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Abstract. Recent studies in deepfake detection have shown promising
results when detecting deepfakes of the same type as those present in
training. However, their ability to generalize to unseen deepfakes re-
mains limited. This work improves the generalizable deepfake detection
from a simple principle: an ideal detector classifies any face that contains
anomalies not found in real faces as fake. Namely, detectors should learn
consistent real appearances rather than fake patterns in the training set
that may not apply to unseen deepfakes. Guided by this principle, we
propose a learning task named Real Appearance Modeling (RAM) that
guides the model to learn real appearances by recovering original faces
from slightly disturbed faces. We further propose Face Disturbance to
produce disturbed faces while preserving original information that en-
ables recovery, which aids the model in learning the fine-grained appear-
ance of real faces. Extensive experiments demonstrate the effectiveness
of modeling real appearances to spot richer deepfakes. Our method sur-
passes existing state-of-the-art methods by a large margin on multiple
popular deepfake datasets.

Keywords: Deepfake Detection · Face Forgery Detection · Multimedia
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1 Introduction

Current deep generative models allow for the generation of realistic fake faces,
i.e., deepfakes, making it easy to manipulate face media. Therefore, these tech-
niques can be used for committing fraud, bypassing identity authentication, or
spreading false information. The potential misuses raise concerns regarding pri-
vacy and reputation, and thus deepfake detectors are needed to counter the risks
posed by deepfakes. Moreover, the proliferation of deepfake algorithms presents
a challenge to the generalizability of deepfake detection, making it crucial to
develop detectors that generalize across various deepfake types.
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Fig. 1: Illustration of (a) the Deepfake Detection task and (b) the proposed RAM task.
Compared to Deepfake Detection, the RAM task guides models to restore disturbed
faces back to their original appearance.

Previous works usually tackled deepfake detection by guiding detectors to rec-
ognize specific deepfake patterns, such as the boundaries in swapped faces [1,2],
inconsistency [3, 4], frequency anomalies [5, 6], and movement anomalies [7, 8].
They achieved good performance in detecting deepfakes of the same types as
those present in training. However, their performance often significantly deteri-
orates when detecting deepfakes generated by novel algorithms, which mirrors
real-world scenarios where various deepfakes emerge. This is due to different
deepfake algorithms producing different fake patterns, and learned patterns are
not universally applicable to all deepfakes. Namely, more than knowledge of
specific deepfake patterns is required to generalize to unseen types of deepfake.

Though different deepfakes exhibit different patterns, real faces maintain
consistent appearance. Thus, it is better to learn the appearance of real faces
to verify their authenticity instead of learning deepfake patterns to spot fakes.
Namely, an ideal classifier would classify faces as fake if they exhibit patterns not
found in real faces, i.e., anomalies. As the detector learns explicit real face ap-
pearance, it should be capable of predicting real faces at pixel-level. This guides
us to design a task that densely predicts real faces to learn real appearance.
To fully define this task, dense prediction targets and input information that
assists the prediction are needed. Specifically, we propose the Real Appearance
Modeling (RAM) task that recovers corresponding original faces from disturbed
faces, as illustrated in Figure 5, where original faces are prediction targets and
the inputted disturbed faces contain information needed for prediction. For the
RAM task, Deepfakes are not applicable to serve as training data since their
original identities or poses are altered, and the necessary information that en-
ables prediction is lost. We thus propose Face Disturbance to disturb real faces
to pseudo-fakes as training data for RAM. In the disturbed faces produced by
Face Disturbance, the original information is mostly retained. Then, the detector
learns real face appearance by predicting original faces.

To disturb real faces, the proposed Face Disturbance includes two parts, Tex-
ture and Structure Disturbance, to introduce anomalies in textures and struc-
tures, respectively. This is based on the premise that an image can be regarded as
composed of structures and textures [9,10]. Texture Disturbance disturbs partial



Real Appearance Modeling for More General Deepfake Detection 3

textures to produce anomalies in the form of texture inconsistency. The reason
for disturbing partially rather than globally is that distribution of real textures
varies, and globally modifying facial textures may fail to produce anomalies.
Meanwhile, having inconsistent textures between different facial parts is indeed
anomalous. Hence, Texture Disturbance is designed to produce inconsistencies.
Structure Disturbance disturbs structure by covering key facial areas, including
facial features and boundaries, which are essential components of facial struc-
ture. The specific covering method involves copying and tiling the surrounding
texture to the disturbed areas to ensure the original texture is intact. Jointly
using Texture and Structure Disturbance to produce disturbed faces for RAM
helps the detector to learn real structures and textures to spot anomalies in
unseen deepfakes.

