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Abstract. For the visible-infrared person re-identification (VI-ReID)
task, one of the primary challenges lies in significant cross-modality dis-
crepancy. Existing methods struggle to conduct modality-invariant in-
formation mining. They often focus solely on mining singular dimen-
sions like spatial or channel, and overlook the extraction of specific-
modality multi-dimension information. To fully mine modality-invariant
information across a wide range, we introduce the Wide-Ranging Infor-
mation Mining Network (WRIM-Net), which mainly comprises a Multi-
dimension Interactive Information Mining (MIIM) module and an Auxiliary-
Information-based Contrastive Learning (AICL) approach. Empowered
by the proposed Global Region Interaction (GRI), MIIM comprehen-
sively mines non-local spatial and channel information through intra-
dimension interaction. Moreover, Thanks to the low computational com-
plexity design, separate MIIM can be positioned in shallow layers, en-
abling the network to better mine specific-modality multi-dimension in-
formation. AICL, by introducing the novel Cross-Modality Key-Instance
Contrastive (CMKIC) loss, effectively guides the network in extracting
modality-invariant information. We conduct extensive experiments not
only on the well-known SYSU-MM01 and RegDB datasets but also on
the latest large-scale cross-modality LLCM dataset. The results demon-
strate WRIM-Net’s superiority over state-of-the-art methods.
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1 Introduction

Person re-identification aims to match images of a person of interest in a query
set with those in a gallery set, which may have been captured by different cam-
eras [48]. Existing methods [1, 2, 18, 25, 30, 48] have achieved remarkable perfor-
mance in visible-light person re-identification. However, visible-light cameras face
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Fig. 1: Example of noticeable modality discrepancy between cross-modality images.
The motivation behind the proposed WRIM-Net is to mine modality-invariant infor-
mation across a wide range (e.g. non-local spatial interaction, channel interaction,
specific-modality, shared-modality) and to guide the network in better mining invari-
ant information through a novel cross-modality loss.

challenges in capturing clear images under poor lighting conditions. To address
this deficiency, infrared cameras are widely employed in modern surveillance sys-
tems. Based on this, the VI-ReID task has garnered increasing attention. The
VI-ReID task is to match individuals in a gallery set who share the same ID but
belong to the opposite modality (infrared or visible).

VI-ReID is an immensely challenging task, primarily attributed to significant
modality discrepancies, as shown in Figure 1. Existing methods can be broadly
categorized into two main types: feature-level methods and image-level meth-
ods. Feature-level methods aim to map cross-modality features into a common
space [5,38,43,48], while image-level methods [6,28,29,33] generate diverse-mode
images to reduce the modality gap. These methods demonstrate outstanding
performance in VI-ReID tasks. However, they still fall short in fully mining
modality-invariant information. On one hand, the feature-level methods easily
overlook specific-modality multi-dimension information. On the other hand, the
image-level methods encounter difficulties in extracting sufficient information
due to the scarcity of image pairs.

In Figure 1, we observe significant differences in images across different
modalities. Drawing inspiration from the human visual system, we prioritize
the overall shape and the connections between details without focusing on very
subtle details per se. For example, in the spatial dimension, our primary focus lies
in the non-local spatial relationships, such as contour, posture, and proportions
between different body parts (head, arms, knees, etc.). In the channel dimension,
due to significant differences in color between modalities, our focus is on infor-
mation such as texture, which reflects variations in color. All of these constitute
modality-invariant information, an aspect where the methods mentioned above
are less proficient at mining. Specifically, these methods struggle to simultane-
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Fig. 2: Framework of WRIM-Net. Two separate MIIMs are inserted after each of the
first two blocks of the network and a shared MIIM is inserted after each of the last
two blocks of the network. Apart from separate MIIM, all other network parameters
are shared. AICL uses the traditional ID loss after Block 3 of the network and CMKIC
loss after Block 4 of the network.

ously explore information across multi-dimensions and multi-modalities (specific
and shared modality). For example, AGW [48], DDAG [47], and MPANet [38]
employed attention mechanism for extracting information on spatial or channel
dimension. However, they applied attention mechanisms in either spatial or chan-
nel dimensions, neglecting multi-dimension interaction. Furthermore, they only
consider deep layers, disregarding the significance of specific-modality informa-
tion. While some methods like AGW [48] proposed a dual-stream architecture to
extract specific-modality information, they merely segregate different modalities
without specific-modality multi-dimension information mining.

