
Learning Non-Linear Invariants for Unsupervised
Out-of-Distribution Detection

Lars Doorenbos , Raphael Sznitman , and Pablo Márquez-Neila

University of Bern, Bern, Switzerland
{lars.doorenbos,raphael.sznitman,pablo.marquez}@unibe.ch

Abstract. The inability of deep learning models to handle data drawn
from unseen distributions has sparked much interest in unsupervised
out-of-distribution (U-OOD) detection, as it is crucial for reliable deep
learning models. Despite considerable attention, theoretically-motivated
approaches are few and far between, with most methods building on
top of some form of heuristic. Recently, U-OOD was formalized in the
context of data invariants, allowing a clearer understanding of how to
characterize U-OOD, and methods leveraging affine invariants have at-
tained state-of-the-art results on large-scale benchmarks. Nevertheless,
the restriction to affine invariants hinders the expressiveness of the ap-
proach. In this work, we broaden the affine invariants formulation to a
more general case and propose a framework consisting of a normaliz-
ing flow-like architecture capable of learning non-linear invariants. Our
novel approach achieves state-of-the-art results on an extensive U-OOD
benchmark, and we demonstrate its further applicability to tabular data.
Finally, we show our method has the same desirable properties as those
based on affine invariants.

Keywords: Out-of-distribution detection · Unsupervised learning

1 Introduction

Deep learning (DL) models can perform remarkably in controlled settings, where
samples evaluated come from the same distribution as those seen during training.
Unsurprisingly, real-world scenarios rarely allow for such controlled settings, and
a mismatch between train and test distributions is often a reality instead. Addi-
tionally, evaluating out-of-distribution (OOD) samples comes with few guaran-
tees, and model performance is typically poorer than expected. More insidiously,
no obvious in-built way exists to identify when the evaluated sample differs from
the training distribution. Jointly, these shortcomings limit the use of DL models
in real-world settings, as their reliability cannot be taken for granted.

Consequently, OOD samples need to be detected beforehand to ensure that
unreliable model predictions for those samples can be dealt with appropriately.
This problem has become known as OOD detection [15] and shares goals with
related fields such as anomaly detection, novelty detection, outlier detection,

https://orcid.org/0000-0002-0231-9950
https://orcid.org/0000-0001-6791-4753
https://orcid.org/0000-0001-5722-7618


2 L. Doorenbos et al.

Affine invariants Non-linear invariants

Fig. 1: Motivation for learning non-linear invariants. Affine functions (left) are
not expressive enough to model the invariants of the data and are thus unsuccessful
at OOD detection. Instead, non-linear functions (right) are more general and flexible.
Blue points indicate training samples; darker colors denote regions with higher OOD
scores.

one-class classification, and open-set recognition [43]. Here, we consider gener-
alized OOD [53], where any distributional shift from the in-distribution should
be identified.

OOD detection can be divided into supervised and unsupervised OOD (U-
OOD). Supervised OOD methods can access the labels of a downstream task or
explicit OOD samples. In contrast, U-OOD methods operate solely on unlabeled
training samples. The lack of training labels or OOD samples is an important
reason why U-OOD is so challenging, as determining what should be consid-
ered OOD is not always clear. Unlike the supervised case, one cannot rely on
marking every sample that does not belong to one of the classes as OOD. To
address this, [8] proposed characterizing datasets with multiple data invariants.
Specifically, data points that do not have the expected value for any of these
invariants are deemed OOD. With this characterization, it is possible to assess
what datasets can be used to evaluate U-OOD detectors by considering whether
a potential dataset satisfies all the invariants in the training data. Formally, the
data invariants characterization of U-OOD aims to define a set of functions over
the training features with a (near-)constant value. The union of these functions
is used at inference time to spot U-OOD samples by testing whether the invari-
ants hold for a given new sample. When restricting invariants to affine functions,
the problem can be cast in terms of principal component analysis (PCA) and
achieves state-of-the-art results on a large-scale benchmark [8].

However, it seems improbable that affine functions are sufficient to character-
ize all invariants present in training datasets. Examples of their limitations are
easily found, as exemplified in Fig. 1. Despite the potential benefits of non-linear
invariants for U-OOD detection, their actual advantages are still unexplored. In
this work, we propose to find non-linear invariants by modeling them with a
volume preserving network, a bijective function inspired by normalizing flows
that deforms the input space while preserving the volume almost everywhere
by design. Since the network cannot perform a projection, any invariant dimen-
sion at the network’s output when processing the training data must necessarily
be an invariant of the training data. We extensively evaluate our approach and



Learning Non-Linear Invariants 3

demonstrate that non-linear invariants outperform previous U-OOD detection
methods. Moreover, we show how our method extends to different modalities by
its application to tabular data and its benefit over affine invariants.

In summary, our main contributions are (1) a generalization of the invariant-
based characterization of U-OOD that allows for the inclusion of non-linearities,
(2) a novel embodiment of this framework that can learn non-linear invariants,
and (3) an extensive evaluation of our method and other state-of-the-art methods
on two benchmarks, the large image benchmark from [8] and a novel tabular
benchmark.