The proposed RAM uses disturbed faces produced by Face Disturbance as in-
puts and the original faces as prediction targets, making this task unsupervised.
Therefore, RAM is adopted as an auxiliary task to enhance deepfake detectors.
In training, real and disturbed faces are used as inputs, and the detector is ex-
pected to both discriminate disturbed faces and recover their real appearances.
Specifically, RAM involves guiding the detector to recover structure and texture
anomalies. For structure anomalies, the detector recovers the structure of the dis-
turbed areas with the undisturbed areas as the reference. For texture anomalies,
the detector recovers the inner texture based on the texture of the outer face. By
leveraging learned real appearances, our model is equipped to detect anomalies
within unseen deepfakes. As illustrated in Figure 5, our model diverges from
the baseline model by grouping various deepfakes to general anomalies rather
than identifying specific deepfake patterns. This indicates RAM narrows the gap
across deepfakes and thus improves the generalizability.

Our contributions can be summarized as follows:
• We introduce Real Appearance Modeling to guide detectors to learn the ap-

pearance of real faces by restoring disturbed faces to their original appearances,
which helps to improve the generalization of deepfake detectors.

• We propose Face Disturbance to disturb real faces in texture and struc-
ture views as pseudo-fakes, which aids the detector in learning real texture and
structure appearance when predicting original faces.

• We conduct extensive experiments using various evaluation protocols to
demonstrate the generalizability of our framework, which surpasses previous
methods on multiple popular deepfake datasets.

2 Related Work

2.1 Deepfake Detection

Early works leveraged biological artifacts, including distorted pupils [11], heart-
beat frequency [12], and anomalous head pose [13] for deepfake detection. More
recent works treated deepfake detection as a binary classification task and fo-
cused on detecting specific deepfake patterns. For instance, [14] investigated
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mesoscopic features in shallow networks that contain rich features, while [15]
employed an attention mechanism to combine RGB and texture features. [6,16]
leveraged high-frequency in the discrete cosine domain as complementary modal-
ities. Another direction involves employing proxy tasks for pretraining to learn
high-level representations capable of identifying deepfake videos. Examples of
such proxy tasks include lip-reading [8] and audio-visual contrastive learning
[17, 18]. Recently, the unsupervised learning object MAE [19] is introduced in
deepfake detection [20, 21]. These works usually recover masked facial features
through dense prediction to model real faces. As they use masked images as input
where information is lost, the set recovery target, i.e., original face, is merely one
of the multiple feasible solutions. In contrast, RAM for each disturbed face has
a definitive prediction target and thus is not an ill-posed problem with multiple
solutions. Compared to MAE, RAM is more fine-grained in supervising detectors
to model real face appearance.

2.2 Pseudo-fakes for Deepfake Detection

Instead of training detectors using deepfakes in deepfake datasets, several stud-
ies [1, 2, 4, 22–24] suggested constructing pseudo-fakes for training. Since the
introduced pattern in pseudo-fakes is controllable, detectors learn prior pat-
terns accurately. Specifically, they introduced texture inconsistencies to simulate
swapped faces and guide detectors to learn this prior pattern. For instance, [1]
introduced blur to inner faces to replicate clarity inconsistencies. [2,4,22] blended
two faces with similar facial landmarks to generate texture inconsistencies. More-
over, [23, 24] utilized augmentations to produce inconsistencies within a sin-
gle face, achieving good generalization. Although they generalize well to face
swap deepfakes, their performance on deepfakes generated by reenactment algo-
rithms [25, 26] or Diffusion model [27] drops where texture inconsistency is not
the major artifacts.

