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Abstract. In this paper, we study the problem of Generalized Cate-
gory Discovery (GCD), which aims to cluster unlabeled data from both
known and unknown categories using the knowledge of labeled data from
known categories. Current GCD methods rely on only visual cues, which
however neglect the multi-modality perceptive nature of human cogni-
tive processes in discovering novel visual categories. To address this, we
propose a two-phase TextGCD framework to accomplish multi-modality
GCD by exploiting powerful Visual-Language Models. TextGCD mainly
includes a retrieval-based text generation (RTG) phase and a cross-
modality co-teaching (CCT) phase. First, RTG constructs a visual lexi-
con using category tags from diverse datasets and attributes from Large
Language Models, generating descriptive texts for images in a retrieval
manner. Second, CCT leverages disparities between textual and visual
modalities to foster mutual learning, thereby enhancing visual GCD. In
addition, we design an adaptive class aligning strategy to ensure the
alignment of category perceptions between modalities as well as a soft-
voting mechanism to integrate multi-modality cues. Experiments on eight
datasets show the large superiority of our approach over state-of-the-art
methods. Notably, our approach outperforms the best competitor, by
7.7% and 10.8% in All accuracy on ImageNet-1k and CUB, respectively.
Code is available at https://github.com/HaiyangZheng/TextGCD.
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1 Introduction

Despite the remarkable advancements of deep learning in visual recognition, a
notable criticism is that the models, once trained, show a significant limita-
tion in recognizing novel classes not encountered during the supervised training
phase. Drawing inspiration from the innate human capacity to seamlessly ac-
quire new knowledge with reference to previously assimilated information, Gen-
eralized Category Discovery (GCD) [35] is proposed to leverage the knowledge
of labeled data from known categories to automatically cluster unlabeled data
that belong to both known and unknown categories. While current GCD meth-
ods [29,35,38,44,45] have demonstrated considerable success utilizing advanced
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Fig. 1: Left: Comparison to existing methods. Our approach introduces textual modal-
ity information (e.g., “Friendly and Gentle Pets” for Husky dogs, “Profound and Vigilant
Predators” for wolves) into the framework and proposes cross-modal co-teaching for
accurate generalized category discovery. Right: Performance comparison with SOTA.

large-scale visual models (e.g., ViT [9]), as shown in Fig. 1, they predominantly
focus on visual cues. In contrast, human cognitive processes for identifying novel
visual categories usually incorporate multiple modalities [34], such as encom-
passing visual, auditory, and textual elements in recognizing a subject. In the
light of this, unlike existing GCD methods [29,35,37,38,44,45] that rely on only
visual modality, we propose to exploit both visual and textual cues for GCD.

In this paper, we advocate the utilization of large-scale pre-trained Visual-
Language Models (VLMs) (i.e. CLIP [30]) to inject rich textual information into
GCD. However, VLMs require predetermined, informative textual descriptors
(e.g., class names) for matching or recognizing images. This poses a significant
challenge in GCD involving unlabeled data, particularly for unknown categories
that lack predefined class names. Hence, how to provide relevant textual cues
for unlabeled data is of a key in facilitating GCD with textual information.

To this end, we introduce the TextGCD framework, comprising a retrieval-
based text generation (RTG) phase and a cross-modality co-teaching (CCT)
phase, to leverage the mutual benefit of visual and textual cues for solving GCD.
In particular, RTG constructs a visual lexicon encompassing category tags from
diverse datasets and attributes gleaned from Large Language Models (LLMs),
which offer categorical insights. Subsequently, the most pertinent tags and at-
tributes are selected from the lexicon to craft descriptive texts for all images
through an offline procedure. While the augmentation of textual information for
unlabeled images via RTG is beneficial, the effective integration of this textual
information to enhance visual category discovery remains an essential challenge.

To solve the challenge, we introduce CCT to leverage the inherent disparities
between textual and visual modalities, harnessing these distinctions to facilitate
joint learning, which is important for co-teaching [12]. To this end, we devise a
cross-modal co-teaching training strategy that fosters mutual learning and col-
lective enhancement between text and image models. Additionally, to ensure the
effective alignment of category perceptions between text and image models and
to facilitate comprehensive learning from both modalities, we introduce a warm-
up stage and a class-aligning stage before engaging in cross-modality co-teaching.
Finally, a soft-voting mechanism is deployed to amalgamate insights from both
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modalities, aiming to enhance the accuracy of category determination. In short,
introducing the textual modality and exchanging insights between modalities
have significantly improved the precision of visual category identification, par-
ticularly for previously unseen categories. We make the following contributions:

– We identify the limitations of existing GCD methods that rely on only vi-
sual cues and introduce additional textual information through a customized
RTG based on large-scale VLMs.