2 Related work

While developing new supervised OOD detection methods is an active area of
research (e.g. [10, 15, 18, 19, 23, 25, 26, 32, 48]), their reliance on labeled datasets
and trained classifiers limit their applicability. For the remainder of this section,
we focus on unsupervised approaches.

Generative models have played an important role in U-OOD. In theory, gen-
erative models make for excellent U-OOD detectors because of their capabil-
ity to estimate complex data distributions. However, in practice, they fail even
in straightforward cases [5, 31, 34, 46]. Various explanations and remedies for
this have been proposed, based on, for instance, input complexity [46], back-
ground information [41,52], architectural limitations [22], ensembles [5], or typ-
icality [33, 35, 36]. Most recently, approaches based on diffusion models have
gained popularity [27, 38, 47, 51], although they also require heuristics to func-
tion, as using the estimated data likelihood is often insufficient.

Alternatively, representation learning-based methods have been proposed for
U-OOD. Here, a model is trained using a self-supervised approach, and a test
sample is scored using the model’s output probabilities [2, 16], or by a simple
anomaly detector operating on the features of the model [4,45,49]. Initially, the
self-supervised training task consisted of transformation prediction [2,16], while
more recent methods use contrastive learning [4, 45,49].

Rather than training a model with a self-supervised training task, state-of-
the-art methods use a network pre-trained on a general dataset, such as Ima-
geNet, to provide a strong foundation for the U-OOD task. Using these features
directly already provides high performance [1,29,37,42], while other works adapt
these features to a target domain using an OOD-specific loss function [31,39,40].
Our work follows the first line of work, relying on the features of a frozen pre-
trained model. We use ResNet architectures to run competing baselines and
facilitate comparisons with earlier works. However, our method is in no way
restricted to this architectural choice.

Architecturally, our approach is closely linked to normalizing flows (NF) [21].
More precisely, our method resembles an NF where we only have volume-preserving
operations and lack the generative objective. These choices set us apart from
other NF-based OOD works [3,22,44,46] and are validated by our experiments. A
closely related method from this field is the Denoising Normalizing Flow (DNF)



4 L. Doorenbos et al.

model [17]. Proposed for an entirely different purpose, the DNF aims to find a
low-dimensional manifold dataset embedding and estimate the density of samples
in this low-dimensional space. The DNF is trained with the standard generative
objective alongside a reconstruction error term. After the forward pass, a prede-
termined number of output dimensions are set to 0 before reversing through the
network. While the DNF ignores these dimensions, our approach forces them to
be invariant and uses them as a scoring method for OOD samples. Furthermore,
the DNF is not volume-preserving. Some works do exist on volume-preserving
neural networks [30, 55], but these are designed for entirely different purposes,
such as classification, and are thus very different in design.

3 Method

Given a training set {xi}Ni=1, with corresponding feature vectors f(xi) ≡ fi ∈ RD,
we define an invariant following [8] as a non-constant function, g : RD → R,
such that g(fi) = 0, ∀i. That is, g is an invariant if it computes a constant
value (i.e., g(fi) = 0) for the training set elements but may compute different
constant values for other elements. For convenience, we will stack the invariants
in a single vector function g : RD → RK with g = (g1, . . . , gK). Our goal is to
find a function g of invariants that satisfies

g(fi) = 0 ∀i, (1)

det(J(fi) · JT (fi)) ̸= 0 ∀i, (2)

where J(fi) is the Jacobian of g evaluated at fi. The second condition ensures
that no component of g is trivially constant and that there are no redundant
invariants by making the Jacobian J full rank. The 0 level-set of g that satis-
fies these conditions defines an implicit manifold on the feature space RD. A
test feature vector f will be considered OOD if it does not lie on the manifold
(i.e., g(f) ̸= 0).

However, real-world data rarely lies on an exact manifold, and solving Eq. (1)
for a reasonably regularized g is unfeasible even for a small number of invari-
ants K in practice. Instead, as proposed in [8], we relax these conditions and
find a set of soft invariants (i.e., functions that are approximately constant for
all the training set elements), found by optimizing a soft version of Eq. (1),

min
g

∑
i

∥g(fi)∥22 (3)

s.t. det(J(fi) · JT (fi)) ̸= 0 ∀i. (4)

Once the function g is found, test feature vectors are evaluated by measuring
how much they violate each invariant compared to the elements of the training
set. Specifically, a test vector f is scored by computing the ratios between the
test squared error and the average training squared error,

s(f) =

K∑
k=1

gk(f)
2

ek
, (5)



Learning Non-Linear Invariants 5

R
ot
at
io
n

C
ou
pl
in
g

R
ot
at
io
n

xN

VPN

Fig. 2: Architecture of our proposed volume preserving network. The VPN
is a fully invertible model with alternating rotation and coupling layers.

where ek is the mean squared error of the soft invariant gk on the training set,

ek =
1

N

∑
i

gk(fi)
2. (6)

Intuitively, strong invariants with low ek values will strongly influence the final
score, while weak invariants with large ek values will effectively be ignored.

The work [8] simplified the problem by modelling invariants as affine func-
tions g(f) = Af+b, which allowed for tractable solutions of Eq. (3). Specifically,
it was shown that finding A and b could be done by applying PCA to the train-
ing features and that Eq. (5) was equivalent to the square of the Mahalanobis
distance.

