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Abstract. The inherent richness of geometric information in point cloud
underscores the necessity of leveraging group equivariance, as preserving
the topological structure of the point cloud up to the feature space pro-
vides an intuitive inductive bias for solving problems in 3D space. Since
manifesting the symmetry by means of model architecture has an ad-
vantage over the dependence on the augmentation, it has been a crucial
research topic in the point cloud field. However, existing methods have
limitations in the non-continuity of groups or the complex architecture
causing computational inefficiency. In this paper, we propose CSEConv:
a novel point convolution layer equivariant under continuous SO(3) ac-
tions. Its structure is founded on the framework of group theory, realizing
the convolution module defined on a sphere. Implementing its filters to be
explicit, continuous, and rigorously equivariant functions defined upon
the double coset space is the distinctive factor which makes our method
more scalable than previous approaches. From the classification exper-
iments on synthetic and real-world point cloud datasets, our method
achieves the best accuracy, to the best of our knowledge, amidst point-
based models equivariant against continuous rotation group.

Keywords: Geometric deep learning · 3D feature learning · 3D point
clouds

1 Introduction

Advancements in 3D data processing technologies have been propelled by the
increasing demand for rich geometric data across various application domains,
such as robotics, autonomous driving, and augmented reality [18, 19]. This re-
cent trend has given rise to the emergence of large-scale 3D datasets and deep
learning techniques exploiting a point cloud. Nonetheless, a point cloud poses
computational challenges that neural networks should concern its nature - an
unordered set containing a large number of coordinate samples [18].

The equivariance toward symmetry facilitates the mapping of visual input
to its representation while maintaining structural information [6]. With respect
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Fig. 1: Continuous SO(3) Equivariant Convolution (CSEConv) defines convolution
operation on S2. It maintains equivariance to the 3D rotation group SO(3) by ensuring
the filter functions (κ1, · · · , κ4) are invariant to SO(2). What makes our method differ
from existing convolution methods is that the filters are defined on continuous S2,
equivariant against random 3D rotations.

to point clouds, the learned representation is expected to be equivariant against
3D rotation; thus the model is able to project a complex collection of coordi-
nates onto the symmetric representation space variable to the global topology.
Though augmenting training data with random rotations also guides the ap-
proximated symmetric representation, it is known both analytically and prag-
matically that reliance on augmentation has a limitation on the performance
compared to structurally equivariant methods [15, 25]. Therefore, many previ-
ous works have proposed their own approaches to manifest innate equivariance,
especially employing group convolution in 3D space [2, 14,34,39,48].

One of the typical approaches to realize group convolution is to discretize
the group domain into finite elements [2, 48]. This makes the explicit integra-
tion feasible over the group space, yet it forgoes the rigorous symmetry towards
the continuous group actions. On the other hand, some methods preserve strict
symmetry by defining filter function or replacing convolution based on harmonic
analysis [7, 14, 34]. However, they are not applicable to a point cloud or under-
achieve in practice due to their computational complexity. Furthermore, both
approaches mostly have defined filter functions using regular grids. Since points
in point cloud are irregularly sampled, each value at the point between grid cells
can only be approximated by gating [2, 48] or weight functions [14, 34]. Hence,
previous works on group convolution have exhibited their limitations regarding
the efficiency, the rigor of equivariance, and the smoothness of the filter.

This paper proposes a novel rotation-equivariant point convolution network
named Continuous SO(3) Equivariant Convolution (CSEConv), leveraging con-
cepts from group theory and diverse techniques from previous convolution re-
search. The proposed method achieves SO(3) equivariance without the men-
tioned limitations through the following means: we reformulate a convolution
operation on SO(3) into an equivalent operation on S2, where the symmetry
against rotations is preserved. Inspired by previous works regarding continu-
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ous filter of equivariant convolution on 2D space [26, 27], we realize the filter of
CSEConv as explicit and continuous functions as in Figure 1, implemented with
simple neural networks instead of tensor-shaped parameters. They are designed
to ensure SO(3) equivariance on S2 with a constraint on their input coordi-
nates, founded from the derivation of our method’s formulation. We verify the
robust equivariance and outstanding efficiency of the proposed method through
comparative analyses with existing rotation-equivariant methods.

