
1

Overview

In the appendices below, we first delve deeper into various discussions, along
with additional details around the annotation process of DriveLM-nuScenes &
-CARLA, GVQA metrics, context setting & trajectory tokenization in DriveLM-
Agent, and more ablation results of DriveLM-Agent on DriveLM-nuScenes and
Waymo. Finally, we provide additional results and visualizations that further
complement the findings from the main text.

For readers who want to focus on specific topics, we provide a summary
below:

Appendix A – Motivating Questions

We index a list of “motivating” questions that may arise from reading the
main text and that we expand on further here (e.g., “why adapt general
VLMs to driving”). These questions are open to be explored and thus
our answers here are intuitive and empirical.

Appendix B – DriveLM-nuScenes

We provide the DriveLM-nuScenes dataset composition, introduce the
detailed annotation pipeline and conduct statistics of QA categories.

Appendix C – DriveLM-CARLA

We provide a detailed description of the PDM-Lite expert, composition
of the dataset, how the graph looks, and explain the data generation and
annotation process.

Appendix D – DriveLM-Metrics

We explain the details of the metrics for each task in the GVQA, illus-
trate their differences, and provide the reasons for proposing GPT-score
as the main metric used in the P1−3 VQA tasks.

Appendix E – DriveLM-Agent

We introduce the detailed design of the prompting with context and
the trajectory tokenization, including the differences in context during
training and evaluation, the pattern for the trajectory as a sentence, and
the hyperparameters in the tokenizer.

2

Appendix F – Experiments

We provide more experiments, including the generalization to unseen
objects, effects of more context design on the zero-shot ability, the per-
formance with more conventional VQA metrics and the model efficiency
comparison.

Appendix G – Qualitative Results

We show qualitative examples of the context, questions, and answers
on nuScenes, Waymo, and CARLA. Additionally, we contrast predicted
and ground truth answers together with their SPICE and GPT Score on
nuScenes to provide some intuition for those metrics.

Appendix H – Other Related Work

We provide more related works from two new perspectives. One is reason-
ing over graph structure which is similar to our idea of graph-structure
reasoning, the other is more vision-language benchmarks for autonomous
driving.

3

A Motivating Questions

Q1. In what situations could we expect planning with VLMs to outperform con-
ventional end-to-end autonomous driving?

One of the key challenges of autonomous driving is to generalize to the long-
tail of scenarios, that are rarely encountered but have critical importance. Con-
sidering the large-scale pre-training of VLMs, their acquired knowledge of the
world, and the reasoning ability of the LLM, it is anticipated that planning with
VLMs will work better in situations that are novel or unseen in the context of
driving scenarios but encountered during pre-training in unrelated contexts.

Q2. Why adapt general VLMs to driving rather than adding language inputs to
driving-specific models?

General VLMs benefit from billion-scale pre-training data for vision-language
tasks extracted from the internet, which can be adapted to the driving domain
through fine-tuning on small autonomous driving datasets like DriveLM. Con-
versely, driving-specific models are only pre-trained on small autonomous driving
datasets, and adding language inputs to these with data from outside the self-
driving domain is non-trivial. Combining the advantages of VLMs and driving-
specific models is however an interesting direction to explore.

Q3. Can open-loop evaluation of planning provide meaningful results?
When performing open-loop evaluation, providing the ego history as an input

to the planning module prevents fair comparisons, as this signal alone is sufficient
for achieving low errors on existing benchmarks. DriveLM alleviates this issue by
evaluating key frames, where the intention of the ego vehicle changes, and the ego
history is not strongly indicative of the future behavior or motion. Additionally,
we consider baselines in our analysis that do not input the ego history to the
planning module. Finally, we introduce DriveLM-CARLA as a means to show
closed-loop planning results in the future.

Q4. Why are there currently no closed-loop planning results on CARLA?
Running 4B parameter models at 20 FPS as required by CARLA needs more

engineering effort. This could be solved by using distillation, quantization, and
caching techniques in LLM inference. Another approach would be to execute
only the final motion stage of DriveLM-Agent at 20 FPS, while the other GVQA
stages are executed at a lower frame rate.

Q5. Is DriveLM-Agent efficient enough to be applicable to real-world autonomous
driving?

We comment on the runtime of DriveLM-Agent in Table 5 in the main paper.
Without any optimization, the approach is around 1 order of magnitude slower
than UniAD. However, with the optimizations proposed for closed-loop results on
CARLA (see Q4), practical applications of VLMs in driving should be possible.

4

Q6. What is the trade-off between long inference time and generalization?
LLMs have become orders of magnitude faster in the last years as they are a

general topic of broad interest, e.g. [52]. Similarly, recent works show BLIP-2 can
be run 40% faster while maintaining performance [40]. Furthermore, most AD
research begins with systems that are not real-time, which are later optimized
by practitioners. We admit that runtime efficiency is a limitation of DriveLM
but we hope that the rapid progress in orthogonal research can alleviate this
issue, which is out of the scope of our project.

Q7. Why is VQA more suited than alternative techniques to train internet-
scale models (such as generative modeling) for the downstream application of
autonomous driving?

Both perception and planning in driving require reasoning and involve zero-
shot generalization. VLMs potentially have the reasoning ability inherited from
LLMs, making VQA a promising direction for bringing the benefits of web-scale
training to autonomous driving.

Q8. Do today’s VLMs understand and reason about the visual world as well as
LLMs understand text-based worlds?

This is not known but deserves to be explored. VLMs approach the problem of
generalization in a data-driven way, which has been proved successful repeatedly
on other tasks.

Q9. Why does the proposed graph reasoning scheme not provide very strong
improvements in VQA?

It is possible that the simple prompting scheme, relatively small base VLMs,
or insufficiently strong logical dependencies in the dataset (or a combination of
these factors) contribute to the lack of major improvements. DriveLM-CARLA
provides a platform to carefully study these factors and inform the annotation
of future datasets for GVQA.

Q10. What questions should be asked when collecting DriveLM?
Determining the right questions is a critical aspect of the DriveLM system.

We are unable to recommend a detailed protocol for this in our work, which
is a pioneering study for driving with VLMs. This relies on domain expertise,
which we aim to address in future work. See Table 3 in the main paper for a
question-wise analysis of our chosen protocol.

Q11. Is generalization in automobiles an oversold topic?
Driving scenarios predominantly consist of vehicles, pedestrians, and cyclists.

However, real-world AD is a safety-critical application that must handle the long
tail of rare objects to avoid accidents in commercial deployment [8]. Furthermore,
generalization to novel objects is an active and growing research field as shown
in [29, 55]. While it is true that most of the objects in autonomous driving are

5

limited, the tiny percentage of rare objects are in fact the main existing barrier
to the commercialization of AD, making generalization an important feature.

Q12. Why not use video inputs?

It has been observed that in AD multi-frame inputs do not always lead to
improved performance due to causal confusion [48], motivating the use of single
frames in several prior works [20, 51]. However, we agree that in the long term,
multi-frame models are desirable. As a proof of concept, we provide the results
for one (adapted from LLaMA-Adapter-V2 [13]) in Table 8. Multi-frame inputs
give a slight improvement.

Q13. What is the technical novelty in this paper?