3 Method

Different from most deepfake detection methods, which are typically trained
to spot specific deepfake patterns, our approach emphasizes learning real face
appearances through the RAM task. The Face Disturbance strategy is adopted to
produce disturbed faces as training data for RAM, as illustrated in Figure 2. The
subsequent subsections delve into the details of the proposed Face Disturbance
strategy, the definition of the RAM task, and the design of the proposed Recovery
Autoencoder (RAE) model in Figure 3, which simultaneously conducts deepfake
detection and RAM in a multi-task learning manner.

3.1 Face Disturbance

We aim to disturb real faces to pseudo-fake faces as training data. Previous
works devoted to producing texture inconsistency, which is a typical pattern of
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Fig. 2: (a) Face Disturbance with TD and SD. (b) Pseudo-fake examples, where for
each character, from left to right, are real faces, faces with texture anomalies Ita, and
faces with structure anomalies Isa. We highlight their disturbed areas.

face swap deepfakes. Therefore, these detectors exhibited biased generalization
to face swap deepfakes and fell short when detecting reenactment deepfakes
in [28–30]. Similarly, employing these data for RAM enables the detector to learn
real texture appearance only, making the detector struggle to spot reenactment
deepfakes with intact textures. Thus, it is necessary to introduce richer anomalies
to help detectors handle a wider spectrum of deepfakes. As an image can be
regarded as composed of structures and textures [9,10], we categorize anomalies
in fake faces into two categories: structure and texture anomalies. Therefore, we
implement Texture Disturbance (TD) and Structure Disturbance (SD) in Face
Disturbance to produce these anomalies. By adopting this divide-and-conquer
strategy, we comprehensively disturb faces and thus make the detector learn
richer real appearances from both the texture and structure views.

Texture Disturbance The aim of TD is to produce texture anomalies. Given
the inherent diversity of real facial textures, which vary in color, brightness,
and clarity, a reference facial area is needed to discern whether the textures in
other facial areas are abnormal. Namely, texture anomalies lie in the texture in-
consistency between facial parts. There are two existing approaches to produce
such inconsistency: Face Blending [2, 4] using two faces and Partial Augmen-
tation [23, 24] using one face. Face blending involves selecting two faces with
similar poses and then merging the inner region of one face into the other face.
Partial Augmentation involves disturbing either the inner or outer facial texture
through image augmentation. An important advantage of Partial Augmentation
is preserving the original identity, which prevents detectors from being overfitted
to the training set identities and harming generalization [31]. Thus, the proposed
TD adopts a disturbing scheme similar to Partial Augmentation.
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Figure 2 illustrates the process of TD. The input image Iori is duplicated to
Iinner and Iouter, and one of them is augmented in color, brightness, and clarity.
Iinner and Iouter are then fused using a mask M :

Ita = M ⊙ Iinner + (1−M)⊙ Iouter, (1)

where ⊙ is Hadamard production, Iinner is the image that provides the inner face,
Iouter provides the background, and Ita is the fused face with texture anomaly.
M is the mask for the inner face, and its pixel values are between 0 and 1.
Specifically, we first apply a landmark detector to the input image to predict its
landmarks. Next, we calculate the convex hull of the face area in I to initialize M .
To create inconsistent textures between a richer diversity of different areas, we
introduce random deformations to M using a 2D elastic transformation. Before
using Equation 1 to blend Iinner and Iouter, we soften M from a binary mask into
a soft mask with Gaussian Blur to produce Ita with natural boundaries. This
allows the detector to recognize anomalies in long-span texture inconsistencies
rather than merely adapt to local boundary artifacts around M .

Structure Disturbance The aim of SD is to introduce anomalies in the struc-
ture view to complement texture anomalies. To disturb facial structures, we dis-
turb the elements that constitute the facial structure. Clearly, these elements are
facial boundaries and facial features such as the eyes and mouth. We note that
facial landmarks are also positioned at these elements. Therefore, it is intuitive
to disturb areas around landmarks to create disturbances in facial structures.
Besides, to distinguish with TD, it is also necessary for SD not to disturb the orig-
inal texture. To disturb facial structures while keeping textures intact, we copy
and tile the surrounding textures into areas around a few facial landmarks. The
crux lies in the fact that the copy-and-tile operation preserves original textures
and thus is the ideal method for disturbing structures. This aids the detector in
accurately learning real facial structure in RAM, enabling them to distinguish
faces with structural anomalies during detection.