3.1 Non-linear invariants

In this work, we relax the assumption of affine invariants and allow for a broader
family of invariants by modeling the function g with a deep neural network ĝ.
Specifically, we impose the constraint of Eq. (4) in the neural network design
by choosing an architecture that ensures full-rank Jacobians. Inspired by nor-
malizing flows [21], we design a volume preserving network (VPN) as a bijective
function ĝ : RD → RD composed of bijective operations with unimodular Ja-
cobians. A volume-preserving approach prevents the network from learning a
projection to a (near-)constant value, which would artificially create invariants,
thereby forcing the network to learn actual invariants instead of shortcuts.

In particular, we design our VPN by alternating rotation and coupling layers.
Rotation layers are linear layers with orthogonal transformations and a bias vec-
tor. We parameterize an orthogonal layer of n dimensions with a

(
n
2

)
-dimensional

vector v and an n-dimensional bias vector b. The layer transforms an input vec-
tor x as,

r(x) = e[v]× · x+ b, (7)

where [v]× is the skew symmetric matrix with the elements of v, and e is the
matrix exponential. The Jacobian of an orthogonal layer is the orthogonal ma-
trix e[v]× and has, therefore, determinant 1. Coupling layers [6] use some of the



6 L. Doorenbos et al.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

2 0 2

2

1

0

1

2

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Training
Reconstructed

(a) (b) (c)

Fig. 3: Example of finding non-linear invariants with the VPN on a toy
dataset. (a) illustrates the data, (b) the invariant representation, and (c) the re-
construction of the training data from the invariant representation after zeroing the
invariant dimension together with the original data. Background color indicates the
distance to the nearest training data point in the original space and tracks how these
are modified after the forward and backward pass. In (c), this is compressed into a
thin, barely visible line from both ends of the U shape. The images below show how
the data is transformed through the nine layers of the network. Images with a white-
shaded background result from rotation layers, and images with a gray background
result from coupling layers.

components of the input vector to compute a transformation that will be applied
to the remaining components,

(xa,xb) = split(x), (8)
y = join(xa + t(xb),xb),

where x and y are the input and output of the coupling layer, respectively, and
t is a multi-layer perceptron (MLP) computing a translation. Unlike [6, 7], no
scale factor is applied to keep the Jacobian unimodular. Both orthogonal and
coupling layers are easily inverted. In particular, the inverse of an orthogonal
layer is,

r−1(y) = e[−v]× · (y − b), (9)

and for the coupling layer,

(ya,yb) = split(y), (10)
x = join(ya − t(yb),yb).

The composition of alternating rotation and coupling layers ensures that
the complete VPN ĝ is an invertible function with unimodular Jacobian and
is, therefore, volume-preserving almost everywhere. The invariant function g :
RD → RK is defined by the first K outputs of the VPN, g = ĝ1:K . Its Jacobian J,



Learning Non-Linear Invariants 7

corresponding to the first K rows of the Jacobian of ĝ, is also full rank, thus
satisfying the constraint of Eq. (4) by design. Eq. (3) can now be solved efficiently
by simply minimizing the forward loss,

Lfwd(f) = ∥ĝ1:K(f)∥22. (11)

In addition, we leverage the bijectivity of ĝ to define a backward loss mini-
mizing the reconstruction error between a training feature vector f and its re-
construction,

Lbwd(f) = ∥ĝ−1 (PK · ĝ(f))− f∥22, (12)

where PK is a diagonal linear operator projecting the first K dimensions to 0,
which zeroes the invariants. Although optimizing the forward loss implicitly min-
imizes the backward loss, we found that explicitly introducing the backward loss
improved the stability of the training and the performance in our experiments.
Nonetheless, the backward loss by itself also encodes invariants: by reconstruct-
ing the data from a representation where K dimensions are zeroed out with a
volume-preserving network, all variance must be in the non-invariant dimensions
for a good reconstruction, and the K zeroed dimensions will encode invariants.
The final training loss is the sum of the forward and backward losses. A schematic
of our approach can be found in Fig. 2

To illustrate our approach, we use the 2-dimensional toy example depicted
in Figure 3. The data shown in Figure 3(a) has no affine invariant (i.e., there

exists no affine gk for which
1

N

∑
i gk(xi)

2 is close to 0). However, it does have a
soft non-linear invariant, namely, the distance of the samples to the origin. We
therefore set K = 1.

After training, we pass the data through the network to obtain an invariant
representation shown in Figure 3(b). The network has learned an almost constant
dimension for the training data, the non-linear invariant, and the variability is
encoded in the other dimension. On the other hand, the OOD samples are not
invariant along this dimension and score higher than in-distribution samples
when compared with Eq. (5).

Figure 3(c) shows the result of reconstructing the data with the composition
ĝ−1 ◦ PK ◦ ĝ from Eq. (12). After zeroing the invariant with PK , the recon-
structed data lies in a one-dimensional manifold that minimizes the distance
to the original data and reduces the backward loss while removing noise in the
radial direction. Therefore, the invariant measures deviations from this manifold.