The young field of driving with language still lacks a standardized dataset,
task and evaluation framework. Our paper fills this gap. We believe that these are
as valuable as proposing a new method. Therefore, we do not make any claims
regarding algorithmic novelty, intentionally constructing simple baselines. Our
technical novelty lies in the formulation of the task and preparation of data
suitable for adapting general VLMs to the driving application, which we show
to have promising results even in combination with existing models.

B DriveLM-nuScenes

In this section, we introduce the details of DriveLM-nuScenes, including the
dataset composition, collection methodology, and statistics.

B.1 Dataset Composition

DriveLM-nuScenes comprises a training set of 4072 frames and a valida-
tion set of 799 frames, consisting of scene-level descriptions and frame-level
QA accompanied by 2D bounding boxes within multi-view images from the
nuScenes dataset. The scene-level description delineates the behavior of the ego
vehicle throughout the entire video clip. The frame-level QA encompasses three
distinct categories: perception, prediction, and planning.

– Perception involves queries related to the thorough examination of the
entire frame. Apart from several questions in this question set that are man-
ually annotated, we design prompts to generate questions about the obser-
vational facets of objects within the scene, leveraging ground truth from
nuScenes [4] and OpenLane-V2 [46].

– Prediction encompasses a series of inquiries regarding the projection of the
forthcoming state of key objects and the ego vehicle in the current frame,
and the underlying reasoning process behind the prediction. Because the
predictions are intricate and challenging, we manually annotate the answers.

6

– Planning contains questions related to planning subsequent actions of the
ego vehicle in the current frame. As “Planning” is the same challenging as
“prediction”, we design the prompt for the reasoning process and manually
annotate the answers to the questions.

For the key objects referred to in the QA, we encode them as c tags in the
format <c, CAM , x, y>, where c is the identifier, CAM indicates the camera
where the object’s center point is situated, and x, y represent the horizontal
and vertical coordinates of the 2D bounding box in the respective camera’s
coordinate system. We also provide a dictionary in each key frame, recording
more basic information about the key objects such as the size of the bounding
box, the category, the moving state, and the visual description. The overview of
data organization forms is shown in Fig. 1.

After the ego vehicle turned right at the intersection, it proceeded along the main
road, eventually coming to a halt and patiently waiting alongside the black vehicle.

Scene-level Description

Perception:
Q: What are the important objects in the current scene?
A: There is a moving car to the front left of the ego car/…

The ids of these objects are <c1,CAM_FRONT_LEFT,873.4,665.1>/…
One of the key frames.

Frame-level QA

Prediction:
Q: Would <c3,CAM_FRONT,838.3,609.2> be in the moving direction of the ego
vehicle?
A: Yes.
Q: Based on the observations of <c2,CAM_BACK,854.2,571.7>, what are
possible actions to be taken by <c3,CAM_FRONT,838.3,609.2>? What is the
reason?
A: The action is to do nothing, the reason is that there is no safety issue.

Planning:
Q: What are safe actions to take for the ego vehicle?
A: Brake gently to a stop.

Fig. 1: Overall Composition of DriveLM-nuScenes. The dataset comprises scene-
level descriptions and frame-level QA, which can be divided into three parts: Perception,
Prediction, and Planning. Objects are encoded using c tags, which contain identifiers,
camera affiliations, and center coordinates of its 2D bounding box in the corresponding
camera frame.

B.2 Collection Methodology

During the annotation process, we employ individuals with driving experience
for the labeling task. We provide annotators with the stitched results from the
six cameras of nuScenes as source data. As shown in Fig. 2 (left), we divide
the annotation process into three steps: selecting key frames from video clips,
choosing key objects within these key frames, and subsequently annotating the
frame-level QAs in the key frames. Following this, we conduct multiple rounds
of quality checks to ensure the data reliability and perform post-processing pro-
cedures on the qualified data as shown in Fig. 2 (right). The specific details of
this pipeline will be introduced below.
Key Frame Selection. In this process, we ask annotators to review the en-
tire video clip to pinpoint key frames rich in scene information and potentially
indicative of future state changes. Simultaneously, annotators are instructed to

7

Each Video

Stitch
cameras

Multi-view video clip

Frame-level QA pairs

Scene-level description

A batch of videos

Selected key frames/objects

Adjust QA

Each Video

Original version GPT augmented version

Key frame
with pre-annotated boxes

The ego vehicle is riving
in a factory area with
several parked cars…

Scene-level description

Key frame
with key objects

Open-ended questions
Importance ranking/Motion prediction

Factual questions
Moving states/Occurrence…

Context

Key
Objects

Frame level QA Pairs
Rule-base generation from GT of nuScenesHuman annotated

Step 1

Step 3

Step 2

Quality Check

Manually Annotated Data Rule-based Generated Data

Annotated Data

DriveLM-nuScenes

Postprocess

Sample 10%

Key frames

Fig. 2: (Left) Pipeline of the three-steps annotation process. For each video, we
ask the annotators to annotate the key frames, key objects, and QA attributes step by
step. (Right) The quality check and post-processing progress. We divided the
annotated data into batches, where each batch contains 8 video clips and their related
annotations. We conduct rigorous quality checks, and after the post-processing, we
finally get two versions of our DriveLM-nuScenes dataset.

label the ego vehicle’s behavior throughout the video clip. This segment serves
as the foundation for our scene-level description.
Key Object Selection. In this annotation step, we instruct annotators to
identify objects in key frames that are relevant to the ego vehicle’s driving,
denoted as key objects. To ensure accuracy, we provide pre-annotated bounding
boxes based on ground truth categories from nuScenes [4]. Annotators also have
the flexibility to designate objects not present in the ground truth as key objects
if they are deemed significant.
QA Labeling. In the QA labeling process, we have two sets of questions, factual
questions and open-ended questions. For the factual questions, we generate the
answers with a rule-based method. For the open-ended questions, we instruct
annotators to manually annotate the meticulously designed questions. Options
are provided for most manually annotated questions, and we include an "Other
- Fill in the Blank" option for answer choices in such cases to ensure flexibility.
We have also incorporated free-form questions, allowing annotators to generate
their own inquiries about the current frame.
Quality Check. We prioritize the quality of our data. In addition to establishing
clear criteria and implementing autonomic checking strategies at each annotation
step, we conduct rigorous manual quality checks. We organize the final data into
batches, with each batch comprising 8 video clips, along with their scene-level
descriptions, key frames with key objects selected from the 8 video clips, and
corresponding QA pairs for each key frame. We provide explicit standards to
quality check inspectors, instructing them to assess data eligibility based on these
criteria. For manually annotated data, if the accuracy of the manual annotations
falls below expectations for a particular batch, we compile feedback on the issues
encountered and request annotators to re-annotate the entire batch. For data
generated from ground truth, we instruct quality inspectors to manually adjust
the inconsistent or unreasonable QA pairs.
Post Processing. Since our annotators are Chinese speakers, we need to trans-
late the labeled data into English after obtaining it. Initially, we establish map-

8

pings between Chinese and English using a vocabulary. For texts that are not
successfully mapped, we utilize GPT-3.5 for translation, and then perform man-
ual checks and corrections on the GPT outputs. We also provide a version aug-
mented by GPT-3.5, utilizing the prompt as shown in Table 1.