Figure 2 illustrates the process of SD. Given an input face image Iori, we first
detect its facial landmarks. We randomly sample several landmark points and
draw circles around them as the mask M for disturbed areas. We avoid sampling
landmarks of symmetric positions in the face, which enables the detector to rely
on the structure information from the symmetric region to perform RAM. We
then employ the Fast Marching Method [32], a non-learning image inpainting
algorithm, which produces less blur and maintains clearer textures than other
textures replicating algorithms, to copy and tile the surrounding textures to the
disturbed area. After the surrounding textures are tiled to the disturbed areas,
the original structures of the disturbed areas are eliminated and become anoma-
lous. Incorporating SD in Face Disturbance emrichs anomalies in constructed
pseudo-fakes, which helps the detector generalize to a wider range of deepfakes.
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Fig. 3: The proposed RAE is optimized using two learning objects, i.e., Lrec for the
RAM and Lcls for the deepfake detection.

3.2 Real Appearance Modeling

We believe that guiding models to learn the appearances of real faces is more
beneficial for the generalization across deepfake algorithms than learning spe-
cific deepfake patterns. Thus, we propose the novel Real Appearance Modeling
(RAM) task to guide detectors to learn real face appearances. RAM requires the
model to restore anomalous facial areas produced by Face Disturbance to their
original appearances. In comparison to existing methods, our model is guided to
learn patterns of real faces instead of deepfake patterns in training fake faces.
Then, it classifies faces that display anomalies not found in real faces as fake.
Therefore, RAM helps to improve generalization across deepfake algorithms.

Task Definition Given an input face Iori, we obtain pseudo-fake faces Ita
with texture anomalies and Isa with structure anomalies after the Face Distur-
bance strategy. These images are fed into the detector for deepfake detection
and RAM, i.e., classification and densely real appearance recovery. In the train-
ing procedure, the deepfake detection object and RAM object are optimized in
a multi-task learning manner. In deepfake detection, the labels for constructed
pseudo-fakes are 1, while for real faces are 0. In RAM, the recovery target Itarget
for Isa is I, while the recovery target Itarget for Ita is Iouter. This is because Ita
is derived from Iouter and Iinner, so there are two potential recovery targets, and
we fix the target as Iouter. This allows the model to restore the inner texture
from Iinner using the background texture from Iouter as the reference. Thus, the
model is guided to align the inner texture with the outer texture. The feasibility
of recovering pseudo-fakes to original faces lies in the fact that the pseudo-fakes
contains all the information of the corresponding original faces, with only varia-
tions between the inner and outer face regions or partially disrupted structure.

3.3 Recovery Autoencoder

In order to perform both deepfake detection and RAM, the detector in our
framework requires a classification head and a dense prediction head. Thus, we
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incorporate a dense prediction branch for the RAM object into a classifier. This
configuration makes our model resemble an autoencoder, thus named Recovery
Autoencoder (RAE). The RAE is illustrated in Figure 3, which is constructed
based on a vanilla Vision Transformer Base (ViT Base) as the encoder. We adopt
eight transformer layers and a linear projection layer as the decoder, and a Multi-
layer Token Fusion (MTF) block to extract features from both the shallow and
deep encoder layers. We refer readers to [33] for detailed information of the ViT
encoder. Following this, we detail the entire pipeline of RAE.

After the image I ∈ RH×W×3 is fed to the ViT encoder, it is extracted to a
sequence of tokens xl ∈ R(N+1)×D in each encoder layer. Here, l ∈ 1, 2 · · · , L is
the encoder layer index, L = 12 is the depth of the encoder, N is the number
of image patches, and D represents the embedding dimension. We note xL[0] is
the cls token [33] for classification. The classification process involves passing
the cls token to a linear layer and a softmax operator to predict the class
probabilities ŷ ∈ R2, and 2 is the number of classes. Then, the remaining tokens
in xl are reshaped to Rh×w×D where h = w =