– We propose a co-teaching strategy between textual and visual modalities,
along with inter-modal information fusion, to fully exploit the strengths of
different modalities in category discovery.

– Comprehensive experiments on eight datasets demonstrate the effective-
ness of the proposed method. Notably, compared to the leading competi-
tor in terms of All accuracy, our approach achieves an increase of 7.7% on
ImageNet-1k and 10.8% on CUB. The source code will be publicly available.

2 Related Works

Generalized Category Discovery (GCD) aims to accurately classify an un-
labeled set containing both known and unknown categories, based on another
dataset labeled with only known categories. It is an extension of novel cate-
gory discovery [10, 13, 14, 32, 46, 47] where the unlabeled set only contains un-
known classes. Vaze et al. [35] first proposed optimizing image feature similari-
ties through supervised and self-supervised contrastive learning to address GCD.
Building on this, SimGCD [38] designed a parametric classification baseline for
GCD. For better image representations, DCCL [29] proposed a novel approach
to contrastive learning at both the concept and instance levels. Similarly focus-
ing on image representation, PromptCAL [44] introduced a Contrastive Affinity
Learning approach with auxiliary visual prompts designed to amplify the seman-
tic discriminative power of the pre-trained backbone. Furthermore, SPTNet [37]
proposed iteratively implementing model finetuning and prompt learning, re-
sulting in clearer boundaries between different semantic categories. Unlike ex-
isting methods that primarily focus on visual cues, we design a retrieval-based
approach to introduce text cues from LLM for unknown categories. Recently,
CLIP-GCD [27] concatenated image features with textual features obtained from
a Knowledge Database and categorized them using a clustering method. Unlike
CLIP-GCD, which merely concatenates text and visual features from a frozen
backbone, we leverage the differences between textual and visual models to es-
tablish a dynamic co-teaching scheme.
Visual-Language Models (VLMs) are designed to map images and text
into a unified embedding space, facilitating cross-modal alignment. Among the
prominent works, CLIP [30] employs contrastive representation learning with
extensive image-text pairs, showcasing remarkable zero-shot transfer capabilities
across a variety of downstream tasks. Additionally, LENS [2] leverages VLMs as
visual reasoning modules, integrating them with Large Language Models (LLMs)
for diverse visual applications. As VLMs effectively bridge the visual and textual
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modalities, enhancing image classification tasks with knowledge from LLMs has
been extensively explored [24,26,41]. However, these works use VLMs to enhance
image classification in scenarios where the names of all classes are predefined for
VLMs. In this paper, we exploit VLMs to address the GCD, where the unlabeled
data do not have exploitable textual information for VLMs. We utilize a retrieval-
based text generation method to enable the GCD to benefit from VLMs.
Co-teaching, which stemmed from the Co-training approach [3], was originally
proposed as a learning paradigm to address the issue of label noise, [12]. This
strategy involves training two peer networks that select low-loss instances from
a noisy mini-batch to train each other. Yuan et al. [43] established three sym-
metric peer proxies with pseudo-label-driven co-teaching to address the Offline
model-based optimization task. Yang et al. [40] were the first to introduce the
co-teaching strategy into the Person re-identification task, designing an asym-
metric co-teaching framework. Similarly, Roy et al. [31] pioneered co-teaching
between classifiers of a dual classifier head to tackle the multi-target domain
task. Unlike these works, our focus is on applying co-teaching to the GCD task.
Furthermore, rather than employing two peer networks within the same modal-
ity or learning from self-discrepancy, we initiate co-teaching between the image
model and the text model, leveraging the disparities between modalities to foster
mutual enhancement.

3 Method

Task Configuration: In GCD, we are given a labeled dataset, denoted as
DL = {(xi, y

l
i)}Mi=1 ⊆ X × YL, and an unlabeled dataset, denoted as DU =

{(xi, y
u
i )}Ni=1 ⊆ X ×YU , where M and N indicate the number of samples in the

DL and DU , respectively. YL and YU indicate the label spaces for labeled and
unlabeled datasets, respectively, where YL ⊆ YU . That is, DU contains data from
unknown categories, and YU is unavailable. The objective of GCD is to leverage
the prior knowledge from known categories within DL to classify samples in
DU effectively. Following [38], it is assumed that the number of classes in DU ,
represented by K = |YU |, is predetermined.