Messages = [

{ "role": "system", "content": f""" You are an English improver.
""" },

{ "role": "user", "content": f""" I have a question and answer
that I need you to help me modify and embellish, please make a few
simple changes to the content in written language and keep the meaning
same, you only need to answer the changes to: {QA}""" }]

Table 1: Prompt for GPT-re�ned version of DriveLM-nuScenes . We try 50
di�erent prompt and select this pattern as the �nal one to do the re�nement.

Fig. 3: Question Distribution of Perception , Prediction and Planning: The
questions in our dataset cover various speci�c aspects of driving tasks, generally cate-
gorized into perception, prediction, and planning. Most of these questions are annotated
by human annotators, making this a suitable proxy for human-like driving reasoning.

B.3 Statistics and Facts

In this section, we conduct a distribution analysis of our DriveLM-nuScenes QA
categories at both the task level and object level. Additionally, for the task level,
we provide the templates for all our QA under this classi�cation criterion. The
results indicate the richness of our QA categories, covering various aspects of
autonomous driving. Moreover, the abundance of logical relationships is su�cient
to construct a graph-structured QA.
Task level. Our DriveLM-nuScenes orchestrates a benchmark that encompasses
various aspects of autonomous driving, connecting the whole stages of the human
driving logic. To delve deeper into this aspect, we present the detailed QA types

9

Fig. 4: The distribution of question types according to di�erent tasks in
DriveLM-nuScenes. We categorize questions into perception, prediction, and plan-
ning tasks, each further subdivided into more speci�c question types.

distribution at task level in Fig. 4. For a better understanding, we also provide
examples of QA templates in all of the P3 stages in Table 2.

Perception

Surrounding Objects Identify

Q: Please describe the current scene.
A: There are two moving cars behind the ego car and two barriers in front
of it.

Q: What are objects to the front left/back right/... of the ego car?
A: There are two barriers to the front left of the ego car.

Q: Are there tra�c cones/moving cars/... to the front right/back left/...
of the ego car?
A: No.

Tra�c Elements Identify

Q: Is there any tra�c element in the front view?
A: Yes, there are some tra�c elements in the front view.

Q: Identify all the tra�c elements in the front view, categorize them,
determine their status, and predict the bounding box around each one.
The output should be a list formatted as (c, s, x1, y1, x2, y2), where c
represents the category, s denotes the status, and x1, y1, x2, y2 are the
o�sets of the top-left and bottom-right corners of the box relative to the
center point.
A: There are three tra�c elements in the front view. The information of
these tra�c elements are [(road sign, go straight, 907.58, 590.67, 992.54,
630.95)...].

Important Objects Identify

Q: What are the important objects in the current scene? Those objects
will be considered for the future reasoning and driving decision.

10

A: There is a parked truck to the back of the ego car... The ids of these
objects are <c1,CAM_BACK,827.5,484.2>...
Q: What is the relative positioning of the important objects in the current
scene?
A: <c3,CAM_FRONT,689.2,527.5> is to the front of
<c1,CAM_BACK,827.5,484.2>...
Q: Which lanes are each important object on in the scene?
A: <c2,CAM_FRONT,820.8,473.3> is on the ego lane...
Visual Description
Q: What is the visual description of
<c2,CAM_FRONT_LEFT,415.8,580.8>/...?
A: Pedestrian riding a bicycle.
Motion State
Q: What is the status of the cars/pedestrians/... that are to the front/front
right/... of the ego car?
A: Many cars are parked.
Q: What is the observed status of object
<c1,CAM_FRONT,920.0,509.2>/...?
A: Moving.
Q: What is the moving status of object
<c1,CAM_FRONT,920.0,509.2>/...?
A: Going ahead.
Prediction
Visual Occlusion
Q: Which object is most likely to be occluded by
<c1,CAM_FRONT,707.5,472.5>/...? Would this object a�ect the
ego vehicle? Based on this object, what action of the ego vehicle is
dangerous?
A: The object in front of <c1,CAM_FRONT,840.8,507.5>, yes, acceler-
ating forward.
Logical Sequence
Q: What object should the ego vehicle notice �rst when the ego vehicle
is getting to the next possible location? What is the state of the object
that is �rst noticed by the ego vehicle and what action should the ego
vehicle take? What object should the ego vehicle notice second when the
ego vehicle is getting to the next possible location? What is the state of
the object perceived by the ego vehicle as second and what action should
the ego vehicle take? What object should the ego vehicle notice third?
What is the state of the object perceived by the ego vehicle as third and
what action should the ego vehicle take?
A: Firstly notice that <c2,CAM_FRONT,514.7,462.2>, the state of it is
tra�c sign, so the ego vehicle should slow down and go ahead. Secondly

11

notice that <c3,CAM_FRONT,950.3,613.1>, the state of it is tra�c sign,
so the ego vehicle should slow down and go ahead. Thirdly notice that
<c1,CAM_FRONT,707.5,472.5>, the state of it is going ahead, so the
ego vehicle should slow down and go ahead.

Motion Prediction

Q: Would <c1,CAM_FRONT,920.0,509.2>/... be in the moving direction
of the ego vehicle?
A: Yes.

Q: What is the future state of <c1,CAM_FRONT,920.0,509.2>/...?
A: Keep going straight.

Q: Will <c2,CAM_FRONT,1223.3,598.3>/... be in the moving direction
of <c1,CAM_BACK,514.2,503.3>/...?
A: No.

Object Interaction

Q: Will <c2,CAM_FRONT,1223.3,598.3>/... change its motion state
based on <c1,CAM_BACK,514.2,503.3>/...?
A: No.

Q: Based on the observations of <c1,CAM_BACK,514.2,503.3>/..., what
are possible actions to be taken by <c2,CAM_FRONT,1223.3,598.3>/...?
What is the reason?
A: The action is to keep going at the same speed, the reason is there is
no safety issue.

Q: Based on the observation of <c4,CAM_FRONT,1071.2,346.2>/...,
what actions may <c1,CAM_FRONT,1126.7,515.0>/... take?
A: The action is to keep going at the same speed, the reason is there is
no safety issue.

Possible Attention

Q: In this scenario, what object is most likely to consider
<c3,CAM_FRONT,400.1,717.2>/...?
A: The ego vehicle.

Q: Would <c1,CAM_BACK,514.2,503.3>/... take
<c3,CAM_FRONT,400.1,717.2>/... into account?
A: No.

Q: What object would consider <c1,CAM_FRONT,985.8,516.7>/... to
be most relevant to its decision?
A: The ego vehicle.

Q: Except for the ego vehicle, what object would consider
<c1,CAM_FRONT,985.8,516.7>/... to be most relevant to its decision?
A: <c2,CAM_FRONT,1217.5,511.7>.

Signal Meaning

Q: What does <c2,CAM_BACK_LEFT,400.8,654.2>/... mean?

12

A: No entry.

Q: What kind of tra�c sign is <c2,CAM_BACK_LEFT,400.8,654.2>/...?
A: Tra�c cone.

Planning

Safe/Unsafe Action

Q: In this scenario, what are safe actions to take for the ego vehicle?
A: Decelerate gradually without braking, keep going at the same speed.

Q: In this scenario, what are dangerous actions to take for the ego vehicle?
A: Accelerate and go ahead, brake suddenly, drive backward, turn right.
Importance Ranking

Q: What is the priority of the objects that the ego vehicle should consider?
(in descending order)
A: <c2,CAM_FRONT,514.7,462.2>, <c3,CAM_FRONT,950.3,613.1>,
<c1,CAM_FRONT,707.5,472.5>.
Goal Action

Q: What is the target action of the ego vehicle?
A: Go straight.