√
N , and then inputted to MTF

for cross-layer token fusion and the decoder for RAM.
As there are 12 transformer layers in the ViT encoder, inputting all layers in

xl to MTF is computationally intensive. Thus, we select S = 3 layers at equal
intervals and tokens in these layers as the inputs to MTF to provide shallow,
mid, and deep features. Formally, the selected tokens of shallow, mid, and deep
layers are noted as xs, xm, and xd. In MTF, we first project xs, xm, and xd

into the same feature space and concatenate them to x′ ∈ RS×h×w×D. We
employ a linear layer as the projection layer, which is widely used for aligning
different spaces. After projection, we further extract and fuse both structural
and textural information from different layers. As tokens in different ViT layers
have identical dimensions, we adopt a cross-layer attention mechanism for fusion.
Specifically, MTF predicts weights W ∈ RS×h×w for each token with an MLP.
W is normalized using softmax along the first dimension S, ensuring that the
weights for tokens at the same spatial position across S layers sum to 1. W and
fused tokens xfus ∈ Rh×w×D are derived as:

x′ = concat(xs, xm, xd), (2)
W = softmax(MLP(x′)), (3)

xfus =
∑S

i=0
W [i]× x′[i]. (4)

After extracting xfus, we aim to recover the original face with xfus. While
it might be intuitive to directly feed xfus into the decoder to recover real faces,
this leads to easy mining that outputs the inputted pseudo-fakes directly. This
is because the inputted pseudo-fakes and the target real faces are identical in
the undisturbed areas 1 − M and are similar in disturbed areas M . To avoid
such easy mining, we introduce a learnable mask msk token to replace tokens
of the disturbed areas. Specifically, given a binary mask M for disturbed areas,
it is divided into mask patches m ∈ Rh×w×p×p, where p is the side length of a
patch. If a mask patch is disturbed, the corresponding patch is replaced with msk
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token, and the mask for masked patches is Mpatch. After masking, the masked
tokens xmsk ∈ Rh×w×D are added with positional encodings and then fed into
the decoder to x̂ ∈ RN×p×p×3. Lastly, through a reshape operation, we obtain
the recovered face image Î ∈ RH×W×3 where H = W =

√
N × p. We emphasize

that the masking is applied after encoding. Thus, the classification head and the
predicted ŷ remain unaffected. Moreover, information in masked tokens is fused
to unmasked tokens in encoding, thus necessary information that enables the
recovery is still conveyed to the decoder.

In predicting the real appearance of disturbed areas, RAE extracts texture
and structure features from undisturbed areas and semantic information from
disturbed areas for RAM. Consequently, the decoder can utilize the combination
of these features to model the appearance of disturbed areas through pixel-level
prediction. This enhances the real appearance learned in the encoder, thereby
improving the generalization of the deepfake detection.

3.4 Loss Function

The proposed RAE is optimized to both discriminate disturbed faces and model
real appearance. We use cross-entropy loss Lcls for classification:

Lcls = −y log ŷ − (1− y) log(1− ŷ), (5)

where ŷ is the predicted class probabilities and y is the class label. Besides, we
use the following L1-loss Lrec for RAM:

Lrec =
1

∥Mpatch∥1

∥∥∥Mpatch ⊙ (Î − Itarget)
∥∥∥
1
, (6)

where ∥·∥1 is the L1-norm, Mpatch is the mask for disturbed tokens and thus
Lrec is performed on the disturbed tokens. The total loss L for optimizing RAE
is formulated as the weighted sum of Lcls and Lrec:

L = Lcls + αLrec. (7)

We set α as 0.1 to make Lcls and Lrec converge to the same order of magnitude.