CSEConv is evaluated at point cloud datasets with different complexity:
ModelNet40 [43] and ScanObjectNN [36]. Utilizing the suggested convolution
layer with other techniques for point cloud learning, we implement the model
that maps point cloud to feature vectors in a rotation-invariant manner. Notably,
our model attains the best performance among methods equivariant to contin-
uous groups in classification tasks, comparable to the non-equivariant methods
augmented during training.
Our contributions are summarized as follows:

– We propose CSEConv that maintains a simple convolution structure and is
equivariant to continuous SO(3) actions. The symmetry can be held due to
the constraint on the filter function based on group theory.

– We implement the filter as the coordinate value-based neural network that
shares its parameter along every input point. This enables the cost efficiency
of our method while preserving its capacity.

– Performance analyses verify the robust equivariance and efficiency of our
method compared to baselines. Benchmark experiments also demonstrate
its scalability, as ours outperforms every baseline in classifying randomly
rotated ModelNet40 when a model is trained without augmentation.

2 Related Works

2.1 Deep learning of point cloud

In spite of the abundant geometric information inherent in point clouds,
its utilization is hindered by high-dimensionality and disorder. As a result, it
remains common to transform point clouds into more summarized formats [3,20,
21] in application domains. The preprocessing techniques enable the exploitation
of conventional algorithms or models, yet they sacrifice the topological structure
of the point cloud. PointNet [29] is one of the early deep learning methods
that learn point cloud per se. It applies the pointwise network on every point
to guarantee permutation invariance. PointNet++ [31] incorporates sampling
and local grouping mechanisms to learn local features in multiple resolutions.
However, it requires the whole PointNet structure to learn the locality in different
resolutions, which is computationally expensive.

Adopting convolution is a plausible choice to learn the local features effi-
ciently. Early works of 3D convolution rely on voxelized input and cost heavily
in memory due to dense 3D filter grids [24,30,43]. Minkowski Engine [4] utilizes
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a sparse tensor to overcome memory inefficiency, but it still requires discretiza-
tion of input space. A convolution method using a point cloud explicitly requires
a mechanism to weigh irregular samples in continuous space. PointConv [42]
computes a linear filter matrix by an MLP and scales input features by density
estimation. KPconv [33] defines its filter function by a combination of indepen-
dent grids where weights measure the correlation between input and fixed anchor
coordinates. Ummenhofer et al . [35] maps input coordinates within a ball region
to a grid and computes filter by interpolating grid cell values. It is also worth
mentioning that many works have recently adopted Transformer [37] and its
learning techniques in point cloud analysis [17,44,47].

In summary, the aforementioned methods have learned the local features
effectively by applying advanced architectures toward point cloud. However, they
may struggle with the inference of symmetry in input space unless trained with
data augmentation. Some previous works suggest extracting rotation-invariant
features from local space partitioned with reference vectors [45, 46], projecting
features onto learned orientation vectors which respond equivariantly against
rotations [11,23], or building a mathematical framework that averages each result
of the whole model acted by sampled group elements [28]. However, we will focus
on methods that explicitly utilize or extend a convolution with group theory.

2.2 Group convolution on 3D data:

Cohen and Welling present G-CNN [6], which parametrizes filter grids defined
over discretized group space. They also suggest Steerable CNN [10] that retains
the equivariance from symmetric filters defined by the sum of orthogonal basis
representation. These are early works of group convolution using two major
strategies respectively, but they are confined to 2D images and finite groups.

In terms of 3D data, learning group equivariance usually aims to learn SO(3)
or SE(3) equivariance. One of the most representative works is Spherical CNN [7],
which generalizes the Fourier transform and utilizes the convolution theorem to
replace convolution over a spherical surface. Additionally, Weiler et al . [39] and
Cesa et al . [1] extend Steerable CNN to continuous group spaces, SO(3) and
E(n), respectively. While these methods effectively compute convolution equiv-
ariant under continuous group actions, they are limited to handling discretized
formats, such as spherical images or voxels. Tensor Field Network [34] adopts
harmonic analysis similar to the above but available for point clouds, and SE(3)-
Transformer [14] adds a scale dot-product attention on the Tensor Field Network
to rescale value messages. Despite their strict equivariance, the computation of
harmonic bases makes them extremely expensive in time complexity.

