of {Bk} as the input for the networks,
we first perform embedding using the event voxel grid representation [56] for the
event stream {Ek}, resulting in {Ek}. Our framework consists of two main sub-
modules: (1) Cross-modal Recurrent Intra-frame Feature Enhancement (CRIFE)
module and (2) Event-guided Cascaded Inter-frame Temporal Feature Align-
ment (ECITFA) module. In the first module, we perform cross-modal feature
enhancement through recurrent interactions between blurred frame features and
event features to leverage the continuous temporal information of events within
the exposure time. After obtaining the fused feature {Gk} from the first mod-
ule, we generate multi-scale features, {Fs

k}2s=0, through a weight-shared pyra-
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Fig. 3: Illustration of Cross-modal Recurrent Intra-frame Feature Enhancement
(CRIFE).

mid encoder. Subsequently, for the temporal feature alignment stage, we encode
multi-scale event features, {εs[k,k+1]}

2
s=0, by grouping two consecutive events cor-

responding to the exposure times of each frame to connect adjacent frames. By
utilizing the multi-scale pyramid features {Fs

k}2s=0 and the encoded event feature
{εs[k,k+1]}

2
s=0, we perform temporal feature alignment. Afterward, temporally

aligned feature pyramids are fed into the U-Net [32]-based decoder, generating
the final sharp video frame St. Our framework can be extended to cases where P
is an arbitrary positive number. However, for the sake of brevity, we will explain
it in the main text with P = 2.

4.2 Cross-modal Recurrent Intra-frame Feature Enhancement

Since event cameras provide rich temporal information on brightness changes,
it is crucial to effectively utilize this dense temporal information of the events
within the duration of the exposure time. Typically, event data captured dur-
ing the exposure time is transformed into event embeddings [10, 56] as input to
the network, followed by feature extraction using 2D CNNs. However, these ap-
proaches cannot effectively utilize the continuous temporal information of events,
and these limitations can impact the performance of event-guided video deblur-
ring. To address these limitations, we propose a method that leverages the rich
temporal nature of events and fuses event and blurred frame features using
recurrent-based attention methods.

Recently, researchers have demonstrated the effectiveness of transformer-
based architectures [38] by capturing long-range pixel dependencies, which have
been proven highly effective in various vision tasks. We leverage transformers’
advantages to more effectively utilize the temporal benefits of the events through
a recurrent-based approach. For each blur video frame index k ∈ {t−2, . . . , t+2},
we initially partition the exposure time Texp,k into N unit temporal intervals,
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denoted as ∆t, with ∆t = Texp,k/N . Based on the time interval ∆t, we divide
the event voxel grid within the exposure time, denoted as Ek ∈ RC×H×W into
N temporally divided event voxel grids {En

k }, where En
k ∈ RC/N×H×W and

n ∈ {0, ..., N − 1}. After, we extract event features {F(E)nk} of the temporally
divided event voxel grids En

k using weight-sharing event feature extractor. To
apply cross-attention, we construct a query encompassing global information of
blur and temporally divided event features. That is, we concatenate the blur
frame feature F(B)k with the temporally segmented event sets {F(E)nk} and
then extract the feature for the encoding query information.

Qk = Convp(F(B)k∥{F(E)nk}) (1)

Qn=0
k = FR(Qk) (2)

where Convp represents point-wise convolution, FR consists of a sequence of
blocks with 3 × 3 convolution and a stride of 2, along with ResBlocks. Addi-
tionally, Qn=0

k denotes the initial query feature for the recurrent-based attention
method.

As illustrated in Fig. 3, we perform cross-attention to update query informa-
tion iteratively. To find the key and value of cross-attention for query updating,
we recursively input temporally separated event features, helping to better uti-
lize the events’ rich temporal information. That is, for iteration n, we extract
features to be used as keys and values by concatenating the previously updated
Qn

k with temporally divided n-th event features F(E)nk as follows:

KVn
k = FKV (Q

n
k∥F(E)nk ) (3)

where ∥ channel-wise concatenation and KVn
k denotes the output features for key

and value projection, and FKV refers to the ResBlocks layer. We then construct
Kn

k , V n
k as Kn

k = WK(KVn
k ) and V n

k = WV (KVn
k ) where W (·) denote 1 × 1

convolution layer. Then, attention can be calculated as:

Attnnk = SoftMax(
Qn

k (K
n
k )