3.1 Overview

The framework of the proposed TextGCD, depicted in Fig. 2, consists of the
Retrieval-based Text Generation (RTG) phase and Cross-modal Co-Teaching
(CCT) phase. In RTG, we initially develop a visual lexicon comprising a broad
spectrum of tags, along with attributes obtained from LLMs. Subsequently, we
extract representations of images and the visual lexicon with an auxiliary VLM
model and generate textual category information for each image in a retrieval
manner. Building upon this, we design textual and visual parametric classifiers
and propose the CCT phase to foster mutual learning and collective progress
between text and image models.



Cross-Modality Co-Teaching for Generalized Visual Class Discovery 5

Encoder ( )I
Classifier ( )I

Encoder ( )T Classifier ( )T

#
V

is
u
al

 M
o

d
al

it
y

#
T

ex
tu

al
 M

o
d
al

it
y

A photo of a bird,

Most likely a <tag1>,

Probably a <tag2>,
...

A photo of a bird,

Most likely a <tag1>,

Probably a <tag2>,
...

Retrieval-based Text Generation Cross-Modality Co-Teaching

ipT

ipI

...

...

con p p+I T
DescriptionDescription base

Fig. 2: The TextGCD framework comprises two main phases: Retrieval-based Text
Generation (RTG) and Cross-modality Co-Teaching (CCT). In the RTG phase, de-
scriptions for each sample are generated using a visual lexicon. The CCT phase involves
developing a two-stream parametric model that leverages the interaction of visual and
textual modalities for enhanced mutual progress. The gray dashed box on the right
illustrates the text and image models independently selecting high-confidence samples
with pseudo labels for the co-teaching process.

3.2 Baseline

We follow the SimGCD [38] to build our parametric learning baseline, which
consists of a supervised loss for labeled data and an unsupervised loss for both
labeled and unlabeled data.

Specifically, the supervised loss utilizes the conventional cross-entropy loss:

Lsup =
1

|Bl|
∑
i∈Bl

ℓ(yi,pi), (1)

where Bl indicates the mini-batch for labeled data, ℓ is the cross-entropy loss, and
pi = σ(H(E(xi))/τ) is the predicted probabilities of input xi. Here, E represents
the backbone encoder, and H indicates the parametric classifier. σ(·) denotes
the softmax function, and τ is a temperature parameter set to τs.

For unsupervised loss, we use the predicted probabilities of an augmented
counterpart x′

i as the supervision to calculate the classification loss for the orig-
inal input xi, which is formulated as:

Lunsup =
1

|B|
∑
i∈B

ℓ(q′
i,pi)− εH(p), (2)

where q′
i is the predicted probabilities of x′

i using a sharper temperature value
τt. We also include a mean-entropy maximization regularizer H(p) [1] for the
unsupervised objective. H(p)=−

∑
k p

(k) log p(k), where p = 1
2|B|

∑
i∈B(pi+p′

i).
pi and p′

i are the probabilities of xi and x′
i, respectively, which use the same

temperature of τu. B indicates the mini-batch for both labeled and unlabeled
data. The hyperparameter ε aligns with the configuration used in SimGCD [38].

The classifier is jointly trained with supervised loss and unsupervised loss,
formulated as:

Lbase = λ · Lsup + (1− λ) · Lunsup, (3)
where λ serves as the balancing factor.
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3.3 Retrieval-based Text Generation
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Fig. 3: Schema of retrieval-based text generation.