Building upon the above issues and aiming to mine modality-invariant in-
formation across a wide range, we propose the Multi-dimension Interactive In-
formation Mining (MIIM) module, as illustrated in Figure 3. Enhanced by the
well designed Global Region Interaction (GRI) module, MIIM establishes long-
range dependencies through global spatial interactions, effectively extracting
non-local spatial-related information such as posture and shape, and simulta-
neously extracts channel-related information like texture through channel inter-
actions. Furthermore, by being placed in both shallow and deep layers, MIIM
captures specific-modality and shared-modality multi-dimension information.

To address the significant modality gap in VI-ReID tasks, guiding the net-
work in better mining modality-invariant information is crucial. [27, 31] suggest
that contrastive loss aids the network in mining invariant information by attract-
ing positive pairs and separating negative samples. Building upon the aforemen-
tioned considerations, We introduce an Auxiliary-Information-based Contrastive
Learning (AICL) approach, depicted in the right portion of Figure 2, which
devises a Cross-Modality Key-Instance Contrastive (CMKIC) loss. The core of
AICL lies in employing the CMKIC loss to guide the network in mining modality-
invariant information. Additionally, an extra layer of auxiliary information is
utilized to further enhance the mining of modality-invariant information.

In summary, our main contributions are summarized below:
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– We present the Wide-Ranging Information Mining Network (WRIM-Net). It
enables deep information mining across a broad range, encompassing two as-
pects: (1) Multiple dimensions: spatial and channel-dimension. (2) Multiple
modalities: specific-modality and shared-modality.

– A plug-and-play Multi-dimension Interactive Information Mining (MIIM)
module is designed. It effectively establishes non-local spatial and channel
interactions to better mine modality-invariant information.

– An Auxiliary-Information-based Contrastive Learning (AICL) approach is
devised, employing the novel Cross-Modality Key-Instance Contrastive (CM-
KIC) loss. AICL leverages auxiliary information and CMKIC loss to more
effectively capture modality-invariant information.

– Extensive experiments conducted on three benchmark datasets demonstrate
the superiority of our model over previous methods. WRIM-Net achieved
the best performance of almost all the metrics on all three benchmarks.

2 Related Work

2.1 Visible-Infrared Person Re-Identification

VI-ReID is a challenging task due to the modality differences between infrared
and visible images. Existing image-level methods fuse modalities at the data
level to alleviate the modality discrepancy [7,28,29], while feature-level methods
map visible (VIS) and infrared (IR) features into a common space [5,38,43,48].
Often, image-level methods suffer from a lack of high-quality VIS-IR image pairs,
leading to noise disruption. Feature-level methods are limited due to insufficient
modality-invariant information mining. To better capture specific-modality and
shared-modality information, the dual-stream network architecture is commonly
employed for VI-ReID tasks [16, 44, 45, 48], where the parameters are separated
in the shallow layers to obtain specific-modality information and shared in the
deep layers to obtain shared-modality information. However, they merely seg-
regate images from different modalities without multi-dimension information
interaction. Our proposed WRIM-Net leverages non-local spatial and channel
interactions to extract richer long-dependencies information. Additionally, by
strategically placing MIIM at different positions, it effectively explores both
specific-modality and shared-modality multi-dimension information.