T

α
)V n

k (4)

where α is learnable scaling parameter to balance attention weights and Attnn
is outputs of cross-attention at iteration n. To calculate cross-covariance matrix
efficiently, we adopted transposed attention [44] for efficient computations. This
method enables the efficient computation of attention values at high resolutions
by calculating the cross-covariance matrix along the channel axis, leading to
a complexity of O(C2). Moreover, we reduced the number of channels when
encoding step, enabling even more efficient operations. We use the attention
value Attnnk to update the query iteratively as follows:

Qn+1
k = Qn

k +Attnnk +MLP(Attnnk) (5)

where MLP denote multi-layer perceptron. After N iterations, we obtain the
updated query feature, QN

k . The final query feature passes through up-sampling
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and skip connections. Then, we generate the final fused features {Gk} as Gk =
Qk +Dconv4×4(Q

N
k ) where Dconv4×4 denote deconvolution layer with a kernel

size of 4. As illustrated in Fig. 2, the fused features {Gk} pass through a pyra-
mid encoder, leading to the creation of multi-scale pyramid features, {Fs

k}2s=0.
Through the CRIFE module, we can leverage the advantages of abundant tem-
poral information on the events within the exposure time.

4.3 Event-guided Cascaded Inter-frame Temporal Feature
Alignment

Temporal feature alignment aims to extract valuable information from adjacent
video frames. Conventional frame-based video deblurring methods face chal-
lenges from inaccurate motion estimation due to motion blur. Conversely, event
cameras, thanks to their resistance to motion blur, can offer valuable guidance
for aligning video frames. The most straightforward way to align adjacent video
frames using the events is to utilize event features to estimate optical flows or
deformable offsets between neighboring frames [4,5,58]. While this approach can
leverage the advantages of event data for offset and optical flow estimation, it is
typically employed after spatial down-sampling due to the high computational
costs associated with deformable convolutions [58] and optical flows [28]. There-
fore, this approach could restrict performance as it inherently hinders the pro-
cessing of features at high spatial resolutions in network architectures, limiting
access to information across multiple visual scales. To address the aforemen-
tioned limitations, we propose a new temporal alignment module that combines
the advantages of multiple-visual scale pyramids, leveraging the events’ rich tem-
poral contexts.

As illustrated in Fig. 2, our proposed temporal feature alignment modules are
structured as multi-level networks that gradually perform coarse-to-fine feature
alignment. First, we extract event features, incorporating exposure time infor-
mation from neighboring video frames to reference frames to facilitate video
feature alignment. Specifically, we encode event features encompassing the ex-
posure time interval between t and t + 1, allowing us to connect the frame at
time t with the frame at time t+1. Through this event encoding step, we obtain
event feature pyramid set {εs[m,m+1]}

2
s=0 where m ∈ {t− 2, ..., t+1}. We use the

event feature pyramid containing motion information for adjacent times for the
alignment of each blur frame feature pyramid {Fs

k}2s=0 where k ∈ {t−2, ..., t+2}.
After the event encoding step for the feature alignment, we gradually perform

temporal feature alignment from the bottom pyramid level (scale factor s of 2)
to the top pyramid level (s of 0). Specifically, as shown in left side of Fig. 4,
in each pyramid level s (s ∈ {0, 1, 2}), We first upsample the hidden state of
temporally aligned features at the previous scale, F̂s+1

i through a deconvolution
layer and receive them as inputs of alignment module, resulting in hs

i .

hs
i = Dconv4×4(F̂s+1

i ), i ∈ {t− 1, t, t+ 1} (6)

where F̂s+1
i denote aligned feature at previous scale s+1, Dconv4×4 denote 4×4

deconvolution layer. Note that there is no hidden state at the bottom pyramid
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Fig. 4: Overview of the Event-guided Cascaded Inter-frame Temporal Feature Align-
ment (ECITFA). The left figure illustrates temporal alignment for scale s. The key mod-
ule for each alignment procedure, Cross-modal Temporal Feature Alignment (CTFA)
at time t, is illustrated on the right of the figure. The CTFA module operates similarly
for reference times t− 1 and t+ 1 as well.

level (s of 2) since there are no features aligned at the previous scale, and for
brevity, we focus on the case when s < 2.

As depicted in the left side of Fig. 4, we progressively group three blurred
video frames when performing temporal feature alignment. In other words, we
first align with respect to t−1 using {t−2, t−1, t} and simultaneously align with
respect to t+1 using {t, t+1, t+2} features. Subsequently, we perform the final
temporal feature alignment for the previously aligned t − 1 and t + 1 with the
last target time t. More specifically, when performing frame alignment for the
time step t−1, we first group the three blur video frame features Fs

t−2,Fs
t−1,Fs

t

and perform alignment. In this case, we make use of two event features εs[t−1,t]

and εs[t,t+1], which respectively contain motion information between t− 1 and t,
and between t and t+ 1, respectively.