Planning and Reasoning

Q: What actions could the ego vehicle take based on
<c1,CAM_FRONT,920.0,509.2>/...? Why take this action and what's
the probability?
A: The action is to decelerate gradually without braking, the reason is to
keep a safe distance, high.

Q: Based on <c3,CAM_FRONT,1591.1,441.8>/... in this scene, what is
the most possible action of the ego vehicle?
A: Decelerate gradually without braking.

Possible Collision

Q: What is the probability of colliding with
<c1,CAM_FRONT,920.0,509.2>/... after the ego vehicle goes straight
and keeps the same speed/accelerates and goes straight/...?
A: Low.

Q: What actions taken by the ego vehicle can lead to a collision with
<c1,CAM_FRONT,920.0,509.2>/...?
A: Accelerate and go straight.

Ego Attention

Q: What is the tra�c signal that the ego vehicle should pay attention to?
A: None.

Q: Is <c1,CAM_FRONT,920.0,509.2>/... an object that the ego vehicle
should consider in the current scene?
A: Yes.

13

Q: Is it necessary for the ego vehicle to take
<c3,CAM_FRONT,400.1,717.2>/... into account?
A: Yes.
Free-form QA/Comment

Q: What impact does this situation have on driving vehicles?
A: The road scene is complex, please slow down.

Q: What's your comment on this scene?
A: Pedestrians at the intersection, please be careful and give way.

...

Table 2: Question templates of DriveLM-nuScenes at task level. The cate-
gories in the table correspond to those in Fig. 4.

Object level. We also conduct some statistics at the object level since QAs in
our DriveLM-nuScenes revolve around key objects. Fig. 5 (left) shows the distri-
bution of our key object types. Given the substantial di�erences in questions
associated with tra�c elements compared to other categories, we separately
conduct statistics for QA types related to tra�c elements and the remaining
categories. The results are depicted in Fig. 5 (right).

Fig. 5: (Left) The distribution of key objects in DriveLM-nuScenes. The sub-
categories are extracted from the visual description. (Right) The distribution of
question types related to di�erent key objects in DriveLM-nuScenes. Since
the questions associated with tra�c elements di�er signi�cantly from other categories,
we separately conduct statistics for QA types related to tra�c elements and the re-
maining categories.

C DriveLM-CARLA

In this section, we introduce the details of DriveLM-CARLA, including the
dataset composition and collection methodology.

14

C.1 Dataset Composition

DriveLM-CARLA consists of automatically generated frame-level question-answer
pairs that are structured with an interconnected graph. The graph structure can
be seen in Fig. 6. In the current version, the dataset consists of questions about
the road layout, stop signs, tra�c lights, and vehicles. In future versions, the
dataset can be extended to more categories like static objects, weather, tra�c
signs, and others.

Utilizing the driving simulator CARLA for the data generation process allows
for scalable annotations and data without any manual e�ort involved. Addition-
ally, the dataset supports a variety of sensor outputs from CARLA, including
semantic segmentation, depth map, LiDAR, and others, which can be employed
to train di�erent network architectures. Each question within the graph is de-
signed in a way to facilitate situational reasoning, which could be instrumental
in answering subsequent questions. As with DriveLM-nuScenes, each question
can be categorized into perception, prediction, or planning. For each QA-pair,
besides the corresponding question and answer, we also save the object ID in
case the QA-pair is about an object. This ID is consistent over time, enabling
object tracking and temporal reasoning in future studies. In addition, relation-
ships to parent and child questions within the graph are documented to allow
e�cient traversal of the graph.

C.2 Expert Algorithm: PDM-Lite

While previous CARLA expert algorithms like the privileged rule-based expert
used by TransFuser++ [21] can only solve the scenarios implemented in CARLA
Leaderboard 1.0, PDM-Lite [2] is designed to tackle all 38 scenarios present in
Leaderboard 2.0. It consists of six distinct stages, summarized in Fig. 7.
Path Planning. First, PDM-Lite creates a dense path in the form of spatially
equidistant points using an A* planning algorithm, given sparse target points
(up to 200m apart) by the leaderboard module. The plan is based on the HD
map of the town, provided by CARLA. Furthermore, we add information such
as speed limits and distances to the next tra�c light/stop sign to di�erent sec-
tions of this route that is to be traversed. To handle scenarios that require
leaving the default path (e.g. Accident, ConstructionObstacle, ParkedObstacle,
VehicleOpensDoor, AccidentTwoWays, ConstructionObstacleTwoWays, Parke-
dObstacleTwoWays, VehicleOpensDoorTwoWays, YieldToEmergencyVehicle), a
short segment of the route where the scenario will be spawned is shifted laterally
towards an adjacent lane.
Agent Forecasting. PDM-Lite generates a forecast of dynamic agents for a
horizon of 2s with a temporal resolution of 20Hz. Since we do not know other
actors' paths and controls in advance, we assume they maintain their previous
controls and apply similar ones in the near future. Using a kinematic bicycle
model with parameters taken from [5], PDM-Lite forecasts other agents' motion
using this constant action assumption, similar to the expert of [21]. We only
consider actors closer than 50m to the ego agent for forecasting.

15

Fig. 6: Detailed �ow of CARLA graph. We show the full graph of DriveLM-
CARLA. The graph consists of questions and answers about the road layout, tra�c
lights, stop signs, and vehicles.

IDM Target Speed. We generate a target speed proposal using the Intelligent
Driver Model [44]. Speci�cally, while the original IDM selects only one vehicle
as a leading actor, we instead iteratively apply it to all vehicles, pedestrians,
non-green tra�c lights, and stop signs intersecting the path ahead of the ego
vehicle. Once the leading actors are selected, we determine a target speed for
each actor using the parameters summarized in Table 3. We use the minimum
speed value obtained as the �nal target speed proposal for that timestep.
Simulation. We simulate the trajectory with the proposed target speed for 2s
at 20Hz by alternatively applying the longitudinal controller (described in the
following) and a kinematic bicycle model. Thereby, the proposal is converted
into an actual expected sequence of ego-vehicle bounding boxes in closed-loop.
Scoring. Having forecasted the bounding boxes for all actors, we can now check
for bounding box intersections between the simulated ego vehicle and other vehi-
cles. We score the ego vehicle's motion accordingly: if we detect an intersection
with a non-leading and non-rear-end vehicle, we reject the IDM target speed
proposal, and instead set the target speed to zero.
Controllers. Controlling the vehicle requires three values: steer, throttle, and
brake. The steering value can be directly estimated from the ego vehicle's lo-
cation, velocity, and path. We use a lateral PID controller for doing so, similar

16

Table 3: Target Speed Proposal by IDM. PDM-Lite uses IDM to select a target
speed. The parameters for the desired net distance and desired time headway di�er
with respect to the type of the leading actor: vehicles, bicycles / stop signs / tra�c
lights / walkers / static objects (e.g. construction signs).