In contrast, the following methods utilize group space discretization to 3D
data. Earlier works sample a discrete subset of 3D rotation group [40, 41] or
change the domain to a discretized manifold [5] to approximate 3D-rotation
equivariant convolution. These works, however, are yet applicable only to dis-
cretized data. EPN [2] is one of the representative roto-translation equivariant
networks available for handling point cloud. It leverages a convolution strategy
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of KPConv [33] while factorizing SE(3) group into discrete rotation and trans-
lation groups. E2PN [48] adapts EPN to operate convolution on the quotient
space and use symmetric kernels to enhance both time and memory efficiency.
Since EPN and E2PN conduct convolution on points and explicit integration on
group space, we consider them as baselines for our convolution module.

3 Preliminaries

3.1 Problem setup

The point cloud is defined as P = {(xi, fi)}Ni=1, where xi ∈ R3 is the co-
ordinate and fi = f(xi) is the feature. We denote each sample with an index,
but P is a set without any order among samples. Thus a point cloud model
M : P → Rd is desired to be permutation invariant. Our work mainly addresses
rotation-invariant tasks, which maintain identical labels against 3D rotations
over input: ∀g ∈ SO(3) M(P) = M(gP) = M({(gxi, fi)}Ni=1). In addition, we
assume that the centroid of object, or geometric center, is lying on the origin.
Since a translation symmetry is practically satisfied by shifting point clouds as
their average coordinate values, such assumption is easily expandable to a SE(3)
symmetry. Thus the projection of points in 3D Euclidean space onto the surface
of 3D sphere, or S2, is computed with simple L2 normalization.

3.2 Group theory for extending convolution

A group is a set with a binary operation (G, ·), where the operation is associa-
tive, the identity element exists, and every element is invertible. The significance
of the group comes from that it delineates the system of symmetry, a transforma-
tion that preserves the shape of objects [6]. Such transformation is called action,
which is a function of how the group acts on the object. We use a left action by
default: the action of g · h for g, h ∈ G acts the action of h first.

Proceeding from the general definition, we can decompose a group into sub-
spaces useful to formulate the mathematical framework of convolution in 3D
space. A quotient space is the base space of group G where the subgroup H⊂G
is lied on [9], denoted as G/H. The important property of G/H is that it is
the set of cosets, and coset gH is the set referencing g ∈ G associated by H:
gH = {gh | h ∈ H}. For instance, SO(2) coset for g ∈ SO(3) is the set of
rotations sharing the same rotation axis. Thus a quotient space SO(3)/SO(2)
corresponds to the set of rotation axes and is equivalent to the unit sphere S2.

Moreover, a quotient space can be partitioned into disjoint orbits by another
subgroup H2. One of these orbits is called double coset H2\g/H, and their set is
named double coset space H2\G/H. Back to the example, when H2 is an another
SO(2), the rotation around the Z-axis, then a double coset corresponds to the
arc on the sphere, orthogonal to the Z-axis. These arcs can be specified with
their location on the line linking the north and south poles; thus this line is
equivalent to the double coset space SO(2)\SO(3)/SO(2). See Appendix A.1. for
more strict definitions of the above concepts. We can utilize them to implement
symmetric filters, available for convolution on the quotient space [8].
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4 Method

This section describes the actualization of point convolution equivariant to
the continuous group action. We start off with the mathematical framework to
define SO(3) equivariant convolution on S2. Then we elaborate on the implemen-
tation of CSEConv, such as the approximation of integration and learning a filter
function. Finally, we organize task-specific models with our module, suggesting
classification and place recognition models.