The existing foundational VLMs
and LLMs, trained on mas-
sive amounts of data, have
demonstrated remarkable capa-
bilities in aligning visual im-
ages with corresponding tex-
tual descriptions and gener-
ating detailed object descrip-
tions. Drawing inspiration from
these advancements, we intro-
duce the Retrieval-based Text
Generation (RTG) phase for GCD. This process involves two stages: construct-
ing a comprehensive visual lexicon and retrieving probable tags from this lexicon
to generate textual information for images.
Building the Visual Lexicon. To construct a visual lexicon, we aggregate a
diverse and extensive collection of tags from established benchmarks in semantic
segmentation, object detection and classification. These benchmarks are selected
for their comprehensive coverage of the visual categories in the world. Addition-
ally, we utilize a large language model (e.g., GPT3 [5]) to further describe each
tag by using the prompt of “What are useful features for distinguishing a {tag}
in a photo?”, which can augment the visual lexicon with the attribute of “{tag}
which has the {feature}”.
Tag Retrieval. Given the visual lexicon, comprising tags and corresponding
attributes, we utilize an auxiliary VLM (e.g., CLIP [30]) to encode it, thereby
creating a textual feature bank. For each image, we use the auxiliary model to
generate its visual feature, which is then compared against the entries in the
textual feature bank using cosine similarity. Subsequently, we identify the most
relevant nt tags and na attributes exhibiting the highest similarity to the image.
We then concatenate the textual descriptors of these tags and attributes based
on the similarity ranking. This process yields the categorical descriptive text ti
for each image xi. The workflow of the RTG phase is delineated in Fig. 3.
Discussion. In this paper, we aim to harness the capabilities of the existing
foundational models to deliver comprehensive and accurate textual information
for GCD. To this end, we employ GPT-3 [5] as the LLM to obtain attributes
and the ViT-H-based CLIP [30] as the auxiliary VLM to identify tags and at-
tributes. We also attempt to use a smaller auxiliary VLM, e.g., ViT-B-based
CLIP, to generate the descriptive text. However, it demonstrated limited effi-
cacy for fine-grained classification because ViT-B-based CLIP tends to focus on
more general Tags and Attributes in the Visual Lexicon. Using Flower102 for
instance, ViT-B-based CLIP tends to give high similarity to broader Tags like
“Plant & Flower”. Compared to existing methods that only use visual cues for
GCD, we explore the possibility of introducing the textual information to facil-
itate the GCD task by using the freely available, public foundational models,
which would be a new trend in the community. In addition, our approach enjoys
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several advantages. Firstly, the RTG is an offline phase, where we only need to
process each sample once, avoiding the need for excessive computational over-
head. Secondly, given the generated descriptive text, we only need to train the
GCD model with a smaller model (ViT-B-based CLIP), achieving significantly
higher results than existing methods. Third, the auxiliary VLM can be replaced
with other advanced foundational models, such as FLIP [21] and CoCa [42].
Consequently, the effectiveness of our method is likely to be enhanced in line
with the advancements in these foundational models.

3.4 Cross-modality Co-teaching

In light of the categorical descriptive texts generated during the RTG phase,
the primary challenge lies in effectively utilizing them to train an accurate GCD
model. To address this, we develop two-stream parametric classifiers for visual
and textual modalities. Recognizing that the intrinsic differences between the
modalities naturally meet the requirements for the model disparity in co-teaching
strategies [12], we propose a Cross-modal Co-Teaching (CCT) phase to realize
the mutual benefits of the visual and textual classifiers. However, a notable
challenge arises due to the lack of annotations during the co-teaching process: the
classifiers for each modality are often misaligned. This misalignment implies that
consistent class indexes across the two modalities cannot be guaranteed, posing a
significant obstacle to effective co-teaching. We introduce two preliminary stages
to overcome this issue: a warm-up stage and a class-aligning stage, designed to
establish modality-specific classifiers while ensuring their alignment.
Basic Loss. Given the inputs from two modalities, xi and ti, we construct a
text model and an image model based on the parametric baseline in Sec. 3.2.
Thus, the basic loss for our method is formulated as:

Lbase = LI
base + LT

base, (4)

where both components are implemented by Eq. 3. The difference is that LT
base

is calculated by the text model and textual description.
Image-Text Contrastive Learning. To strengthen the association between
the image and text modalities, we further introduce a cross-modal contrastive
learning between image features and textual features, which is formulated as:

Lcon =
1

|B|
∑
i∈B

− log
exp

(
f Ii · (fTi )⊤/τc

)∑
j I[j ̸=i] exp

(
f Ii · (fTj )⊤/τc

) , (5)

where τc is a temperature parameter. f Ii = EI(xi) is the image feature and
fTi = ET(ti) is the textual feature. EI and ET represent the image and text
encoders, respectively. We next introduce the three stages of the proposed CCT
(see Fig. 4), i.e., warm-up, class-aligning, and co-teaching.
Stage I: Warm-up. The image and text models initially undergo a warm-
up training stage with ew epochs, as depicted in Fig 4(a). During this stage,
both the text model and image model are trained using the basic loss (Eq. 4)
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and cross-modal contrastive loss (Eq. 5). This warm-up training aims to en-
able both models to adequately learn category knowledge from their respec-
tive modality data, thereby developing modality-specific category perceptions.

TT II

TT II

TT II

TT II

TT II

TT II

TT II

TT II

TT II
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Epoch

Epoch

. . .

ew+ea

. . .
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(b) Class-aligning (c) Co-teaching

ew ew+ea
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Baseline & Contrastive Learning I

. . .

0
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Fig. 4: Schema of cross-modality co-teaching.