F̂s
t−1 = CTFAs(Fs

t ,Fs
t−1,Fs

t−2, h
s
t−1, ε

s
[t−2,t−1], ε

s
[t−1,t]), (7)

where CTFAs denote unit Cross-modal Temporal Feature Alignment (CTFA)
module at scale factor s. Across the same scale factor s, CTFA modules are
weight-shared. Similarly, we perform alignment for the time step t+ 1 as:

F̂s
t+1 = CTFAs(Fs

t ,Fs
t+1,Fs

i+1, h
s
t+1, ε

s
[t+1,t+2], ε

s
[t,t+1]). (8)

Finally, we utilize the temporally aligned results F̂s
t+1 and F̂s

t−1 to once again
group with Fs

t and perform alignment:

F̂s
t = CTFAs(F̂s

t−1,Fs
t , F̂s

t+1, h
s
t , ε

s
[t−1,t], ε

s
[t,t+1]). (9)

Through this cascaded feature alignment stage, we effectively propagate non-
local video frame information, facilitating temporal feature alignment for both
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non-local and adjacent video frames. All the results of alignment F̂s
t−1, F̂s

t , F̂s
t+1

are passed to the next scale, s− 1. The right side of Fig. 4 illustrates the overall
alignment process for the time step t in the CTFA module. Since it is applied
similarly for all time steps i ∈ {t−1, t, t+1}, we will describe it here specifically
when i = t, where previously aligned F̂s

t−1 and F̂s
t+1 are provided. For leverag-

ing the benefits of coarse-to-fine architecture, we first fuse hidden state aligned
feature hs

t from the previous scale for the time step t at scale factor s, as follows:

Ss
t = N s

f (Fs
t , h

s
t ), (10)

We simplify the sequential operations of Conv, ReLU, and ResBlock as ‘Nf ’.
Additionally, to leverage temporal information, we align the features at times
t−1 and t+1 to the current feature at time t using event features that encapsulate
motion between frames in the following manner:

T s
t−1→t = N s

g,f (F̂s
t−1,Fs

t , ε
s
[t−1,t]),

T s
t+1→t = N s

g,b(Fs
t , F̂s

t+1, ε
s
[t,t+1]),

T s
t = N s

h(T s
t−1→t∥T s

t+1→t),

(11)

where ∥ denotes the channel-wise concatenation, and N s
g,f , N s

g,b, and N s
h

represent convolution blocks, as illustrated on the right side of Fig. 4. While we
obtain temporally aligned features T s

t using event features and leveraging the
advantages of events, for additional feature refinement, we utilize the spatially
variant pixel-wise dynamic filter [21, 55] mechanism. Dynamic filter Ds

t at scale
s can be calculated through filter generation blocks, N s

l , which consists of con-
volution and resblock, such as Ds

t = N s
l (T s

t ) where Ds
t ∈ R(sk×sk)×Hs×W s

, sk is
kernel size of dynamic convolution filter, Hs, W s denote height and width of the
feature at scale factor s, respectively. Then, we apply the dynamic convolution
operation as follows:

T̂ s
t (h,w) = Ds

t (h,w)⊗ T s
t (h,w) (12)

where h ∈ {1, . . . ,Hs}, w ∈ {1, . . . ,W s}, and ⊗ denotes the convolution opera-
tion. Then, we employ a cross-attention mechanism [38,44] to effectively combine
the information of two features, Ss

t and T̂ s
t . The cross-attention generally exam-

ines the correlation between input features (query) and the key-value features.
Therefore, we conduct correlation analysis by applying cross-attention between
the current blurred frame features to project query Ss

t and the aligned features
T s
t to project key and values. That is, we generate query, key, and value features,

Q = WQ(Ss
t ), K = WK(T̂ s

t ), V = WV (T̂ s
t ), where W(·) is 1× 1 convolution and

3 × 3 depth-wise convolution. Utilizing these Q, K, and V, we compute the
attention matrix similarly to Eq. (4).

A(Q,K,V) = Softmax(
QKT

α
) ·V (13)
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Table 1: Quantitative results on the GoPro dataset. The asterisk(∗) indicates that the
results are not officially on the GoPro so we retrained the official model by us. CMTA-5
and CMTA-7 refer to the results obtained using 5 and 7 input frames, respectively.