Parameter Value Description

v0 0:72 vlane Desired velocity. 72% of the speed limit
s0 4:0/ 2:0/ 6:0/ 4:0/ 2:0 m Desired net distance to the leading agent
T 0:25/ 0:1/ 0:1/ 0:25/ 0:1 s Desired time headway to leading agent

a 24:0 ms� 2 Maximum acceleration of ego
bv � 6:02 8:7 ms� 2 Maximum deceleration of ego if v � 6:02
bv> 6:02 3:72 ms� 2 Maximum deceleration of ego if v > 6:02
� 4.0 Acceleration exponent

to [21], which minimizes the angle to a selected point along the path ahead. For
the throttle and brake predictions, we employ a linear regression model using
features extracted based on the current speed and target speed.
Results. The performance of PDM-Lite is evaluated on the 20 o�cial valida-
tion routes of Leaderboard 2.0. The results of three di�erent seed evaluations are
presented in Table 4. Routes 0-9 and 10-19 are identical except for weather con-
ditions, providing an additional measure of performance variance. Since PDM-
Lite utilizes privileged information, its variance in performance is not due to
the di�ering weather parameters, but rather the random initialization of the
surrounding tra�c.

C.3 Collection Methodology

In this section, we provide details about the data collection and the annotation
process.
Simulator settings. We utilize the CARLA Simulator (version 0.9.14) with
Leaderboard 2.0 [10] to generate our dataset. Leaderboard 2.0 introduces two
new large maps along with a suite of new scenarios, enhancing the diversity
of the training and evaluation environments. Town 12 serves as the training

Fig. 7: PDM-Lite . Our new planner which solves all 38 scenarios of CARLA Leader-
board 2.0 has 6 stages, detailed in Section C.2.

17

Table 4: PDM-Lite on CARLA O�cial Validation Routes . We show the driving
performance for each route as well as the average and their standard deviations for a
total of 3 seeds. Routes 0-9 are identical to routes 10-19, except for the weather (which
is ignored by PDM-Lite) and tra�c behaviors. Routes 3 and 13 always crash in our
setup, hence we assume the lowest possible scores.

Route Driving Score Route Completion Infraction Score

0 34.9 � 26:3 100.0 � 0:0 0.35 � 0:26
1 51.7 � 14:4 100.0 � 0:0 0.52 � 0:14
2 60.5 � 39:2 100.0 � 0:0 0.61 � 0:39
3 0.0 � 0:0 0.0 � 0:0 0.00 � 0:00
4 54.4 � 24:2 100.0 � 0:0 0.54 � 0:24
5 35.3 � 11:1 68.8 � 0:0 0.51 � 0:16
6 100.0 � 0:0 100.0 � 0:0 1.00 � 0:00
7 9.6 � 1:8 85.9 � 0:1 0.11 � 0:02
8 52.5 � 30:2 100.0 � 0:0 0.53 � 0:30
9 32.0 � 24:2 100.0 � 0:0 0.32 � 0:24

10 18.3 � 20:9 100.0 � 0:0 0.18 � 0:21
11 25.4 � 30:1 100.0 � 0:0 0.25 � 0:30
12 79.6 � 17:7 100.0 � 0:0 0.80 � 0:18
13 0.0 � 0:0 0.0 � 0:0 0.00 � 0:00
14 68.0 � 0:4 100.0 � 0:0 0.68 � 0:00
15 31.5 � 15:6 68.8 � 0:0 0.46 � 0:23
16 73.3 � 23:1 100.0 � 0:0 0.73 � 0:23
17 7.2 � 9:2 95.3 � 8:2 0.08 � 0:11
18 52.5 � 30:2 100.0 � 0:0 0.53 � 0:30
19 100.0 � 0:0 100.0 � 0:0 1.00 � 0:00

Avg. 44.3 � 0:7 85.9 � 0:4 0.46 � 0:01

18

town, while Town 13 is reserved for evaluation. Each town covers an area of 10
x 10 square kilometers, encompassing varied environments such as rural, res-
idential, and urban landscapes to replicate real-world driving conditions. The
CARLA team provides a total of 90 training routes, spanning 780.6 kilometers,
and 20 evaluation routes, measuring 247.6 kilometers. Every route incorporates
multiple driving scenarios. We segmented these routes into shorter segments,
approximately 150 meters in length and �lter routes that start and end at the
same position. The tra�c manager within Leaderboard 2.0 initializes random
background tra�c around the ego vehicle comprised exclusively of 'car' enti-
ties. To enrich the dataset with greater diversity, we introduce additional vehicle
classes including 'trucks', 'vans', 'bicycles', and 'motorcycles'. Moreover, we im-
plemented randomized weather con�gurations for each training and evaluation
route to mimic realistic driving conditions. However, night-time settings were
excluded from our study due to the inadequate illumination in certain map re-
gions. Low-light conditions signi�cantly impede the correctness of the automatic
labeling process since it is hard to obtain information about the visibility of
certain objects in the image.

Data collection. We execute the expert on each of the routes and gather a
comprehensive set of sensor data. The sensor data includes: (1)RGB image,
(2) LiDAR point cloud , (3) semantic segmentation images, (4) depth maps, (5)
Bird's Eye View (BEV) semantic segmentation. While DriveLM-Agent leverages
only RGB images, retraining TransFuser++ needs the additional data for the
auxiliary tasks. In addition, we extract privileged information from the simulator
about the status of the static and dynamic objects in the scene, as follows:

� Ego vehicle:3D bounding box, speed, brake, id
� Other vehicles:3D bounding box, number of lidar points inside BB, distance

to ego, speed, steer, throttle, brake, id, color, vehicle type, number of wheels,
tra�c light state, lane information (i.e., on which road and lane is the vehicle
driving), vehicle in junction or not, distance to next junction, next high-level
command

� Pedestrians: 3D bounding box, number of lidar points inside BB, gender,
age, distance to ego, speed, id, lane information

� Tra�c lights: 3D bounding box, distance to ego, state, a�ects ego vehicle
� Stop signs:3D bounding box, distance to ego, a�ects ego vehicle
� Static cars (parked cars): 3D bounding box, lane information
� Landmarks (e.g., speed signs):3D bounding box, distance to ego, id, text,

value
� Weather: weather parameters

Language labels. Based on the information we extract from the simulator we
create questions and answers with hand-crafted sentence templates. For more lin-
guistic diversity and to prevent over�tting to those sentence structures those sen-
tences could be further augmented with current state-of-the-art language models
like GPT-4. However, in this work, we use a version of the dataset that is not
augmented.

19

D DriveLM-Metrics

In this section, we o�er a detailed introduction to DriveLM-Metrics. DriveLM-
Metrics can be broadly categorized into three parts:P1� 3 VQA Metrics, Behavior
Task Metrics, and Motion Task Metrics.

D.1 P1� 3 VQA Metrics

We assess the performance ofP1� 3 using common VQA metrics, and we intro-
duce the GPT score for a more semantically comprehensive evaluation of our
QA results. Additionally, given the graph structure of our QA, we propose the
Completenessscore to provide a thorough assessment.

BLEU [35] measures the similarity between a generated text and one or more
reference texts. It operates by comparing n-grams in the generated text to those
in the reference texts, with higher precision indicating a better match. However,
the BLEU score exhibits insensitivity to semantic nuances and variations in word
order.

ROUGE_L [31] calculates scores with the longest common sub-sequence of the
model outputs and the reference answers. Similar to the BLEU metric, ROUGE
is used to assess the level of matching between generated results and standard
references, with the key di�erence being that ROUGE is based on recall.