4.1 SO(3) equivariant convolution framework

The group convolution manifests the equivariance toward general transfor-
mations, extended from the translation symmetry of convolution in real space [9].
It can be defined upon a measurable group space and the existence of the in-
tegrable filter functions. Thankfully, the group space of our interest, such as
SO(3), always has a measure called the Haar measure µG(·). The Haar measure
is known to be invariant to group actions and uniquely exists in G [8, 13]. Then
group convolution is defined as Equation 1:

(f ∗ κ)(g) =
∫
h∈G

f(h−1 · g))κ(h) dµG(h), (1)

where f(·) is a feature and κ(·) is a filter.
However, leveraging a group as the coordinate per se is intractable in 3D

data. For example, it needs at least 4 dimensions in the Euclidean space to map
coordinates isomorphically towards SO(3). Thus, the actual data representation,
uniquely embedded in the 3D space, causes a redundant dimension if one naively
maps real coordinates to group space. It implies the integration over the con-
tinuous SO(3) space is intractable, and problematic for our setups. Fortunately,
convolution on group can be rewritten as the equivalent convolution defined on
its quotient space [8, 9, 48] as Equation 2:

(f ∗ κ)(g) =
∫
h∈S2

f(h)κ(s(g)−1h) dh, (2)

where S2 is 2-Sphere, g, h ∈ S2, and s : S2 → SO(3) denotes a section map. By
mapping input point on S2 into SO(3) rotation by section map, κ(·) retains its
property as a function responding to difference upon S2 space. This reformu-
lation is also tractable because the projection of 3D coordinates to a spherical
surface is unambiguous. Nevertheless, Equation 2 is not SO(3) equivariant by
itself. In favor of equivariance, the filter function κ(·) should satisfy the follows:

∀g ∈ S2 ∀h ∈ SO(2) κ(g) = κ(h · g), (3)

which denotes that the filter function is invariant to SO(2) [48]. See the Appendix
A.2 for the detailed proof of the constraint.

We have a geometrical explanation of the Equation 3 in Figures 2a and 2b.
Given two input sets, {g, h} and {g′, h′}, which have identical topology but
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Fig. 2: The depiction of section map transformation in S2 convolution and how
CSEConv actualize the filter invariance. (a) Convolution on S2 transforms point sets
by the inverse of section map, aligning centroids to the reference frame (north pole).
(b) When enlarging the north pole, transformed coordinates, s(g)−1h and s(g′)−1h′,
lie on the arc around the pole axis, or double coset. (c) Our filter function κ(·) varies
only by ϑ, whose domain is equivalent to the line of longitude, or double coset space.
Thus κ(·) responds uniquely to double coset, guaranteeing SO(2) invariance.

different orientations, a section map s(·) aligns only the centroid coordinates
g and g′ to the identical reference point. Neighbor points such as h or h′ are
projected onto the identical double coset, which is bundled by the rotation around
the Z-axis. Thus the filter function should be invariant to SO(2) actions. This
condition will be highlighted later for the filter function design.

4.2 Implementation of CSEConv

This section explains how we employ Equation 2 into CSEConv, capable of
conducting SO(3) equivariant convolution over a set of irregular points.
Approximated integration: A point cloud is a set of discrete and finite sam-
ples per se, where an integration is not applicable without approximating it
with discretized summation. Following the inductive bias of the locality, we only
consider the neighborhood of the input coordinate [12,16]. It is known that inte-
gration over the neighbor region remains equivariant in probability against the
group with Haar measure [12], which validates our approximated convolution on
S2. Then Equation 2 is approximated as follows:

(f ∗ κ)(g) = 1

| Ng|
∑
h∈Ng

f(h) · κ(s(g)−1h), (4)

where Ng is actually determined by the K-nearest neighbors algorithm in the
3D space. Since the neighbors are determined by distances, it remains invariant
under arbitrary rotations: d(x, y) = d(gx, gy), ∀ x, y ∈ S2 ∀g ∈ SO(3) [12]. This
property of invariance extends to the approximated integration 4.