3.2 Multi-scale invariants

As in [8], we use a pre-trained CNN to compute feature descriptors at multiple
scales. The CNN is applied to each input image x to generate a collection of
feature vectors {fℓ(x)}Lℓ=1 by performing global average pooling on the activation
maps at each layer ℓ. During training, the training feature vectors {fℓ(xi)}Ni=1

at layer ℓ are used to train a set of L invariant functions {g(ℓ)}Lℓ=1 through the



8 L. Doorenbos et al.

procedure described in the previous section. Each function g(ℓ) is trained with
a different number of invariants Kℓ, which are hyperparameters of our method.

At inference time, the test images x are evaluated by computing layer-wise
scores sℓ(fℓ(x)) following Eq. (5),

sℓ(f) =

Kℓ∑
k=1

g
(ℓ)
k (f)

e
(ℓ)
k

, (13)

which are aggregated to compute the final invariant score,

Sinv(x) =

L∑
ℓ=1

sℓ(fℓ(x)). (14)

3.3 Scoring samples

We empirically found our invariant score of Eq. (14) to be complementary to a
standard 2-NN score [1] and observed that combining the two scores leads to a
further boost in performance. To compute the 2-NN score, we first define the
2-NN distance of a test sample at a layer ℓ as

dist-2nnℓ(f) =
1

2

∑
fn∈N

(ℓ)
2 (f)

∥f − fn∥2, (15)

where N
(ℓ)
2 (f) are the 2 nearest neighbours of f in the training set at layer ℓ. As

with the layer-wise invariant score, the 2-NN distances are normalized by the
average 2-NN distances of the training set,

s-2nnℓ(f) = Kℓ
dist-2nn(f)

1
N

∑
i dist-2nn(fℓ(xi))

, (16)

where the factor Kℓ compensates for the difference in magnitude with respect
to the invariant score sℓ. In the denominator, the 2-NN distances are calculated
for the training set elements to themselves, making each feature vector fℓ(xi) its
own first neighbor. To avoid this, we exclude the element fℓ(xi) from the training
set when computing dist-2nn(fℓ(xi)). The 2NN score is computed as,

S2nn(x) =

L∑
ℓ=1

s-2nnℓ(fℓ(x)), (17)

and the final score is the sum of the invariant and the 2NN scores,

Sfinal(x) = Sinv(x) + S2nn(x). (18)

We will analyze the contribution of each of these terms to the detection perfor-
mance in the ablation study of the results section.



Learning Non-Linear Invariants 9

4 Experiments

4.1 Benchmarks

We use the U-OOD evaluation benchmark introduced in [8] and propose a new
benchmark with shallow datasets for additional experiments. Both benchmarks
are described below.

General U-OOD. The U-OOD benchmark introduced in [8] consists of 73
experiments spread over five tasks, each containing varying criteria for the in and
out distributions. Three of the tasks have an unimodal training dataset: uni-
class, containing 30 one-class classification experiments on the low-resolution
CIFAR10 and CIFAR100 datasets; uni-ano, which consists of 15 experiments
on the high-resolution MVTec images where the number of training images is
limited; and uni-med, which has 7 experiments on different medical imaging
modalities. The remaining two tasks use entirely different datasets as OOD.
These are shift-low-res, containing the CIFAR10:SVHN experiment on which
many OOD-detectors fail, and shift-high-res, comprising 20 experiments with
the DomainNet dataset.

Shallow U-OOD. Collection of experiments on shallow anomaly detection
datasets with tabular data where deep neural network features from images
are unavailable. This benchmark aims to show the generality of our approach to
other data modalities. We use six tabular datasets from [11]. These datasets were
conceived for unsupervised anomaly detection and contain inliers and outliers
intertwined within the data. To adapt the datasets to our OOD detection prob-
lem, we pre-processed them by separating all the outliers and an equal number of
inliers from each dataset and reserving them for the testing split. The remaining
inliers were utilized as training data. The datasets included in the benchmark
are thyroid, breast cancer, speech, pen global, shuttle and KDD99. Further details
are provided in the appendix.

4.2 Baselines

For the General U-OOD benchmark, we compare our method NL-Invs against
nine state-of-the-art methods. Six methods, DN2 [1], CFlow [12], DDV [31],
DIF [37], MSCL [40], and MahaAD [42] that use the same ResNet-101 back-
bone initialized with ImageNet pre-trained features, and three normalizing flow
methods, Glow [21], IC [46], and HierAD [44].

For the Shallow U-OOD benchmark, we compare NL-Invs to the baselines
MahaAD (Mahalanobis distance), DN2 (kNN), and DIF (Isolation Forest).
The remaining baselines are bound to deep learning methods that cannot work
with non-image or tabular data and are thus excluded from the comparison.

4.3 Implementation details

Our VPN architecture includes four rotation and coupling layers before the final
rotation layer (N = 4 in Fig. 2). Each coupling layer comprises an MLP with
four linear layers of equal size as its input, interspersed with ReLU activations.



10 L. Doorenbos et al.

Table 1: Comparative evaluation on General U-OOD. We report the mean and
standard deviation of the AUC over three runs. Baselines taken from [8]. Bold and
underlined indicate the best and second best per column, respectively. On aggregate
across the experiments, NL-Invs obtains the best performance.