Methods MPRNet [45] Restormer [44] NAFNet [6] EDVR [39] ESTRNN [53] RNN-MBP [57] DSTNet [26] VRT [17]
PSNRs 32.66 32.92 33.69 26.83 31.02 33.32 34.16 34.81
SSIMs 0.959 0.961 0.967 0.843 0.911 0.963 0.968 0.972

Params(MB) 20.1 26.1 67.8 23.6 2.4 16.4 7.5 18.3
Methods RVRT [18] Shift-Net [16] UEVD∗ [15] EFNet [36] REFID [37] SpkNet [7] CMTA-5 CMTA-7
PSNRs 34.92 35.49 35.48 35.46 35.91 36.12 36.55 36.78
SSIMs 0.974 0.976 0.971 0.972 0.973 0.971 0.977 0.977

Params(MB) 10.8 10.5 27.9 8.5 15.9 13.5 9.7 9.7

Finally, temporally aligned feature, F̂s
t , can be obtained by:

F̂s
t = MLP(A) +A. (14)

where MLP denote multi-layer perceptrons, A denote the result of attention
operation. Finally, we obtained the aligned feature pyramid {F̂s

t } through cas-
caded temporal feature alignment. As illustrated in Fig. 2, these multi-scale
aligned features are fed into the decoder.

4.4 Decoder

The decoder is designed based on the standard U-Net [32]. It takes multi-scale
temporally aligned features {F̂s

t } as inputs and produces output feature pyra-
mid {F(D)sk}. The final deblurred outputs St using last scale of output feature
F(D)s=0

t is calculated as follows:

St = Bt +Conv5x5(F(D)s=0
t ) (15)

where Conv5x5 represents a conv. layer with a filter size of 5× 5, and St denotes
the final estimated sharp frame.

5 Experiments

5.1 Datasets

GoPro Dataset [23]. For a fair comparison with other previous event-guided
deblurring methods, we utilize the same raw events provided by the authors of
recent work [36]. These events were generated using ESIM [29] with a randomly
generated contrast threshold set to a Gaussian normal distribution of parameters
as N(µ = 0.2, σ = 0.03). We used the official train and test splits.
HighREV Dataset [37]. HighREV consists of high-resolution events and RGB
data at 1632 × 1224 resolution, designed for both deblurring and interpolation
tasks. To evaluate motion deblurring exclusively, we use the 11+1 split, exclud-
ing the interpolation ground truth.
Real-world Video Deblurring Dataset. EVRB dataset consists of 11 train-
ing sequences and 6 test sequences. With each sequence containing 149 frames,
it is well-suited for video deblurring tasks.
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Blurry Frame Events GTRVRT Shift-Net EFNet Ours

Fig. 5: Visual comparison of deblurring results on the GoPro dataset. The qualitative
results of other methods were taken from the results provided by the authors.

Table 2: Quantitative results on the HighREV dataset.

Methods ESTRNN [53] DSTNet [26] UEVD [15] EFNet [36] REFID [37] Ours
PSNRs 30.38 31.77 37.40 37.99 38.37 39.12
SSIMs 0.940 0.948 0.974 0.976 0.977 0.980

5.2 Comparison on Synthetic Blur Datasets

We present the quantitative results of our frameworks with other frame-based
image and video deblurring methods and event-guided motion deblurring meth-
ods using the GoPro dataset as depicted in Table 1. When compared to the
existing best performance of video deblurring methods, Shift-Net [16], our ap-
proach (CMTA-5 model) shows a significant improvement of 1.06 dB in terms of
PSNR, demonstrating that our method effectively leverages the temporal dense
characteristics of event modality for accurate temporal feature alignment and
cross-modality feature enhancement. Moreover, compared to the best-performing
SpkNet [7] among existing event-guided motion deblurring methods, CMTA-5
model exhibits a performance improvement of 0.43 dB with a lower model params
of 3.8 MB. Furthermore, by using 7 input video frames (CMTA-7 model) instead
of 5 (CMTA-5 model), we achieved an impressive state-of-the-art performance
with a PSNR of 36.78dB in the GoPro, an increase of 0.23. We further demon-
strated the superiority of our approach through the qualitative results in Fig. 5.
Also, we conduct experiments on HighREV [37], which consists of real events,
and report the results in Table 2. Our method still achieves the best performance.

5.3 Comparison on Real-world Blur Datasets

For comparisons in the EVRB dataset, we trained representative video deblur-
ring methods [12, 16, 18, 26, 39, 53] and event-guided motion deblurring meth-
ods [15, 36, 37] on the same training set. Tab 3 presents the quantitative results
on the EVRB dataset. The EVRB dataset includes extremely blurred videos cap-
tured during exposure times. As a result, frame-based video deblurring methods
exhibit subpar performance. For instance, the best-performing network, Shift-
Net [16], achieves only 30.56 dB, which is 0.42 dB lower than the best-performing
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Table 3: Quantitative results on the EVRB dataset.