Although we sample neighbors in Euclidean space, the coordinate values, g or
h themselves, should be on S2. Thanks to our assumption in Section 3.1, we can
project them onto S2 by normalizing their coordinate values. The computations
of section map s(·) or filter κ(·) are done with these normalized values.
SO(3) equivariance constraint: We need to restrict the filter to fulfill the
constraint 3 for the SO(3) equivariance, and it can be accomplished by confining
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the domain of kernel functions. As Figure 2 (b), the inverse action of the section
map sends the input element g to the north pole: the rotation around the Z-axis
corresponds to our SO(2). If g ∈ S2 is rotated around Z-axis by γ, its spherical
coordinate becomes (φ+ γ, ϑ). Thus the filter is invariant to SO(2) if we confine
the domain of filter to ϑ as Equation 5:

κ : S2 → Rn : g 7→ κ(ϑg),

s.t. κ : R → Rn, g ≡ (sinϑg cosφg, sinϑg sinφg, cosϑg).
(5)

After all, the SO(3) equivariance of CSEConv originates from the domain of κ(·)
free from SO(2) actions. We have the depiction of our filter in Figure 2c.
Filter learning by neural networks: We exploit the above condition to im-
plement an efficient filter function while preserving the equivariance and the
continuity. Since our filter function should be defined on a continuous ϑ, we
substitute it to a neural network instead of tensor-shaped parameters. Fourier
feature mapping [32] is leveraged to encode coordinate values in ϑ, effective for
capturing high-frequency information in coordinate-based networks and learning
filter functions in CNN [26]. This filter is named κFF(·) and expressed as:

κFF(g; θ) = MLP(FF(ϑg); θ), s.t. FF(ϑ)=[sin(2πWϑ), cos(2πWϑ)], (6)

where W is a frozen parameter initialized from N (0, σ2). FF(·) maps uni-
variate ϑg into multivariate feature vectors, and MLP(·) is a neural network
parametrized by θ. Later, we show this method is more effective in time and
memory complexity than existing methods using grid parameters.
Finally, the implementation of CSEConv can be written as follows:

(f ∗ κFF)(g; θ) =
1

| Ng|
∑
h∈Ng

κFF(s(g)
−1h; θ) · f(h)⊤, (7)

where f(·) is a feature vector in RDin for every neighbor point and κFF(·) maps
coordinate differences to filter matrices in RDout×Din . Thus the output of the
convolution is a feature vector in RDout for an input point. In the next section,
we introduce the architecture of whole task models using CSEConv layers.

4.3 Rotation-invariant CSEConv models

We implement two downstream task models for object classification and re-
trieval with CSEConv. Our models share the encoder hierarchy as Figure 3 before
the downstream task module. During the preprocessing, rotation-invariant local
features are extracted per every point by the projection onto the unit sphere,
while projected S2 points are treated as coordinate values to compute filter
values. These local features and coordinates are propagated to the layers of con-
volution blocks, composed of CSEConv, activation, and batch normalization in
order. The CSEConv layers sample down the number of points, if in need, by far-
thest point sampling and conduct convolution only on sampled points. Finally,
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Fig. 3: The hierarchy of local feature encoder leveraging CSEConv layers. It receives a
point cloud in RN×3 and returns a set of local features in RN×Dout . In this work, only
the distance from the centroid (∥x∥2) is assigned as the initial local feature.

a weight-sharing MLP, adapting implementation of PointNet [29], maps each
local feature into higher dimensional space. These local features are aggregated
along the dimension of points by max-pooling, which outputs a rotation-invariant
global feature to solve downstream tasks.
Point cloud classification: A classification model has a simple classifier archi-
tecture, which consists of linear layers and ReLU activation, after the encoder
hierarchy. It maps a global feature to a logit vector in class dimensions. Lastly, a
softmax layer computes the predicted likelihood of each class and the cross en-
tropy loss is minimized with Adam optimizer and cosine annealing scheduler [22].
Point cloud retrieval: A retrieval model also has a simple MLP to map global
features to the metrizable space, normalizing with L2-norm. The triplet loss is
optimized by Adam and cosine annealing to learn the model, sampling 2 positive
samples and 8 negative samples distanced by Euclidean metric. Meanwhile, we
empirically found that the model diverges at the beginning if the model param-
eter has to learn every parameter from scratch. This was mitigated by utilizing
the encoder from the classification model as the frozen pre-trained model and
only fine-tuning the last MLP to learn a desired metric space for a given task.