Method uni-class uni-ano uni-med shift-low-res shift-high-res Mean

Glow 53.8±0.1 82.0±2.5 55.8±0.8 8.8 34.5±0.1 47.0
DDV 65.8±1.4 65.5±0.2 60.3±3.2 47.9±6.6 63.9±4.9 60.7
CFlow 75.0±0.0 95.7±0.1 68.8±0.3 6.6±0.2 61.8±0.3 61.6
IC 55.7±0.1 73.6±2.6 65.1±0.5 95.0 65.8±0.1 71.0
HierAD 63.0±0.4 81.6±2.1 72.5±0.6 93.9 75.0±0.3 77.2
DN2 91.2 86.2 76.7 57.4 76.0 77.5
DIF 85.8±0.3 81.8±0.8 72.1±0.2 80.3±4.5 80.4±0.8 80.1
MSCL 96.3±0.0 86.4±0.0 75.2±0.1 88.3±0.0 74.4±0.0 84.1
MahaAD 92.4 91.3 75.7 94.3 78.6 86.5
NL-Invs 93.3±0.0 85.8±0.0 77.2±0.0 97.8±0.1 85.5±0.1 87.9

NL-Invs requires setting the number of invariants per layer Kℓ, as described
in Sect. 3.2. Considering these values as independent hyperparameters would
exponentially increase the search space and evaluation time. Instead, we set
each Kℓ to the largest number of principal components of the data at layer ℓ
that jointly explain less than p% of the variance, where p is a hyperparameter
shared by all layers.

We utilized a ResNet-101 for the multi-scale feature extraction of Sect 3.2.
We extract features from L = 3 feature maps at the end of the last ResNet
blocks. Following [40], we normalize the feature vectors of the final layer to the
unit norm for improved performance. In all our experiments, we train for 25
epochs with p set to 5 and a batch size of 64. We use the Adam optimizer [20]
with a learning rate of 10−3 linearly decaying to 10−4 over the epochs.

5 Results

This section describes the results obtained on the two benchmarks, followed by
a multi-faceted analysis of the behavior of our method.

General U-OOD. The performances of NL-Invs and the other methods
are shown in Tab. 1. Most methods behave inconsistently across the benchmark,
with different methods scoring high for each task. For instance, CFlow is the
best scoring method on uni-ano by a large margin. However, its high performance
does not translate to the other experiments, where it is consistently among the
lowest-scoring methods. DN2 struggles on shift-low-resbut scores consistently
well on the other tasks. DIF achieves decent performance overall but reaches the
second-best score on shift-high-res. MSCL and MahaAD are generally good,
with MahaAD being superior to MSCL on all cases except uni-ano. However,



Learning Non-Linear Invariants 11

Table 2: Comparative evaluation on Shallow U-OOD. We report the mean and
standard deviation of the AUC over five runs. Methods without a reported standard
deviation are deterministic. Bold and underlined indicate best and second best per
column, respectively. NL-Invs performs best overall.

Method thyroid breast cancer speech pen global shuttle KDD99 Mean

DIF [37] 83.8±3.6 86.6±2.1 43.9±5.3 93.1±0.7 98.4±0.4 99.1±0.1 84.1±1.1

MahaAD [42] 74.9 100 44.6 96.3 81.4 100 82.9
DN2 [1] 71.9 100 76.7 99.9 99.9 99.7 91.4
NL-Invs 96.2±0.4 100±0.0 71.5±2.5 98.5±0.1 94.9±2.4 100±0.0 93.5±0.4

NL-Invs is consistently among the best-performing methods, reaching the high-
est mean score of the benchmark and the best score on uni-med, shift-low-res and
shift-high-res. Moreover, it outperforms the normalizing flow methods CFlow,
HierAD and IC by large margins.

Some recent works claim that models pre-trained on ImageNet are not a
good foundation for U-OOD detectors because they lead to catastrophic failures
on seemingly extremely simple cases (e.g ., CIFAR10:SVHN of task shift-low-
res [14, 54]), and argue that U-OOD models should be trained from scratch
instead. While we also observe catastrophic failure for DN2 and CFlow, we
find that NL-Invs is able to reach high AUC without any modification to the
underlying neural network. In addition, MahaAD, MSCL and to a lesser extent
DIF still reach high scores on shift-low-res. The presumed failure of models based
on pre-trained features for certain tasks might thus be related to other factors,
such as incorrect processing of features or inappropriate hyperparameters, rather
than an intrinsic inability.

Shallow U-OOD. Tab. 2 summarizes our results. Here, MahaAD is the
worst performing method, matching NL-Invs’s perfect score on breast can-
cer and KDD99 but struggling on the other datasets. DIF achieves good per-
formance except on speech, although it does not reach a perfect score on any
dataset. DN2 performs very well, but NL-Invs is again the best method over-
all.

Overall, there is a clear benefit of NL-Invs over MahaAD on tabular
datasets: our non-linear invariants approach improves upon the affine invariants
approach by 10.6 percentage points of AUC on average across the six experi-
ments. This large difference compared to the results on General U-OOD in
Tab. 1 suggests that invariants in the deep features extracted from a neural
network are linear to some extent.

5.1 Ablation study

We ablate our design choices in Tab. 3. The previous best method, MahaAD,
uses linear invariants and reaches a score of 86.5 AUC on the General U-



12 L. Doorenbos et al.

Table 3: Ablating NL-Invs on General U-OOD. Learning non-linear invariants,
our backward loss, and Sfinal are all important for high performance.