Stage II: Class-aligning. Sub-
sequently, to rectify the class
misalignment between image and
text classifiers, a class-aligning
stage with ea epochs is intro-
duced, as illustrated in Fig 4(b).
This stage aims to align the
classifiers of two modalities. To
this end, we select high-confidence
samples based on the text model
and use them to guide the train-
ing of the image model. Specifically, for each category k, we select the top s
samples that have the highest probabilities in the k-th category produced by the
text model, formulated as TopTk (s). In addition, for each sample i in TopTk (s),
we assign it with the hard pseudo label of ŷTi = k. Thus, besides the basic and
contrastive losses, we additionally train the image model by the pseudo-labeling
loss:

LI
p =

1

|Bs|
∑
i∈Bs

ℓ(ŷTi ,pI
i), (6)

where |Bs| indicates the number of selected samples in the mini-batch.
Stage III: Co-teaching. Following the warm-up and class-aligning stages, we
establish cross-modality co-teaching to facilitate the mutual benefit between the
image and text models, as shown in Fig 4(c). Similar to the class-aligning stage,
we also generate high-confidence samples from the image model, which is defined
as TopIk(s). For each sample i in TopIk(s), the hard pseudo label is ŷIi = k, and
thus the pseudo-labeling loss for the text classifier is formulated as:

LT
p =

1

|Bs|
∑
i∈Bs

ℓ(ŷIi ,p
T
i ). (7)

The total loss of Stage III is formulated as:

L = Lbase + Lcon + LI
p + LT

p . (8)

Inference. When determining the category of object i, we employ soft voting
to merge the category perceptions from both modalities:

P i = pI
i + pT

i . (9)

The predicted category is the one that achieves the largest value in P i, i.e.,
argmaxP i. This integrated approach leverages the strengths of both modalities,
leading to more accurate classification.
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4 Experiments

Datasets. We conduct comprehensive experiments on four generic image classi-
fication datasets, i.e., CIFAR-10, CIFAR-100 [18], ImageNet-100, and ImageNet-
1K [8], as well as on four fine-grained image classification datasets, i.e., CUB [36],
Stanford Cars [15], Oxford Pets [28], and Flowers102 [25]. Following [35], for each
dataset, we select half of the classes as the known classes and the remaining as
the unseen classes. We select 50% of samples from the known classes as the la-
beled dataset DL and regard the remaining samples as unlabeled dataset DU

that are from both known and unseen classes.
Evaluation Protocol. Following [35], we use the clustering accuracy (ACC) to
evaluate the performance of each algorithm. Specifically, the ACC is calculated
on the unlabeled data, formulated as ACC = 1

|DU |
∑|DU |

i=1 I(yi = C(yi)), where
y = argmaxP represents the predicted labels and y denotes the ground truth.
The C denotes the optimal permutation.
Implementation Details. We construct the tag lexicon by incorporating tags
from semantic segmentation and object detection datasets [11, 19, 22], image
classification datasets [4,7,16,20,28,33,39] and visual genome dataset [17]. The
CLIP [30] model with a ViT-B-16 architecture serves as the backbone, ensuring
a fair comparison to methods utilizing the DINO [6] model with the same archi-
tecture. A linear classifier layer is added after the backbone for each modality.
During training, only the last layers of both the text and image encoders in the
backbone are fine-tuned, using a learning rate of 0.0005. The learning rates for
classifiers start at 0.1 and decrease following a cosine annealing schedule. We
train the model for 200 epochs on all datasets, using a batch size of 128 and
processing dual views of randomly augmented images and texts. The tempera-
ture parameters τs and τu are set at 0.1 and 0.05, respectively. τt starts at 0.035
and decreases to 0.02, except for CIFAR-10 where it varies from 0.07 to 0.04 due
to fewer classes. We use the logit scale value to set τc as in the CLIP model.
The balancing factor λ is set to 0.2. Warm-up and class-aligning stages last for
10 and 5 epochs, respectively, denoted as ew = 10 and ea = 5. For selecting
high-confidence samples, we choose s = r ∗ |DU |

K samples per category, with r set
at 0.6. The average result over the three runs is reported.