5 Experiments

5.1 Analysis on CSEConv

Equivariance error of CSEConv: In this experiment, we compare how much
approximation error occurs from CSEConv when SO(3) actions are acted on
point cloud. Though the mathematical framework guarantees the equivariance
of our model, the implementation is not perfectly equivariant due to the dis-
cretized integration or the locality assumption. This necessitates the verification
of how strictly rotation-equivariant is our module. We adapted the experiment
setups from [7] to prove the robustness of our method against SO(3) actions.
We sampled N = 500 point cloud samples {Pi}Ni=1 and random rotation matri-
ces {Ri}Ni=1 as the dataset. The difference metric ∆ from [7] is also adopted to
measure the equivariance error as follows: ∆ = 1

N

∑N
i=1 std(RiM(Pi)−M(Ri ·

Pi))/std(M(Pi)), where M(·) is an output tensor and the standard deviation
std(·) is computed on whole elements of M(Pi). It measures the variance of out-
put by SO(3) actions while revising the absolute size of the metric identically.
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Fig. 4: The measurement of equivariance error ∆ on rotation-equivariant models. We
also denote the standard deviation of 500 samples composing ∆ on each point as error
bars. The number of points grows exponentially from 64 to 1024, and the number of
layers increases from one to five. Beware that ∆ is log-scaled.

We measured ∆ on CSEConv and baseline rotation-equivariant methods.
Among many works on learning group equivariant representation of point cloud,
we choose methods applicable in layer-wise, including SE(3)-Transformer [14]
(SE3-T), Vector Neurons [11] (VN), EPN [2], and E2PN [48]. Every model is
randomly initialized and its dimension of output feature is configured to 10.
Experiments are conducted by varying the number of points in a point cloud, the
number of layers, and the usage of activation functions, as following 4 situations:

1. Single layer, increasing number of points.
2. Single layer with ReLU, increasing number of points.
3. Increasing number of layers, 256 points.
4. Increasing number of layers with ReLU, 256 points.

As shown in Figure 4, EPN and E2PN show higher equivariance error due
to a group discretization. Conversely, our method maintains comparable error
with strictly equivariant methods (VN, SE3-T) when the number of layers varies,
though the error also has a correlation with the number of sample points. To
confirm that integration approximation and locality assumption are factors in
this tendency, we conduct an ablation experiment on the number of KNN neigh-
bors in Figure 5. It shows that ∆ asymptotically decreases as the neighborhood
size is doubled, supporting the equivariance of CSEConv in probability.
Time and memory complexity of CSEConv: This section compares the
cost of CSEConv with baselines in terms of time and memory consumption. The
experiment gauge the memory and time cost of classification models on Model-
Net40 [43] during the training and evaluation phases. The memory occupation
in GPU and the average number of batches computed per second are measured,
following the identical methods used in [48]. The only difference is that we had
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Table 1: The time and memory efficiency table of
baselines. We experiment with DGCNN [38]-variants of
Vector Neurons (VN) and Frame Averaging [28] (FA).

Models
(Batch Size = 12) Ours SE3-T VN FA EPN E2PN

Memory
(GB)↓

train 3.03 8.50 6.10 15.19 13.40 3.94
test 2.21 0.25 2.00 3.38 6.38 2.44

Speed
(#batch/sec)↑

train 27.46 1.71 4.37 5.09 2.09 8.64
test 51.91 5.75 9.09 12.04 3.30 17.72

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
log2 (Number of Neighbor Points in KNN)

3.70

3.65

3.60

3.55

3.50

3.45

lo
g 1

0

MC Integration Ablation (Number of Points=512)

Fig. 5: The equivariance er-
ror ablation to the number
of neighbor points.

fixed the size of mini-batches to 12 during both training and evaluation. Every
experiment run on a single NVIDIA GeForce RTX 3090 GPU.