4 Experiments

4.1 Implementation Details

Dataset. We conduct evaluations on six widely used deepfake datasets, i.e.,
FaceForensics++ (FF++) [34], Celeb-DF v2 (CDF) [35], DFD [34], DFDC [36],
DFDC preview (DFDCp) [36], and WildDeepfake (WDF) [37]. FF++ is a deep-
fake dataset containing 4,000 forged videos and 1,000 real videos. All videos are
provided in three compression levels: raw, high-quality (HQ), and low-quality
(LQ). CDF contains 590 real and 5,639 fake videos corresponding to 59 celebri-
ties using an improved face swap algorithm. DFD contains over 3,000 face swap
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videos. DFDC is a large-scale dataset that contains more than 120,000 deepfake
clips generated using eight deepfake techniques. DFDCp is the preview dataset
for the Deepfake Detection Challenge. Its fake videos are generated using two
face swap algorithms. WDF consists of 10,000 real videos and 10,000 online col-
lected fake videos. For DFDC, we use videos with one identity following [8,17,38]
in case of labeling noise. For other datasets, we use the official dataset splits. We
use the real videos of FF++(HQ) to construct pseudo-fakes for training, while
other datasets are for testing.
Preprocess. We extract 10 frames at equal temporal intervals from each video
in training and 32 frames from each video in testing. Then, the faces are cropped
using Retinaface [39], maintaining a 15% margin around each face. Subsequently,
we utilize Dlib [40] to extract 81 facial landmarks for every face and save them
to a key-value database to boost the Face Disturbance process.
Face Disturbance Details. As for the texture augmentations involved in gen-
erating Ita, we employ RGBShift, HueSaturationValue, RandomBrightnessCon-
trast, Downscale, and Sharpen to augment textures of either Iinner or Iouter to
produce inconsistencies. As for the disturbed areas in generating Isa, we draw
circles around 2 to 6 random landmarks with a radius sampled between 1/14
and 1/16 of the side length. The number and size of the sampled circles for SD
ensure have been found empirically to aid in the effectiveness of RAM tasks as
shown in supplementary. Then, all images are resized to 224×224 as inputs.
Training Details. We use a ViT Base pretrained on ImageNet [41] to initial-
ize our RAE. RAE is trained using SAM [42] optimizer with a learning rate of
8e-4 and a batch size of 192 for 100 epochs, and we use cosine decay as the
learning rate scheduler. Each batch consists of 96 real faces, 48 disturbed faces
with texture anomalies, and 48 disturbed faces with structure anomalies. In the
PyTorch framework, training with automatic mixed precision requires approxi-
mately 60GB of GPU memory.

4.2 Cross-Dataset Evaluation

In cross-dataset evaluation, detectors are trained using faces in FF++(HQ) and
evaluated on other datasets to assess their generalization to unknown deepfake
techniques. Here, we compare the proposed RAE with recent deepfake detection
methods. The results are listed in Table 1, and we annotated the input type
and training faces. RAE achieves top generalization performance and outper-
forms state-of-the-art detectors on CDF, DFDC, and DFDCp by 2.6%, 3.4%,
and 3.2%, respectively. Compared to detectors trained using fake faces, such
as TALL and IDDDM, the superior generalization of RAE demonstrates the
effectiveness of using Face Disturbance to generate pseudo-fakes for training.
Compared to detectors trained using pseudo-fakes with texture inconsistency,
such as SBI and AltFreezing, RAE exhibits better generalization on face swap
datasets such as CDF and DFDCp. As the design of TD is similar to previ-
ous works, the effectiveness of RAE against face swap deepfakes indicates RAM
helps to spot richer anomalies through learning real appearance. Moreover, pre-
vious detectors trained with pseudo-fakes fail to exhibit better performance on
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Table 1: Cross-dataset evaluation of deepfake detection methods on CDF, DFD,
DFDC, DFDCP, and WDF. All models are trained using FF++(HQ). All compared
results are video-level AUC and cited from the original papers or their subsequences.

Method Input Type Year Training Set Test Set AUC (%)
Real Fake Pseudo-fake CDF DFD DFDC DFDCp WDF

PCL+I2G [4] Frame 2021 ✓ ✓ 90.0 99.0 67.5 74.4 -
ENB4+SBI [23] Frame 2022 ✓ ✓ 92.9 98.2 72.0 85.5 -

Mover [20] Frame 2023 ✓ ✓ 87.1 - - 78.9 82.0
RFFR [21] Frame 2023 ✓ ✓ 89.0 - 67.8 - -

IDDDM [31] Frame 2023 ✓ ✓ 91.2 - 71.5 - -
SeeABLE [43] Frame 2023 ✓ ✓ 87.3 - 75.9 86.3 -

FTCN [38] Clip 2021 ✓ ✓ 86.9 94.4 71.0 74.0 -
RealForensics [17] Clip 2022 ✓ ✓ 86.9 - 75.9 - -
AltFreezing [24] Clip 2023 ✓ ✓ ✓ 89.5 98.5 - - -

TALL [44] Clip 2023 ✓ ✓ 90.8 - 76.8 - -
RAE (Ours) Frame 2024 ✓ ✓ 95.5 99.0 80.2 89.5 88.4

Table 2: In-dataset evaluation on four sub-
sets in FF++(HQ). †indicates reproduced
on FF++(HQ).