METEOR [28] takes into account precision, recall, stemming, synonymy, stem-
ming, and word order. It establishes alignment between model outputs and refer-
ences, computes the 1-gram matching between them, and then applies penalties
based on chunk blocks, providing a more nuanced evaluation.

CIDEr [45] combines elements from BLEU and vector space models. The un-
derlying concept involves treating each sentence as a document, calculating its
n-gram TF-IDF vector, and using cosine similarity to measure the semantic con-
sistency between candidate and reference sentences. CIDEr captures matches
between n-grams of di�erent lengths and di�erentiates the importance of vari-
ous n-grams through TF-IDF weighting.

SPICE [1] �rst parses the text into a syntactic dependency tree using Proba-
bilistic Context-Free Grammar [22], then maps the dependency tree into a scene
graph in a rule-based manner. The scene graph describes the objects, attributes,
and their relationship in the original text, and the SPICE score is computed as
the F-score of the generated scene graphs from prediction and ground truth.

GPT Score is a metric provided by ChatGPT. Traditional metrics mainly as-
sess word-level performance and may not capture semantic nuances, potentially
yielding unexpected evaluation outcomes. Leveraging ChatGPT's robust rea-
soning capabilities, we employ it to gauge prediction quality and derive a more
rational score. ChatGPT is prompted to assign a numerical score between 0 and

20

100, with higher scores indicative of enhanced prediction accuracy. The detailed
prompt for GPT score evaluation is shown in Table 5.

Messages = [

{ "role": "system", "content": f""" An evaluator who rates my an-
swer based on the correct answer.""" },

{ "role": "user", "content": f""" Rate my answer based on the
correct answer out of 100, with higher scores indicating that the answer
is closer to the correct answer, and you should be accurate to single digits
like 62, 78, 41, etc. This is the correct answer: {GT}. This is my answer:
{ Pred} . """}]

Table 5: Prompt for GPT score. This di�ers from the prompt used in
DriveGPT4 [54], but the resulting score is similar.

Completeness provides a score that accounts for how many ground truth ques-
tions are correctly answered associated with a frame. For each QA, if the score of
the predicted answer is above a threshold, then this QA is considered �correctly
answered� and is a correct prediction, otherwise an incorrect prediction. We then
calculate the accuracy, which is the ratio of the number of correct predictions to
the total number of predictions. In our setting, we utilize the SPICE score and
set the threshold at 0.5.

D.2 Behavior Task Metrics

We evaluate behavior predictions by classi�cation accuracy, along with a break-
down of the overall accuracy into its steering and speed components.
Classi�cation Accuracy is the metric we use to evaluate Behavior Prediction
Task, comprisingaccuracy of behavior, behavior speed, and behavior steer. Specif-
ically, the ground truth of the ego vehicle future trajectory is a set of N points
with coordinates (x; y) under the bird's-eye-view, noted asf (x0; y0); (x1; y1); :::; (xN ; yN)g.
Each point denotes the o�set of the future position to the current position by a
number of �xed interval times. Then, the distance for x; y at each time interval
is independently computed as:

f x; ygdist = ((f x; yg1 � f x; yg0); :::; (f x; ygN � f x; ygN � 1)) (1)

The mean of xdist and ydist are mapped to one of the prede�ned bins, where
each bin corresponds to a category in either speed or steering, noted asBspeed

and Bsteer respectively. Finally, the speed and steering categories for this trajec-
tory form the behavior category as(Bspeed ; Bsteer). We compare them with the
behaviors of our DriveLM-Agent outputs and calculate the related accuracy.

21

D.3 Motion Task Metrics

For measuring the performance of the motion stage, we use standard metrics from
the nuScenes and Waymo benchmarks: average and �nal displacement error,
(ADE, FDE), and the collision rate of the predicted trajectory.
ADE stands for Average Displacement Error, indicating the average L2 dis-
tance between the predicted trajectory and the ground truth trajectory over all
predicted horizons. It is the average of the errors at 1st , 2nd and 3rd second.
FDE stands for Final Displacement Error, which measures the Euclidean dis-
tance between the predicted endpoint and the true endpoint at the last predicted
step (the 3rd second).
Collision Rate accounts for the ratio of how many test frames the predicted
trajectory collides with objects in over all test frames. The number reported in
Table 2 of the main paper is the average of the collision rate at 1st , 2nd and 3rd

second.
Note that the calculation of ADE , FDE and Collision Rate follows the

setting used in UniAD [16] but not ST-P3 [15]. For example, in terms of the
FDE and the collision rate at 3rd second, the UniAD setting will consider the
error/collision rate at only this timestep, while the ST-P3 setting will consider
the error/collision rate as an average over 0.5, 1, 1.5, 2, 2.5, 3 seconds. For more
details, please refer to the UniAD repo discussion. Additionally, please note that
errors reported on the full nuScenes validation dataset (in prior work) is not
directly comparable to results reported on the DriveLM-nuScenes val split, a
challenging subset of this consisting of only keyframes with intention changes.

E DriveLM-Agent

In this section, we introduce the details of DriveLM-Agent, including the graph
prompting scheme and the trajectory tokenization process.

E.1 Prompting with Context

In terms of the implementation, the content of context di�ers during the train-
ing and inference of DriveLM-Agent, following the teacher-forcing setting [27,42]
generally adopted in recurrent networks. During training, for each edgee2 E in
the frame, we pick the child QA. The child questions in the edges are appended
with the ground truth parent QA as the context. All QA pairs are used dur-
ing training, including those without context. The objective used is next token
prediction, the standard approach for language modeling. During inference, the
model is applied interactively in multiple rounds to get the required context
predictions as inputs for each child question. Speci�cally, the model is prompted
with the �ve stages of questions in the sequential order ofP1; P2; P3; B; M . In
this order, the model can only infer the questions in the succeeding stages after
getting the predicted answer from the preceding stages.

22

Fig. 8: Detailed architecture of DriveLM-Agent. An inverse mapping is designed
to embed the real-world ego-vehicle trajectory into the token space of blip-2-�an-t5-xl.

E.2 Trajectory Tokenization Details

To generate action sequences (i.e., ego future trajectories) directly with the
language model we use for building the graph, we adopt the method of RT-
2 [57]. This process entails the discretization and tokenization of the continuous
trajectory.

Initially, we analyze the distribution of the future trajectories within the
nuScenes dataset. To e�ectively convert the continuous(x, y) coordinate space
into a discrete set of actions, we partition each coordinate axis into 256 discrete
intervals. This granularity ensures a su�cient level of detail while maintaining
a manageable number of tokens for the language model.

Each discretized bin corresponds to a unique token within the vocabulary of
the language model. We extract the token identi�ers (IDs) for numeric tokens
within the vocabulary. To ensure coherence and preserve the ability to express
numerical values, we omit single-digit tokens from this mapping process. Out of
the remaining numeric tokens, a subset of 256 token IDs is selected to repre-
sent the trajectory data. In addition to these, we introduce two special tokens
designated for marking the start and end of a trajectory sequence � the start-
of-trajectory (SOT) token and the end-of-trajectory (EOT) token, respectively.
This tokenization scheme enables us to encode complex trajectory information as
a sequence of tokens that a language model can process. Using this mapped vo-
cabulary, the language model can generate predicted future trajectory sequences
by outputting a series of tokens, which are then translated back into the coor-
dinate space.