The result in Table 1 demonstrates the superior efficiency of CSEConv com-
pared to group equivariant baselines. The memory consumption of CSEConv
is the most efficient during the training phase. Especially, its time complexity
exceeds existing methods multiple times faster. This is possible due to our filter
function being realized as small-sized weight-sharing neural networks instead of
large tensor with gradient operations.

5.2 Object classification experiments

We compare CSEConv with baselines for point cloud analysis through the
ModelNet40 [43] and ScanObjectNN [36] classification tasks, standard bench-
marks experimented in multiple roto-translation equivariant research. Model-
Net40 is composed of synthetic point clouds with 40 classes, and ScanObjectNN,
in contrast, comprises point clouds sampled from real-world scans. During train-
ing, parameters that achieve the best performance in validation under SO(3)
actions are selected for evaluation in every method.
Classification of ModelNet40: Adopting the configuration from [48], we eval-
uate point cloud models in 4 situations whether random SO(3) augmentation
is conducted during the training or test phase. However, we do not augment
point clouds with noise processes such as jittering, translation, and random
dropout. We choose both equivariant, introduced formerly at Section 5.1, and
non-equivariant methods, such as PointNet++ [31], KPConv [33], and Point
Cloud Transformer [17] (PCT), as baselines.

The result of every model and case for ModelNet40 classification task is in
Table 2. The most notable result is that CSEConv outperforms every baseline
when SO(3) augmentation is applied only during at the evaluation. It is apparent
that non-equivariant models suffer drastic degradation in such situations, and
they also undergo a performance decline when augmented with respect to an
aligned evaluation set, as aforementioned in Section 1.

Meanwhile, equivariant methods maintain robust performance under SO3
actions, except for EPN and E2PN. These methods, which discretize the group
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Table 2: The total accuracy (%) of baselines for ModelNet40 classification task. I: no
rotations applied, SO(3): applying random SO(3) rotations.

Augmentation Continuous Group Discrete Group Non-Equivariant

Train/Test Ours VN FA SE3-T EPN E2PN PointNet++ KPConv PCT

I/I 83.79 78.27 82.25 71.60 91.45 91.58 89.13 91.25 91.25
I/SO(3) 83.75 78.27 82.25 71.60 31.08 44.47 9.58 14.56 15.84

SO(3)/I 83.83 78.23 82.01 73.01 86.60 89.47 81.16 84.84 86.39
SO(3)/SO(3) 83.75 78.23 82.01 73.01 86.93 88.58 80.29 83.39 84.20

Table 3: The total accuracy (%) of equivariant baselines for ScanObectNN classifica-
tion task. Same notations in Table 2 are used to designate augmentation conditions.

Equivariance Type Model I/I I/SO(3) SO(3)/I SO(3)/SO(3)

Discrete
Group

EPN 71.87 47.07 74.37 73.37
E2PN 82.70 60.70 78.53 77.03

Continuous
Group

VN 56.92 56.82 59.39 59.39
FA 71.94 71.94 70.05 70.05

SE3-T 59.21 59.21 61.27 61.27
Ours 72.29 72.29 70.40 70.40

space, undergo deterioration over 40pp by SO(3) rotations when augmentation
is not applied. Since they are reported to reach an accuracy over 90% against
rotations sampled from the discretized SO(3) [48], the bias toward discrete group
is inevitable in such methods. In contrast, CSEConv maintains consistent per-
formance in every case thanks to its equivariance. It also achieves the best per-
formance among continuous group equivariant methods, comparable to the ac-
curacy of non-equivariant models trained with SO(3) augmentation.

Classification of ScanObjectNN: This experiment is conducted only with
equivariant methods to compare their scalability on a real-world dataset. We
minimize the difference in model architecture to the one for ModelNet40 exper-
iment, only fine-tuning the model hyperparameter and optimizer configuration.
Though ScanObjectNN provides diverse variants with respect to noisiness, we
only used the OBJ_ONLY variant where only object related points are seg-
mented from the original point cloud scan.