Method Test Set AUC(%)
DF F2F FS NT Avg

SLADD [22] - - - - 98.4
ENB4+SBI † [23] 99.2 99.1 99.0 96.7 98.5

SeeABLE [43] 99.2 98.8 99.1 96.9 98.5
RAE(Ours) 99.6 99.1 99.2 97.6 98.9

Table 3: Frame-level FP rate(%) on real
face datasets. Lower FP is better. All
models are trained on FF++(HQ).

Method Test Set FP(%)↓
FFHQ VoxCeleb

RECCE [45] 62.3 41.7
UIA-ViT [46] 40.6 18.9

ENB4+SBI [23] 57.7 59.2
RAE(ours) 36.9 6.9

DFDC as it contains reenacted faces that are difficult to be imitated by previ-
ous pseudo-fakes. Our method demonstrates a major improvement compared to
previous methods as SD helps RAE spot structure anomalies in reenacted faces.

4.3 In-dataset Evaluation

In addition to cross-dataset evaluation, another frequently used evaluation proto-
col is in-dataset evaluation. We follow the protocol in [43] to conduct evaluations
on the four types of deepfakes in FF++, i.e., two types of face swap deepfakes
DF and FS, and two types of face reenactment deepfakes F2F and NT, where
the training data includes both deepfake and pseudo-fake samples. This evalua-
tion protocol helps to assess the ability of our method in enhancing in-dataset
deepfake detection. The results are listed in Table 2. The overall performance
of RAE on all four deepfake types surpasses previous works. Specifically, RAE
outperforms the compared methods in detecting reenacted faces generated by
the two reenactment algorithms, i.e., F2F and NT. RAE achieves a detection
AUC of 97.6% on NT. This indicates that combining SD and the learning tar-
get RAM aids in recognizing distorted facial features in NT deepfakes, while
previous works trained with texture inconsistency pseudo-fakes fail.
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4.4 Evaluating RAE on Real Face Datasets

In practical deployment, a low False Positive rate (FP) is important for a deep-
fake detector, which indicates a low ratio of misclassifying real faces as fakes.
For instance, a detector with a low FP rate in an authentication system helps to
avoid having users repeatedly submit their portraits, thereby enhancing the user
experience. Besides, at the same AUC, a lower FP helps reduce the adjustment
of classification thresholds in practical applications. We use the mega-scale face
dataset VoxCeleb [47], and the high-quality face dataset FFHQ [48] to test the
FP of the proposed RAE on real faces. For comparison, we used three open-
source detectors, RECCE [45], SBI [23], and UIA-ViT [46].

The FP scores are listed in Table 3. Compared to existing arts, RAE achieves
the lowest FP on these two datasets. In stark contrast, the average FP scores
of the compared RECCE and SBI are larger than 50%, which indicates they
misclassified more than half real faces in these two datasets. This validates that
RAM successfully makes the detector learn real face appearances and the trained
RAE is less likely to classify a real face as fake.

4.5 Evaluation on Diffusion Deepfakes

In the cross-dataset evaluation, we validated the generalizability of our frame-
work across five popular deepfake datasets. However, we noticed these datasets
primarily consist of face swap and reenactment deepfakes. As a result, the effec-
tiveness of detectors against other types of deepfakes, such as diffusion-generated
faces, was not adequately evaluated. Given the fact that a proliferating number
of deepfakes are diffusion-generated faces, we conduct evaluations on a diffu-
sion face dataset DeepFakeFace(DFF) [27]. DFF is synthesized by Stable Dif-
fusion Text2Img (T2I), Stable Diffusion Inpaint (Inpaint) [49], and InsightFace
(IF) [50]. We conduct evaluation using the three subsets in DFF. For all com-
pared methods, we use their official weights.

The evaluation results are listed in Table 4. RAE outperforms the compared
methods in all three subsets in DFF. More significantly, RAE attains an AUC
of 70.8% on average, which improves existing SOTA methods by 2.2%. In stark
contrast, the AUC scores of RECCE and UIA-ViT on T2I are less than 50%,
which indicates they perform worse than randomly guessing. The results on
DFF verify the effectiveness of our proposed method in enhancing the detector’s
generalization to a wider range of deepfakes.