4.1 Comparison with the State of the Art

We conduct a comparative analysis between our proposed TextGCD and leading
methods in GCD, as delineated in Tab. 1 and Tab. 2. These methods encom-
pass GCD [35], SimGCD [38], DCCL [29], GPC [45], PromptCAL [44], CLIP-
GCD [27] and SPTNet [37]. Except for CLIP-GCD [27], which uses CLIP as the
backbone, the others utilize the DINO as the backbone. To better ensure the
fairness of our comparison, we also reproduce SimGCD by using CLIP as the
backbone. Clearly, our TextGCD outperforms all compared methods in terms
of All accuracy on all datasets. Importantly, compared to the best competitor,
SimGCD, our method achieves a significant improvement on the ImageNet-1K
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and all the fine-grained datasets. Specifically, our method outperforms SimGCD
by 7.7% in All accuracy and 11.4% in New accuracy on the ImageNet-1K dataset,
and, by 11.1% in All accuracy and 12.7% in New accuracy averaged on fine-
grained datasets. This demonstrates the superiority of our method over existing
visual-based methods. In comparison to CLIP-GCD, which merely concatenates
features from both modalities, TextGCD achieves higher results. For instance,
TextGCD surpasses CLIP-GCD by 13.8%, 16.3%, and 10.9% in terms of All
accuracy on the CUB, Stanford Cars, and Flowers102 datasets, respectively.

Table 1: Results on generic datasets. The best results are highlighted in bold.

Methods Backbone CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

All Old New All Old New All Old New All Old New

GCD [35] DINO 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3 52.5 72.5 42.2
SimGCD [38] DINO 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9 57.1 77.3 46.9
DCCL [29] DINO 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2 - - -
GPC [45] DINO 92.2 98.2 89.1 77.9 85.0 63.0 76.9 94.3 71.0 - - -
PromptCAL [44] DINO 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3 - - -
SPTNet [37] DINO 97.3 95.0 98.6 81.3 84.3 75.6 85.4 93.2 81.4 - - -

CLIP-GCD [27] CLIP 96.6 97.2 96.4 85.2 85.0 85.6 84.0 95.5 78.2 - - -
SimGCD [38] CLIP 96.6 94.7 97.5 81.6 82.6 79.5 86.1 94.5 81.9 48.2 72.7 36.0
TextGCD CLIP 98.2 98.0 98.6 85.7 86.3 84.6 88.0 92.4 85.2 64.8 77.8 58.3

Table 2: Results on fine-grained datasets. The best results are highlighted in bold.

Methods Backbone CUB Stanford Cars Oxford Pets Flowers102

All Old New All Old New All Old New All Old New

GCD [35] DINO 51.3 56.6 48.7 39.0 57.6 29.9 80.2 85.1 77.6 74.4 74.9 74.1
SimGCD [38] DINO 60.3 65.6 57.7 53.8 71.9 45.0 87.7 85.9 88.6 71.3 80.9 66.5
DCCL [29] DINO 63.5 60.8 64.9 43.1 55.7 36.2 88.1 88.2 88.0 - - -
SPTNet [37] DINO 65.8 68.8 65.1 59.0 79.2 49.3 - - - - - -

CLIP-GCD [27] CLIP 62.8 77.1 55.7 70.6 88.2 62.2 - - - 76.3 88.6 70.2
SimGCD [38] CLIP 62.0 76.8 54.6 75.9 81.4 73.1 88.6 75.2 95.7 75.3 87.8 69.0
TextGCD CLIP 76.6 80.6 74.7 86.9 87.4 86.7 95.5 93.9 96.4 87.2 90.7 85.4

4.2 Ablation Study

Components Ablation. In Tab. 3, we present an ablation study of the key com-
ponents in TextGCD, specifically cross-modality co-teaching, contrastive learn-
ing, and soft voting. Beginning with the Baseline method, we incrementally in-
corporate these three components into the framework to evaluate their impact on
the performance of both image and text classifiers. We also report the results of
1) employing the first tag derived from the visual lexicon as the GCD labels and
2) performing k-means [23] using the image or text features without training.
It becomes evident that the “First-Tag” and “k-means” methods yield inferior
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Table 3: Ablation study on TextGCD components. “T” and “I” denote the output
results of the text and image classifiers, respectively. “First-Tag” refers to the accuracy
achieved using the most similar tag from the visual lexicon as the label. “k-means”
indicates applying k-means on the initial backbone features.