F Experiments

In this section, we introduce the details of experiments, including implementation
details of each subsection inSection 4 in the main paper, more metrics on the
VQA part, more ablation and comparison on computational complexity.

F.1 Implementation Details

Here we explain the implementation details for the training and validation set-
tings used in our experiments of each of each subsections inSection 4 in the
main paper.

23

Fine-tuning Details. We con�gure the learning rate as 0.0001, no learning-
rate scheduler, random seed as 1234, and other settings following the default
LoRA [14] con�guration. For the BLIP-2 model, we use a maximal sequence
length of 400, and other hyperparameters remain the same as the o�cial BLIP-
2 implementation.
Implementation Details for Experiment in Section 4.1 & 4.3 & 4.4.

During training, we utilize all QAs as input per frame, with a subset of them
having contexts (questions from P2;3, B , and M). The contexts are extracted
from ground truth, following the teacher-forcing setting [27,42] generally adopted
in recurrent networks. As for inference, due to the variant complexity of the sce-
narios, the count of P1� 3 QA per frame is highly imbalanced across the dataset,
with a variance of over 260 on DriveLM-nuScenes. To balance the impact of
this, we compute the GVQA Scores on only a subset of QA associated with
each frame. To extract the QA subset, we design a set of QA patterns for each
stage based on the questions generally associated with that stage. We ensure
that for all our validation frames, each stage has at least one question matched
with the designed pattern. In this process, except for the questions in stageP1,
all questions in other stages have context from the previous stage's QA, where
the answers are derived from the prediction in the preceding steps. Two speci�c
graph structure examples can be found in Fig. 9 and Fig. 10.
Implementation Details for Experiment in Section 4.2. The model is
trained in the same scheme as in Section 4.1 & 4.3 & 4.4, and the training
set is the DriveLM-nuScenes train split. During the inference, as there are no
annotation on the Waymo (not even questions), we devise the question in a
rule-based manner. Speci�cally, we re-use the general-purpose questions in the
perception stage from DriveLM-nuScenes for Waymo as the starting questions.
Then we try to �nd if there is any objects in the answer that is matched in the
DriveLM-nuScenes annotation, such as �pedestrians�, �cars�, �trucks� and so on.
Then, we generate the questions based on those matched objects automatically,
which serve as the following questions in the prediction and the planning stages.
A speci�c graph structure example can be found in Fig. 11.
Implementation Details for Experiment in Section F.2. For the general-
ization experiment in Section F.2 we add two new questions to the graph: (1)Is
there a person in the scene?and (2) if the answer to the �rst question is yes we
ask What should the vehicle do based on the pedestrian that is crossing the road?
if the answer is no we askWhat should the ego vehicle do?. The answer to the
second question gets concatenated to the context of the �nal behavior question.
Three examples can be found in Fig. 12.

F.2 Generalization to Unseen Objects

Next, we evaluate zero-shot generalization to novel objects. DriveLM-CARLA
is collected without any pedestrians in the training or validation splits. We now
generate a new test set called DriveLM-CARLA-ped, which only consists of
frames where a pedestrian is present in the scene. The correct behavior is to
stop for the pedestrian.

24

Table 6: Generalization in DriveLM-CARLA. All methods underperform on
DriveLM-CARLA-ped with the novel pedestrian object, but DriveLM-Agent can be
signi�cantly improved by including a pedestrian-speci�c question in its GVQA graph.
move this to supp??

Method
DriveLM-CARLA (B) DriveLM-CARLA-ped (B)

Acc. " Spd. " Str. " Acc. " Spd. " Str. "

TransFuser++ [21] 70.19 73.29 90.68 8.72 8.72 100.00

DriveLM-Agent 59.63 61.50 78.26 4.59 4.59 100.00
+ Pedestrian QA 52.17 55.28 77.64 27.04 27.04 100.00

DriveLM-Agent (GT) 60.25 65.22 80.12 20.92 20.92 100.00
+ Pedestrian QA 60.25 65.22 80.12 92.35 92.35 100.00

Baselines. For this experiment, we compare DriveLM-Agent to TransFuser++ [21],
the state-of-the-art for CARLA. It uses a larger input image, an additional
LiDAR sensor, and several driving-speci�c annotations (depth, semantics, 3D
bounding boxes, HD map) in comparison to DriveLM-Agent. However, because
of these task-speci�c inputs and outputs, TransFuser++ can only be trained
on the base DriveLM-CARLA dataset and cannot incorporate general computer
vision data during training, which makes generalization more challenging.

DriveLM-Agent. Taking advantage of the more general architecture of a VLM,
we include samples from COCO [32] and GQA [18] along with DriveLM-CARLA
during training for DriveLM-Agent. We compare several versions: (1) we inves-
tigate the addition of a new P1 question during inference, `Is there a person
crossing the road?' (`+ Pedestrian QA'). (2) As an upper bound, we directly
input the ground truth P1� 3 graph to the model during inference, instead of the
model's predictions. For more details, please refer to the supplementary material.

Results. We present our �ndings in Table 6. We observe that TransFuser++
struggles on DriveLM-CARLA-ped relative to DriveLM-CARLA, with a drop
in accuracy from 70:19 to just 8:72. DriveLM-Agent experiences a similar drop
from 59:63 to 4:59. However, adding the pedestrian QA signi�cantly boosts per-
formance on the generalization setting to27:04, albeit with slightly reduced
accuracy on regular scenes. This is mainly attributed to the fact that the VLM
is not able to detect all pedestrians correctly. This indicates that the large per-
formance gains of recently published VLMs [13,36] can support even better gen-
eralization ability in the domain of driving. Additionally, when the pedestrian
QA is provided in the privileged setting that assumes access to perfect context
for each question in the graph, DriveLM-Agent achieves a near-perfect score
(20:92 ! 92:35) on the frames with pedestrians Note that DriveLM-CARLA-
ped only contains pedestrians crossing a straight road, so all models obtain a
100% accuracy on the steering class (which is alwaysstraight).

25

Table 7: Graph-structured reasoning facilitates improved VQA with VLMs.
Completeness measures how many questions are correctly answered in one frame of
data. The improvement trends are not consisten across di�erent conventional metrics,
thus we need the GPT score as the main metrics as it evaluates the performance more
comprehensively.

Context
DriveLM-nuScenes

O�-the-Shelf BLIP-2 DriveLM-Agent

BLEU-4 " METEOR " CIDEr " ROUGE_L " SPICE " GPT " Comp. " BLEU-4 " METEOR " CIDEr " ROUGE_L " SPICE " GPT " Comp. "

None 0.022 3.317 0.1185 7.205 4.336 42.97 1.064 51.89 35.81 2.463 66.79 42.56 71.39 30.04
Graph 0.022 3.882 0.0771 7.397 7.710 45.21 0.859 53.09 36.19 2.786 65.58 49.54 72.51 31.66

GT 0.022 4.397 0.0758 8.033 8.192 41.10 1.315 53.06 36.64 3.069 66.69 50.29 72.94 32.41

F.3 Results with More Metrics in VQA

In Table 7, we provide the performance under BLEU-4 [35], METEOR [28],
CIDEr [45] and ROUGE-L [31] of the Table 4 in the main paper. One key
observation is that di�erent metrics re�ect di�erent trends in the performance,
and the improvement is not consistent across all these metrics. This brings us
the motivation to use the GPT Score as the main metric in the VQA evaluation
part.