Methods EDVR [39] ESTRNN [53] ERDN [12] DSTNet [26] RVRT [18]
PSNRs 29.02 29.79 28.32 29.15 30.24
SSIMs 0.886 0.911 0.893 0.898 0.906

Methods Shift-Net [16] UEVD [15] EFNet [36] REFID [37] Ours
PSNRs 30.56 30.55 30.98 30.33 31.38
SSIMs 0.922 0.915 0.927 0.918 0.927

Fig. 6: Visual comparison of deblurring results on the EVRB dataset.

event-guided deblurring method, EFNet [36]. In contrast, our approach lever-
ages video and event characteristics, effectively restoring even severe motion
blur, which may be difficult to recover. Our method outperforms all approaches,
achieving the best performance. We show our qualitative comparison with other
methods in Fig. 6.

5.4 Ablation Study

We analyzed the performance contribution of the various modules in our frame-
works. For a fair ablation study, we trained all the models for 600 epochs with
5 video frame inputs, conducting all experiments on the GoPro dataset.
CRIFE module. To demonstrate the effectiveness of the CRIFE module, we
replaced it with concatenation and convolution for comparison. When comparing
the first column(Ver.1) and the second column(Ver.2) of Tab 4, we observed a
performance gain of +0.35 dB with a small additional parameter (+0.08 MB).
Similarly, when comparing the performance of the third and fourth rows, we
observed performance improvement.
ECITFA module is the most crucial component of our model, performing
feature alignment by leveraging information of the events. As in the Tab. 4,
when comparing the first (Ver.1) with the third column (Ver.3) of the table, we
observed a significant performance gain (+1.69 dB) upon the insertion of the
ECITFA module. This trend is similarly maintained when the CRIFE module
is incorporated. When comparing Ver.2 with Ver.4 of the Tab. 4, we observed a
notable performance improvement (+1.55 dB).
Effectiveness of components in ECITFA module. In the Tab. 5, we demon-
strated an effectiveness analysis for each component of ECITFA. Comparing the
2nd column with the last column labeled ‘Ours’, we observed a performance
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Table 4: Ablation study on the GoPro dataset.

Methods Ver.1 Ver.2 Ver.3 Ver.4
CRIFE ✓ ✓
ECITFA ✓ ✓

PSNRs / Params 34.65 / 4.57M 35.00 / 4.65M 36.34 / 9.59M 36.55 / 9.68M

Table 5: Effect of the component of ECITFA module on the GoPro dataset. DF
denotes dynamic filter operation in the Eq.(12).

Methods w/o Cascaded w/o DF w/o Attention Ours
PSNRs 36.08 36.18 36.29 36.55

Table 6: Comparison of CRIFE with various module variants. “Baseline” refers to
Ver.3 of Tab.4. E and F represent event and frame features, respectively.

Methods Baseline w/o concat (E+F) w/concat (E+F)
w/o recurrent w/ recurrent(Ours)

PSNRs 36.34 36.04 35.99 36.55

gain of our method (+0.37 dB) when employing spatial pixel-wise dynamic fil-
ters, in contrast to not using DF. When utilizing cross-attention (Eq.13) to
better leverage long-range pixel-dependencies in the alignment blocks, we ob-
served a performance improvement (+0.29 dB) compared to aggregate feature
using ResBlocks. Finally, we confirmed the effectiveness of leveraging non-local
video frame information through a cascaded-based temporal feature alignment
method for video deblurring. After using the proposed cascaded structure for
temporal feature alignment, we can observe a performance gain (+0.47 dB).
Effectiveness of components in CRIFE module. To evaluate each compo-
nent’s effectiveness of the CRIFE module, we removed the concatenation between
RGB and event features, directly matching their features. However, as shown in
the 3rd column of Tab. 6, this approach yielded sub-optimal performance. Ad-
ditionally, combining event features without a recurrent structure degraded per-
formance (see 4th column). These ablations confirm that the recurrent structure
effectively utilizes temporal information from events within exposure time.

6 Conclusions

This paper proposes a video deblurring framework, CMTA, that elaborately
considers the characteristics of an event and video. Specifically, we achieve sig-
nificant performance improvement through intra-frame feature enhancement and
inter-frame temporal feature alignment. Furthermore, we construct a real-world
deblurring dataset, the EVRB dataset, which will be valuable for evaluating
event-guided deblurring methods. Finally, CMTA demonstrates state-of-the-art
performance across various deblurring datasets.
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