Methods Classifier CIFAR-100 CUB

All Old New All Old New

First-Tag - 12.0 12.0 11.9 47.8 43.4 52.1

k-means T 70.2 66.6 77.5 67.6 64.5 69.2
I 46.5 45.6 48.5 46.7 50.6 44.7

Baseline T 81.8 83.6 78.3 67.0 75.9 62.6
I 76.3 80.9 67.0 49.0 64.2 41.3

+Co-Teaching T 84.4 86.2 81.1 74.4 79.3 72.0
I 82.4 85.0 77.3 71.7 79.4 67.8

+Contrastive T 84.6 84.8 84.1 74.8 78.6 73.0
I 83.1 84.0 81.1 73.9 80.4 70.7

+Soft Voting - 85.7 86.3 84.6 76.6 80.6 74.7

results compared to the baseline. On the other hand, the “k-means” method
and the baseline results demonstrate that using the textual information achieves
clearly higher results than using the image cues, thereby highlighting the superior
quality of the generated textual descriptions. Compared to the baseline, integrat-
ing our proposed co-teaching approach markedly elevates the performance across
both modalities, particularly notable within the context of the fine-grained CUB
dataset. This substantiates the efficacy of our co-teaching strategy in fostering
synergistic learning and collaborative advancement between text and image mod-
els. Furthermore, image-text contrastive learning consistently increases the All
and New accuracies, underlining the necessity of aligning the two modalities.
Soft voting can further improve performance, illustrating that the integration of
information from both modalities leads to more precise category discrimination.

Table 4: Ablation study on TextGCD training stages. “Warm-up” refers to the warm-
up stage and “Cls. Align” denotes the class-aligning stage. “T→I” signifies aligning the
image model using the text model, whereas “I→T” indicates aligning the text model
using the image model.

Warm- Cls. Align Co- CIFAR-100 ImageNet-100 CUB Stanford Cars

up I→T T→I Teaching All Old New All Old New All Old New All Old New

✓ 83.3 86.8 76.4 80.6 92.8 74.5 74.8 77.4 73.5 83.9 88.1 80.6
✓ ✓ 82.8 87.2 74.1 81.6 92.6 76.0 76.5 81.2 74.1 85.3 87.8 84.0
✓ ✓ ✓ 84.6 86.6 80.6 87.5 93.5 84.4 76.1 80.9 73.6 87.5 86.4 87.9
✓ ✓ ✓ 85.7 86.3 84.6 88.0 92.4 85.2 76.6 80.6 74.7 86.9 87.4 86.7

Training Stages Ablation. In Tab. 4, we assess the impact of each stage within
the proposed CCT phase, i.e., warm-up, class-aligning, and co-teaching. Results
show that using co-teaching solely achieves lower results than our full method.
Specifically, the warm-up process is important for the fine-grained dataset, i.e.,
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CUB and SCars. On the other hand, the class-aligning consistently improves the
performance on all four datasets, which obtains 10.5%, 9.2%, 0.6%, and 2.7% in
New accuracy on CIFAR-100, ImageNet-100, CUB and SCars, respectively. This
observation highlights the vital role of class-aligning stage in resolving conflicts
between the two classifiers. To further investigate the proposed class-aligning
strategy, we evaluate the variant of using the image model to guide the text
model, denoted as “I→T”. In terms of All and New accuracies, we observe that
1) both strategies can achieve consistent improvements (except for “I→T” on
CUB) and that 2) the proposed text-guide-image strategy produces higher re-
sults than the image-guide-text variant in most cases. These advantages can be
attributed to the more representative initial features generated by the textual
descriptions. Therefore, the discriminative textual features can generate high-
quality pseudo-labels for effectively guiding visual model (text-guide-image) or
can be robust to noisy labels when guided by the visual model (image-guide-
text). This further demonstrates the importance of introducing textual modality
into our co-teaching framework.

4.3 Evaluation

Backbone Evaluation. In Tab. 5, we evaluate the impact of the image en-
coder in TextGCD by substituting the image encoder of CLIP with that of
DINO, while maintaining the text encoder from CLIP. In TextGCD(DINO),
we omit the cross-modal contrastive loss Lcon. Despite a decreased accuracy on
CUB, TextGCD(DINO) still significantly outperforms SimGCD, which utilizes
the same image encoder. Moreover, we compare SimGCD and TextGCD using

Table 5: Evaluation on different pretrained ViT-B backbones.

Methods Backbone CIFAR-100 CUB

All Old New All Old New

SimGCD DINO 80.1 81.2 77.8 60.3 65.6 57.7
TextGCD DINO 86.1 88.7 81.0 73.7 80.3 70.4

TextGCD CLIP 85.7 86.3 84.6 76.6 80.6 74.7

the ViT-H-based CLIP for a more fair comparison, as we use the ViT-H for
text generation. Tab. 6 shows that our TextGCD outperforms SimGCD by a
large margin on both datasets. Interestingly, both SimGCD and our method
show a decrease in performance on the generic dataset CIFAR-100, in terms
of New accuracy, compared to the ones using ViT-B-16 as the backbone (see
Tab. 1). This suggests that fine-tuning on the generic dataset may adversely
affect the ability of the large model. In addition, we can observe a small mar-
gin between our methods with ViT-B-16 and ViT-H-14. This indicates that our
advantage mainly benefited from the high-quality text description and the co-
teaching strategy, enabling our approach to adapt to both smaller and larger
models.
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Table 6: Evaluation on ViT-H-14 backbone.