F.4 Stage-wise Ablation on Zero-shot Generalization across Sensor
Con�gurations

In Table 9, we provide more settings of context in the zero-shot generalization
across sensor con�gurations as in Table 2 in the main paper. One key observation
is that the higher the accuracy of the behavior task, the better the performance
of the motion task. With more context in the behavior task, the accuracy im-
provement mainly originates from the improvement of the speeding accuracy,
which �nally a�ects the FDE score.

F.5 More VLMs evaluated on DriveLM-nuScenes

Table 8: More VLMs evaluation on DriveLM-nuScenes . On the base model of
LLaMA-Adapter V2, we observe a slight improvement by using multi-frame as input.

Table A. Behavior Motion Behavior (B) Motion (M)
Base VLM Context Context Acc. " Speed" Steer " ADE # Col. #

blip-2-�an-t5-xl Graph B 57.49 69.89 80.63 1.74 1.89
LLaMA-Adapter V2 Graph B 55.31 61.97 81.43 1.86 2.03
LLaMA-Adapter V2 � Graph B 57.83 67.21 83.49 1.75 1.69

In terms of validating the generality of the proposed DriveLM-Agent and
exploring if the video input helps the model's performance in this task, we select
LLaMA-Adapter V2 (7B) [I] as it is compatible with single- and multi-frame
inputs. The results in Table 8 (within 9 training epochs) show performance
similar to BLIP-2.

26

Table 9: Zero-shot Generalization across Sensor Con�gurations. B * denotes
using ground truth behavior QA as context for motion task. Results on 1k randomly
sampled frames from the Waymo val set after training on DriveLM-nuScenes. Our
key observation is that the higher the accuracy of the behavior task, the better the
performance of the motion task.

Method
Behavior Motion Behavior (B) Motion (M)
Context Context Acc. " Speed" Steer " ADE # FDE #

Command Mean - - - - - 7.98 11.41
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47

None B 35.70 43.90 65.20 2.76 6.59
P1 B 38.20 43.67 70.74 2.67 6.41

DriveLM-Agent P2 B 39.52 44.20 78.67 2.62 6.19
P3 B 34.62 41.28 64.55 2.85 6.89

P1� 3 B 39.73 54.29 70.35 2.63 6.17

BLIP-RT-2 - B * 100.0 100.0 100.0 2.41 5.79

Note that due to the large variety of question types in DriveLM-nuScenes,
analyzing each question would be prohibitively expensive.

Instead, we provided an ablation of the e�ectiveness of each stage (P1� 3) in
Table 9, and a representative-question-wise analysis.

We have to admit that it is non-trivial in improving the QA performance
(P1-3) under current question setting and we found that it had little a�ect on
the �nal task performance (behavior and motion).

This inspired us that maybe the question setup worth more e�ort to ex-
plore, and with well-set question, the model could be �prompted correctly� to
understand the scene and perform the downstream task better.

F.6 Computational Complexity

In Table 5 of the main paper, we provide a comparison of the computational
complexity of DriveLM-Agent to UniAD-Single. A future direction would be
caching the vision tokens and batching the di�erent question patterns, which
can speed up the inference time fundamentally.

G Qualitative Results

In this section, we show the qualitative results of the experiments, including VQA
on our DriveLM-nuScenes, generalization results across sensor data on Waymo,
and generalization results to unseen objects on DriveLM-CARLA.

G.1 DriveLM-nuScenes

This section shows the qualitative examples for the DriveLM-nuScenes. In Fig. 9,
we showcase a detailed example of GVQA reasoning process on DriveLM-nuScenes,

27

Fig. 9: Detailed qualitative results on DriveLM-nuScenes. The graph prompt-
ing process can be divided into di�erent tasks, and di�erent QAs in each task revolve
around di�erent objects.

encompassingP1� 3 QA and the behavior task. We compare the predicted an-
swers with ground truth and provide SPICE scores and GPT scores. In this
�gure, the second question in the prediction stage represents a typical error.
Due to the input of single-frame images, our model often struggles to accurately
determine the correct movement status of objects. This judgment is indeed chal-
lenging even for humans. Furthermore, in Fig. 10, we present additional quali-
tative results to showcase our model's performance.

28

Fig. 10: More qualitative results on DriveLM-nuScenes. The examples in the
�gure illustrate the robust ability of our DriveLM-Agent to perform VQA tasks in
driving scenarios.

G.2 Waymo

This section demonstrates the generalizability of our model across sensor con-
�gurations. Fig. 11 illustrates the results of our model, trained on DriveLM-
nuScenes, when applied to inference on Waymo. As we do not annotate data on
Waymo, the questions are manually de�ned, and ground truth is not provided.
These results showcase the robust generalization capability of our model.

G.3 DriveLM-CARLA

In this section, we provide qualitative examples for the CARLA dataset.

Generalization to the unseen pedestrian scenario. Fig. 12 shows the gen-
erated behaviors for the generalization test set on the unseen pedestrian scenario.
The �rst example, illustrated on the top of Fig. 12, demonstrates a successful
situation where DriveLM-Agent accurately recognizes a pedestrian. It subse-
quently infers the appropriate action to undertake, which in this case, is to stop
the vehicle. The behavior generation is able to interpret this context, resulting in
the correct behavior pattern, as evidenced by the ego vehicle coming to a com-
plete stop. The other two examples represent the predominant failure modes
of DriveLM-Agent in scenarios involving pedestrians. The middle example of
Fig. 12 shows the case where the model still detects the pedestrian. However,
it fails to translate this detection into the correct behavior. The �nal exam-
ple, shown at the bottom, highlights a more severe limitation where the model

29

Fig. 11: Qualitative results on Waymo. We present two examples showcasing the
generability of DriveLM-Agent to new sensor con�gurations, demonstrating the strong
generalization capability of DriveLM-Agent.

completely overlooks the pedestrian. In such instances, DriveLM-Agent acts as if
the pedestrian is non-existent, which consequently results in it not executing any
evasive or stopping maneuvers, posing a signi�cant risk in a real-world scenario.

Graph Visual Question Answering. This section presents two examples of
the graph visual question answering tasks using the CARLA dataset to evaluate
the performance of DriveLM-Agent (Fig. 13). We only show a subset of the
evaluated questions. In the �rst example the ego vehicle drives behind another
vehicle. The primary task is to follow the road and adjust the speed in accordance
with the leading vehicle. Our results indicate that DriveLM-Agent demonstrates
pro�cient scene understanding by accurately identifying all important objects
in the scene. Despite the ground truth data indicating occasional inaccuracies
in object color labeling by the CARLA simulator, DriveLM-Agent maintains
reliable performance in object recognition. Additionally, the model can identify
the vehicle in front and reason about what to do based on the leading vehicle.

The second example takes place at an intersection regulated by a stop sign.
DriveLM-Agent identi�es all objects and can reason about the situation. It cor-
rectly identi�ed that it needs to stop not simply due to the stop sign, but primar-
ily because of a motorcycle positioned ahead. This implies that DriveLM-Agent
is capable of prioritizing dynamic obstacles over tra�c control devices under
certain circumstances.