4.6 Ablation Study

We conduct ablations to verify the effectiveness of the RAM task, Face Distur-
bance strategy, and the MTF block. A ViT Base trained using Ita and classifi-
cation task is used to serve as the Baseline as it is similar to several previous
detectors [1, 23]. We incrementally add the proposed RAM task, SD, and MTF
block to the baseline to observe their effectiveness. The results are listed in Table
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Table 4: Frame-level AUC on three sub-
sets of diffusion deepfakes in DFF [27]. All
models are trained on FF++(HQ).

Method Test Set AUC(%)
T2I Inpaint IF Avg

RECCE [45] 35.1 51.5 63.1 49.9
UIA-ViT [46] 45.2 55.8 74.0 58.3

ENB4+SBI [23] 62.8 71.4 71.5 68.6
RAE(ours) 64.1 73.0 75.2 70.8

Table 5: Ablation studies for the pro-
posed Structure Disturbance, RAM task,
and MTF module.

Method Test set AUC(%)
CDF DFDC DFDCp

Baseline 92.5 75.5 85.9
+RAM 94.2 77.4 88.6

+Isa 94.7 79.1 88.4
+MTF 95.5 80.2 89.5
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Fig. 4: Visualizations of RAM. The left are recovery results for Isa while the right are
results for Ita.

5, which show that each of them contributes to enhancing generalization. Com-
pared to solely using a classification task, adding the RAM task significantly
improves generalization by 2.2% on average. Furthermore, utilizing Isa to model
real facial structures mainly improves the generalization on the DFDC dataset,
which includes reenactment deepfakes. Besides, the MTF block aids in improving
generalization by leveraging multi-layer features for modeling real appearances.

4.7 Visualization

Face Recovery. We visualize the recovered disturbed faces to verify whether
RAE learned real face appearances. The inputted disturbed faces, corresponding
original faces, masks for disturbed facial areas, and recovered faces are presented
in Figure 4. We observe that our model successfully recovers most of the per-
turbed areas within the anomalous faces. Though the recovered faces are not
explicitly clear, the anomalous patterns are largely eliminated. For faces with
structure anomalies, disturbed areas are finely recovered to their original struc-
ture appearance. For faces with texture anomalies, the texture pattern of the
inner faces is aligned to normal appearance. This demonstrates the feasibility
of modeling real appearance by recovering anomalous faces to their original ap-
pearance, which provides more fine-grained and interpretable supervision.
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(a) Baseline model. (b) Our model.

Fig. 5: Distributions of learned representations for faces in FF++(HQ) [34] in the
baseline model(a) and our model(b).

Feature Distribution. We apply t-SNE [51] to visualize the features in the
last layer of the encoder to illustrate the effect of RAM. We use a ViT Base as
the baseline detector and train it using real and fake faces in FF++(HQ). Then,
we use the trained RAE and baseline detector to extract features from the test
set of FF++(HQ). The results are illustrated in Figure 5. The baseline model
learns specific features for each deepfake algorithm, thus separating deepfakes of
different types in the feature space. In contrast, the proposed RAE aggregates
real faces to a compact cluster in the feature space, which indicates it classifies
deepfakes based on the learned general fake patterns. Moreover, RAE mixes
different types of deepfakes in the feature space, which confirms that RAM helps
to learn general deepfake representations. Compared to the baseline model, the
anomalous features learned by RAE are more general across different deepfakes,
thus demonstrating better generalization.

5 Conclusion

In this paper, we address the general deepfake detection through guiding the
detector to learn real face appearance by recovering original faces from disturbed
faces. Anomalies in both the texture and structure views are introduced to faces
through the proposed Face Disturbance, and the detector is guided to recover
real appearances from these disturbed faces through the proposed RAM task.
We then propose the RAE model to conduct both the deepfake detection and the
RAM task. Extensive experiments demonstrate the effectiveness of our method
against existing methods in general deepfake detection. Future work involves
scaling our method with large-scale human face datasets.

This project is supported by the National Key Research and Development
Program of China (No.2022YFB2702500)
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