Methods CLIP Backbone CIFAR-100 CUB

All Old New All Old New

SimGCD ViT-H-14 78.1 80.0 74.4 69.1 76.3 65.4
TextGCD ViT-H-14 86.4 89.3 80.7 78.6 81.5 77.1

Text Generation Evaluation. In Tab. 7, we analyze the impact of the number
of tags and attributes for constructing category descriptions in the RTG phase.
Results show that richer textual content (more tags and attributes) leads to
higher category recognition accuracy. Due to the token limitation of CLIP, we
can use up to only three tags and two attributes in the input of the text model.
We will handle this drawback and investigate the impact of including more tags
and attributes in future work.

Table 7: Evaluation on the number of tags and attributes.

# Tag # Attribute CIFAR-100 CUB

All Old New All Old New

1 0 81.6 81.6 81.8 67.9 69.6 67.0
2 0 83.5 83.4 83.7 68.6 75.3 65.3
3 0 83.7 84.7 81.6 69.9 74.9 67.3
3 1 84.7 85.4 83.4 74.7 80.5 71.7
3 2 85.7 86.3 84.6 76.6 80.6 74.7

Auxiliary Model Evaluation. In Tab. 8, we explore the effect of substituting
the auxiliary model with FLIP [21] and CoCa [42]. Results show that our method
consistently produces high performance on both datasets and that using a more
powerful model (FLIP) leads to higher results.

Table 8: Evaluation on the auxiliary model.

Auxiliary Backbone CIFAR-100 CUB

Model All Old New All Old New

CLIP [30] ViT-H-14 85.7 86.3 84.6 76.6 80.6 74.7
CoCa [42] ViT-L-14 85.2 85.8 83.8 73.6 81.7 69.5
FLIP [21] ViT-G-14 87.6 87.7 87.5 79.5 83.5 77.4

Co-Teaching Strategy Evaluation. To demonstrate the effectiveness of the
cross-modal co-teaching strategy, we conduct a comparative analysis with a
co-teaching approach utilizing a single modality. Results in Tab. 9 show that
single-modality co-teaching variants obtain lower results than the proposed cross-
modality co-teaching. This finding highlights the critical role of ensuring the
model diversity in co-teaching.
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Table 9: Evaluation on co-teaching strategies. “I↔T” is our cross-modality co-teaching.
“T↔T” and “I↔I” indicate the single-modality variant using text modality and image
modality, respectively.

Methods CIFAR-100 CUB

All Old New All Old New

T↔T 79.8 83.6 72.1 71.7 73.0 71.1
I↔I 75.5 80.5 65.7 60.3 79.5 50.7
I↔T (Ours) 85.7 86.3 84.6 76.6 80.6 74.7

4.4 Hyper-parameters Analysis

Fig. 5: Impact of hyper-parameters.

Balancing Factor λ and Proportion Coefficient r. The impact of the bal-
ancing factor λ and the proportion coefficient r is illustrated in Fig. 5. We use
All accuracy as the evaluation metric. An increase in λ suggests that the classi-
fiers of both models increasingly prioritize labeled data from known categories.
Results show that λ = 0.2 achieves the best accuracy on both datasets. The pa-
rameter r determines the fraction of high-confidence samples chosen from each
category for the text and image models. A higher value of r is typically advanta-
geous, and the best result is achieved when r = 0.6. Note that we use the same
hyper-parameters (λ and r) for all datasets to avoid over-tuning.

5 Conclusion

In this paper, we introduce a novel approach called TextGCD for Generalized
Category Discovery. Compared to previous methods that only rely on visual pat-
terns, we additionally integrate textual information into the framework. Specif-
ically, we first construct a visual lexicon based on off-the-shelf category tags
and enrich it with attributes by Large Language Models (LLMs). Following this,
a Retrieval-based Text Generation (RTG) approach is proposed to assign each
sample with likely tags and corresponding attributes. Building upon this, we
design a Cross-modal Co-Teaching (CCT) strategy to fully take the mutual ben-
efit between visual and textual information, enabling robust and complementary
model training. Experiments on eight benchmarks show that our TextGCD pro-
duces new state-of-the-art performance. We hope this study could bring a new
perspective, which assists the framework with foundational model and textual
information, for the GCD community.
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