Invariants Scoring Backwards AUCfunction loss

- S2NN - 86.2
Linear Sinv - 86.5

Non-linear Sinv ✗ 86.9
Non-linear Sinv ✓ 87.2
Non-linear Sfinal ✓ 87.9

Table 4: Results for NL-Invs with different architectures on uni-class. All
models are pre-trained on ImageNet, with the top-1 column showing the ImageNet
top-1 accuracy. NL-Invs is successful across various architectures and benefits from
models with higher top-1 scores.

Backbone Size (M) top-1 AUC

ResNet18 [13] 11.2 69.8 87.8
EfficientNet-b0 [50] 5.3 76.3 93.3

ResNet101 [13] 42.5 77.4 93.3
ViT-B-16 [9] 86.6 81.1 93.3

ConvNeXT-B [28] 88.6 84.1 94.4

OOD benchmark. We find that our generalization of this formulation, which
allows for learning non-linear invariants, reaches a new state-of-the-art of 87.2
AUC. Part of this improvement is by means of the backward loss. Furthermore,
incorporating S2NN raises the performance even further to 87.9 AUC.

5.2 Other architectures

To show the applicability of NL-Invs to other architectures and model sizes,
we show results on uni-class with varying models, including ConvNeXT and a
vision transformer, in Tab. 4. All models use the same hyperparameters, and we
extract the features from L = 3 feature maps at the last blocks for all models.
In general, models with better performance on ImageNet lead to better U-OOD
performance, with ConvNeXT reaching the best results.

5.3 Hyperparameter sensitivity

NL-Invs has one main hyperparameter, p. We show in Tab. 5 that NL-Invs is
robust to the choice of p, with its performance changing by as little as 0.3 AUC
on General U-OOD across a wide range of values.



Learning Non-Linear Invariants 13

Table 5: Hyperparameter sensitivity of NL-Invs. We report the AUC with a
ResNet18 backbone on the General U-OOD benchmark with different values for its
main hyperparameter p. NL-Invs is insensitive to the choice of p.

0.5 1 2 5 10

AUC 86.6 86.7 86.8 86.6 86.5

1 2 3 4 5 6 7 8 9
Number of classes in

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

CIFAR100
Held out class

MahaAD
MSCL
NL-invs

1 2 3 4 5 6 7 8 9
Number of classes in

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

SVHN
CIFAR100 blurred

MahaAD
MSCL
NL-invs

(a) (b)

Fig. 4: Assessing invariants. We show how the performance of the top-performing
methods changes with respect to the number of classes in the training set for (a) OOD
samples belonging to classes not present in the training data and (b) visually dissimilar
OOD samples. For invariant-based approaches, the AUC remains high when the OOD
test set breaks invariants, regardless of the number of classes in the training set.

5.4 Assessing invariants

We conduct an additional experiment on CIFAR10 following [8] to assess how
NL-Invs incorporates the intuitive idea of invariants in practice. To this end,
we compare how U-OOD methods handle different types of OOD datasets as the
number of classes in the training set increases.

When the training dataset contains only one class, samples belonging to dif-
ferent classes should be considered outliers, as the class is an invariant. As the
number of classes in the training set increases, samples belonging to classes not
present in the training dataset should no longer be considered outliers, as the
class identity is no longer an invariant. This behavior is shown in Fig. 4(left),
where all methods perform as anticipated. Conversely, test samples that ex-
hibit visual dissimilarity from the training set should always be considered out-
liers, irrespective of the number of classes in the training set. As depicted in
Fig. 4(right), our experimental findings indicate that invariant-based methods,
namely MahaAD and especially NL-Invs, exhibit the expected behavior when
test samples come from a different domain, where most of the test samples remain
outliers despite the increase in training set classes. In contrast, the next-best per-
forming method, MSCL, experiences a stronger decrease in performance.



14 L. Doorenbos et al.

0.4 0.2 0.0 0.2 0.4
Random direction 1

0.4

0.2

0.0

0.2

0.4

Ra
nd

om
 d

ire
ct

io
n 

2

Training loss (*100)

0.4 0.2 0.0 0.2 0.4
Random direction 1

0.4

0.2

0.0

0.2

0.4

Ra
nd

om
 d

ire
ct

io
n 

2

OOD AUC

1.07

1.07

1.07

1.08

1.08

1.08

1.08

1.09

1.09

1.09

0.93

0.94

0.94

0.94

0.95

0.95

0.96

0.96

Fig. 5: Visualizing the loss and AUC landscapes of the VPN. For NL-Invs, a
low training loss corresponds to high U-OOD performance and vice versa.

5.5 Loss landscape analysis

The true U-OOD objective function is impossible to optimize due to the in-
tractability of sampling the entire OOD space. Therefore, all U-OOD methods
optimize a proxy loss function to approximate this underlying objective. This,
in turn, leads to many U-OOD methods having no apparent correlation between
training loss and OOD performance [40].