The result in Table 3 is mostly consistent with ModelNet40 experiment,
but the performance gap between baselines narrows down than before. Since the
dataset domain is shifted to noisy real-world and model configurations are not al-
tered much, every model undergoes an accuracy decrease. Nonetheless, CSEConv
still achieves the best performance among continuous group equivariant methods
and reaches second place in non-augmented setup (I/I). These outcomes support
the scalability of our method, proving its potential to be applicable to real-world
rotation-invariant tasks.
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Table 4: The mean average
precision (mAP) of baselines
for ModelNet40 retrieval.
†: mAP from [2], obtained by
augmentation during training.

Models Retrieval (mAP)
Ours 79.66

PointNet++ 70.3†

KPConv 77.5†

EPN 79.7†

Fig. 6: The t-SNE visualization of ModelNet40 fea-
tures before and after mapping into metric space.

(a) (b)

Fig. 7: The visualization of retrieval model performance. (a) The average recall at top-
1 measured per class. (b) The examples of top-2 worst (flower_pot, wardrobe) and
best (airplane, laptop) classes retrieved by ours.

5.3 Object retrieval experiment

We conduct the retrieval task on ModelNet40 by following [2, 43]. First, a
retrieval model maps every point cloud in the test set into metrizable vectors.
Then these vectors are distanced from every other vector, and we retrieve the
top-k closest vectors for each query. While piling metrizable vectors for the eval-
uation, every point cloud is augmented by random SO(3) actions. However, such
augmentation is not applied during the training of our method, in contrast to
the baselines that utilized the augmented dataset. We also visualize features be-
fore and after the last MLP using t-SNE and assess the learned metric space
qualitatively. As shown in Figure 6, the learned metric space vividly separates
features from encoders into clusters, enabling features more metrizable with a
L2 distance.
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The measured mean average precision (mAP) of baselines is in Table 4, which
demonstrates that our method outperforms the non-equivariant methods trained
with the augmentation, reaching the comparable performance to EPN. In Fig-
ure 7a, we also evaluate the average recall at top-1 per every object class. It
implies that the most of performance degradation occurs from a few classes. To
verify such false positive cases, we visualize query and retrieved point clouds
from top-2 best and worst classes in Figure 7b. It reveals that our method pro-
ficiently classifies objects with globally distinct shapes but struggles to learn
vague differences between similar classes, such as flower_pot and vase.

6 Discussions and Limitations

To summarize results in Section 5, CSEConv achieves the decent performance
in rotation-invariant tasks, comparable to non-equivariant methods leveraging
the rotation augmentation. It verifies again the shortcomings of reliance on the
3D rotation augmentation. The proposed method also indicates its superior scal-
ability amidst the adequately equivariant methods thanks to its performance and
exceptional efficiency. Thus we claim that CSEConv has the potential to replace
existing methods in rotation-invariant tasks without any augmentation.

In spite of such scalability, CSEConv also reveals its current limitations. Our
method is relatively deficient in learning features variable to local or subtle ge-
ometries, as shown in Figure 7b. This may explains its insufficient model capacity
compared to group discretization or non-equivariant methods when every data
orientation is biased. Besides, our work only deals with rotation-invariant tasks
so far, since it defines group actions on the feature space as identity for simplicity.
However, it misses other significant rotation-equivariant tasks such as normal or
pose estimations. Manifesting group actions applicable in the arbitrary feature
space could be focal points for future equivariance studies.

7 Conclusion

This work suggests CSEConv, which is a convolution network formulated on
S2 and equivariant towards continuous SO(3). The mathematical structure of
CSEConv is founded on the group theory framework, which provides an impor-
tant constraint to the filter for maintaining SO(3) equivariance. Upon the the-
oretical support, we implement the weight-sharing neural network which maps
coordinate differences in the double coset to filter values. The comparative anal-
yses empirically show that CSEConv is equivariant to continuous SO(3) and
surpasses other equivariant methods with respect to time efficiency. Moreover,
our method achieves the best performance among the methods equivariant to
continuous group, performing equivalently to models exploiting the rotation aug-
mentation in benchmark rotation-invariant tasks. Though it still has drawbacks
in model capacity and task diversity, we propose the prospect of CSEConv in
substituting the reliance on rotation augmentation with our method.
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