Data invariants offer a theoretically sound concept of U-OOD, whereby low
training loss regions should correspond to high U-OOD performance and vice
versa. To verify this empirically, we utilized [24]’s methodology to visualize train-
ing loss and U-OOD AUC along two arbitrary directions in the weight space of
the VPN. Our results, displayed in Fig. 5 for car:rest, confirm this proposition.

6 Conclusion

This work introduces a new U-OOD method that learns data invariants within a
training set. Our framework, NL-Invs, is the first volume-preserving approach
to OOD detection. NL-Invs learns non-linear invariants over a set of training
features and generalizes previous invariant-based formulations of U-OOD, reach-
ing state-of-the-art performance when compared against competitive methods on
a large-scale benchmark. Additionally, we validate our model on different tabular
datasets, showing its generalizability and advantage over affine invariants.

Finally, we confirm the results of [8] and observe that the performance of
several U-OOD methods is highly sensitive, with the majority of techniques dis-
playing inconsistent scores across various tasks. Nevertheless, invariant-based
approaches maintain a prominent position in terms of consistency, with NL-
Invs outperforming all other methods by achieving the highest overall perfor-
mance and ranking as the top-performing technique on three out of five tasks
on the General U-OOD benchmark, in addition to obtaining the best score on
tabular data. All in all, U-OOD remains challenging due to its many inconsisten-
cies. We believe that with proper evaluation set-ups and theoretically motivated
approaches, such as those based on data invariants, significant progress can be
made toward the reliable use of deep learning models in everyday settings.



Learning Non-Linear Invariants 15

Acknowledgements

This work was funded by the Swiss National Science Foundation (SNSF), re-
search grant 200021_192285 “Image data validation for AI systems”.

References

1. Bergman, L., Cohen, N., Hoshen, Y.: Deep nearest neighbor anomaly detection.
arXiv preprint arXiv:2002.10445 (2020)

2. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data.
International Conference on Learning Representations (2020)

3. Chali, S., Kucher, I., Duranton, M., Klein, J.O.: Improving normalizing flows with
the approximate mass for out-of-distribution detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 750–
758 (2023)

4. Chen, M., Gui, X., Fan, S.: Cluster-aware contrastive learning for unsupervised
out-of-distribution detection. arXiv preprint arXiv:2302.02598 (2023)

5. Choi, H., Jang, E., Alemi, A.A.: Waic, but why? generative ensembles for robust
anomaly detection. arXiv preprint arXiv:1810.01392 (2018)

6. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components esti-
mation. International Conference on Learning Representations Workshop (2015)

7. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. Inter-
national Conference on Learning Representations (2017)

8. Doorenbos, L., Sznitman, R., Márquez-Neila, P.: Data invariants to understand
unsupervised out-of-distribution detection. In: Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXI. pp. 133–150. Springer (2022)

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

10. Du, X., Wang, Z., Cai, M., Li, Y.: Vos: Learning what you don’t know by virtual
outlier synthesis. International Conference on Learning Representations (2022)

11. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly de-
tection algorithms for multivariate data. PloS one 11(4), e0152173 (2016)

12. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly
detection with localization via conditional normalizing flows. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 98–107
(2022)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

14. Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., Song,
D.: Scaling out-of-distribution detection for real-world settings. arXiv preprint
arXiv:1911.11132 (2019)

15. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. International Conference on Learning
Representations (2017)



16 L. Doorenbos et al.

16. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning
can improve model robustness and uncertainty. Advances in Neural Information
Processing Systems 32 (2019)

17. Horvat, C., Pfister, J.P.: Denoising normalizing flow. Advances in Neural Informa-
tion Processing Systems 34, 9099–9111 (2021)

18. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
10951–10960 (2020)

19. Katz-Samuels, J., Nakhleh, J.B., Nowak, R., Li, Y.: Training ood detectors in their
natural habitats. In: International Conference on Machine Learning. pp. 10848–
10865. PMLR (2022)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. International
Conference for Learning Representations (2015)

21. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolu-
tions. Advances in neural information processing systems 31 (2018)

22. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect
out-of-distribution data. Advances in neural information processing systems 33,
20578–20589 (2020)

23. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Advances in Neural Information
Processing Systems 31, 7167–7177 (2018)

24. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. Advances in neural information processing systems 31 (2018)

25. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. International Conference on Learning Representa-
tions (2018)

26. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection.
Advances in neural information processing systems 33, 21464–21475 (2020)

27. Liu, Z., Zhou, J.P., Wang, Y., Weinberger, K.Q.: Unsupervised out-of-distribution
detection with diffusion inpainting. arXiv preprint arXiv:2302.10326 (2023)

28. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11976–11986 (2022)

29. Luan, S., Gu, Z., Freidovich, L.B., Jiang, L., Zhao, Q.: Out-of-distribution detection
for deep neural networks with isolation forest and local outlier factor. IEEE Access
9, 132980–132989 (2021)

30. MacDonald, G., Godbout, A., Gillcash, B., Cairns, S.: Volume-preserving neural
networks. In: 2021 International Joint Conference on Neural Networks (IJCNN).
pp. 1–9. IEEE (2021)

31. Márquez-Neila, P., Sznitman, R.: Image data validation for medical systems. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 329–337. Springer (2019)

32. Ming, Y., Sun, Y., Dia, O., Li, Y.: How to exploit hyperspherical embeddings for
out-of-distribution detection? International Conference for Learning Representa-
tions (2023)

33. Morningstar, W., Ham, C., Gallagher, A., Lakshminarayanan, B., Alemi, A., Dil-
lon, J.: Density of states estimation for out of distribution detection. In: Interna-
tional Conference on Artificial Intelligence and Statistics. pp. 3232–3240. PMLR
(2021)



Learning Non-Linear Invariants 17

34. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do
deep generative models know what they don’t know? International Conference on
Learning Representations (2019)

35. Nalisnick, E., Matsukawa, A., Teh, Y.W., Lakshminarayanan, B.: Detecting out-
of-distribution inputs to deep generative models using a test for typicality. arXiv
preprint arXiv:1906.02994 5, 5 (2019)

36. Osada, G., Takahashi, T., Ahsan, B., Nishide, T.: Out-of-distribution detection
with reconstruction error and typicality-based penalty. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 5551–
5563 (2023)

37. Ouardini, K., Yang, H., Unnikrishnan, B., Romain, M., Garcin, C., Zenati, H.,
Campbell, J.P., Chiang, M.F., Kalpathy-Cramer, J., Chandrasekhar, V., et al.:
Towards practical unsupervised anomaly detection on retinal images. In: Domain
Adaptation and Representation Transfer and Medical Image Learning with Less
Labels and Imperfect Data, pp. 225–234. Springer (2019)

38. Pinaya, W.H., Graham, M.S., Gray, R., Da Costa, P.F., Tudosiu, P.D., Wright, P.,
Mah, Y.H., MacKinnon, A.D., Teo, J.T., Jager, R., et al.: Fast unsupervised brain
anomaly detection and segmentation with diffusion models. In: Medical Image
Computing and Computer Assisted Intervention–MICCAI 2022: 25th International
Conference, Singapore, September 18–22, 2022, Proceedings, Part VIII. pp. 705–
714. Springer (2022)

39. Reiss, T., Cohen, N., Bergman, L., Hoshen, Y.: Panda: Adapting pretrained fea-
tures for anomaly detection and segmentation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 2806–2814 (2021)

40. Reiss, T., Hoshen, Y.: Mean-shifted contrastive loss for anomaly detection. AAAI
Conference on Artificial Intelligence (2023)

41. Ren, J., Liu, P.J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., Laksh-
minarayanan, B.: Likelihood ratios for out-of-distribution detection. In: Advances
in Neural Information Processing Systems. pp. 14707–14718 (2019)

42. Rippel, O., Mertens, P., Merhof, D.: Modeling the distribution of normal data
in pre-trained deep features for anomaly detection. In: 2020 25th International
Conference on Pattern Recognition (ICPR). pp. 6726–6733. IEEE (2021)

43. Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M.H., Sabokrou, M.: A
unified survey on anomaly, novelty, open-set, and out-of-distribution detection:
Solutions and future challenges. arXiv preprint arXiv:2110.14051 (2021)

44. Schirrmeister, R., Zhou, Y., Ball, T., Zhang, D.: Understanding anomaly detection
with deep invertible networks through hierarchies of distributions and features.
Advances in Neural Information Processing Systems 33, 21038–21049 (2020)

45. Sehwag, V., Chiang, M., Mittal, P.: Ssd: A unified framework for self-supervised
outlier detection. International Conference on Learning Representations (2021)

46. Serrà, J., Álvarez, D., Gómez, V., Slizovskaia, O., Núñez, J.F., Luque, J.: Input
complexity and out-of-distribution detection with likelihood-based generative mod-
els. International Conference on Learning Representations (2019)

47. Shi, J., Zhang, P., Zhang, N., Ghazzai, H., Massoud, Y.: Dissolving is amplifying:
Towards fine-grained anomaly detection. arXiv preprint arXiv:2302.14696 (2023)

48. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest
neighbors. In: International Conference on Machine Learning. pp. 20827–20840.
PMLR (2022)

49. Tack, J., Mo, S., Jeong, J., Shin, J.: Csi: Novelty detection via contrastive learning
on distributionally shifted instances. Advances in neural information processing
systems 33, 11839–11852 (2020)



18 L. Doorenbos et al.

50. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

51. Wyatt, J., Leach, A., Schmon, S.M., Willcocks, C.G.: Anoddpm: Anomaly detec-
tion with denoising diffusion probabilistic models using simplex noise. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 650–656 (2022)

52. Xiao, Z., Yan, Q., Amit, Y.: Likelihood regret: An out-of-distribution detection
score for variational auto-encoder. Advances in neural information processing sys-
tems 33, 20685–20696 (2020)

53. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: A
survey. arXiv preprint arXiv:2110.11334 (2021)

54. Yousef, M., Ackermann, M., Kurup, U., Bishop, T.: No shifted augmentations
(nsa): compact distributions for robust self-supervised anomaly detection. In: Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
pp. 5511–5520 (2023)

55. Zhu, A., Zhu, B., Zhang, J., Tang, Y., Liu, J.: Vpnets: Volume-preserving neural
networks for learning source-free dynamics. Journal of Computational and Applied
Mathematics 416, 114523 (2022)


	Learning Non-Linear Invariants for Unsupervised Out-of-Distribution Detection