2.2 Attention Mechanisms

Attention mechanisms have found widespread application in visual tasks to pro-
mote neural network performance by improving visual representation [12, 26,
32, 35]. In the field of person re-identification, attention mechanisms have been
incorporated as demonstrated in [2,32,40,48]. To capture long-range spatial re-
lationships, [40] introduced second-order non-local attention modules; [48] in-
troduced the non-local [32] mechanism for attentional feature extraction within
the last two blocks of the network. DDAG [47] extracted potent features for
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cross-modality person re-identification by employing spatial attention modeling
on the local features of pedestrians. However, most of the methods primarily
employed attention mechanisms in the deep layers of the network, leading to
the neglect of mining specific-modality multi-dimension information. The MIIM
we propose here effectively mitigates this issue. MIIM achieves non-local spatial
interactions through spatial compression and Global Region Interaction (GRI),
and channel interactions via channel compression and expansion. The spatial
and channel compression of MIIM effectively reduces computational complexity,
enabling MIIM to be positioned in shallower layers for specific-modality multi-
dimension information mining.

2.3 Contrastive Learning

Contrastive learning plays an important role in self-supervised learning [3, 10,
39,49], allowing the neural network to extract invariant features efficiently. Con-
trastive learning also has a significant impact on image-text multi-modalities
learning [15, 22, 51]. [22] used contrastive learning to perform modality align-
ment of images and text for cross-modality retrieval. [15,51] employed contrastive
learning initially to achieve modality alignment and shared networks for cross-
modality feature learning. [41] employed joint contrastive learning to acquire
color-invariant features in unsupervised VI-ReID tasks. [14] introduced a con-
trastive regularization loss to regularize the model, where positive samples for
this contrastive loss involve mixing part descriptors with the same identity. Un-
like the previous methods, our CMKIC loss neither employs additional methods
to create data-augmented positive samples nor contrasts a single positive for
each anchor. Instead, our CMKIC loss introduces a novel approach for selecting
positive samples, specifically choosing top-K samples with the same ID as the
anchor, different modalities, and the least similarity. This approach increases
task difficulty, enabling the network to mine modality-invariant information.

3 Methodology

In this section, we provide a detailed description of the proposed method for the
VI-ReID task. Our network uses a pre-trained single-stream network (ResNet50 [11])
to extract visible and infrared features. As shown in Figure 2, the proposed
method consists of two main components. (1) MIIM module. MIIM enhances
its non-local spatial interaction capability by incorporating the spatial compres-
sion and GRI module. (2) AICL approach. AICL utilizes the CMKIC loss
to effectively guide the network in learning modality-invariant information and
incorporates auxiliary information to further enhance its extraction.

3.1 Multi-dimension Interactive Information Mining Module

MIIM improves information extraction in several ways: (1) Employing global
spatial interactions and establishing long-range dependencies to capture non-
local spatial-related information, such as shape, pose, and object proportions.
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Fig. 3: Diagram of MIIM module. The input features first pass through a standard
batch normalization layer and then pass through the Spatial-Channel Compress (SCC)
component to compress the size. Subsequently, the feature is passed to the Global
Region Interaction (GRI) component, which employs Multi Head Attention (MHA).
Finally, the feature weights are restored to the same size as the input features through
the Spatial-Channel Restore (SCR) component. ⊗ denotes element-wise multiplication.

(2) Employing channel interactions to capture channel-related information, such
as texture. (3) Employing the separate MIIM in the shallow layers to extract
specific-modality multi-dimension information (often overlooked by many exist-
ing methods) and the shared MIIM in the deep layers to extract shared-modality
multi-dimension information. The MIIM module primarily comprises three com-
ponents: Spatial-Channel Compression (SCC), Global Region Interaction (GRI),
and Spatial-Channel Restore (SCR). The input features first pass through a stan-
dard Batch Normalization (BN) layer and then proceed to the SCC. In SCC,
features undergo two compressions. The first compression is done with a convo-
lutional layer, and the resulting features serve as the Query (Q) for subsequent
GRI. The second compression is executed by employing average pooling on the
aforementioned features. Then, the resulting features serve as the Key (K) and
Value (V) components of GRI. This approach not only achieves non-local spatial
interaction but also further reduces computational complexity.

Specifically, the input features F1 ∈ RH1×W1×C1 pass through a convolu-
tional layer with a kernel size and stride of rs, resulting in F2 ∈ RH2×W2×C2 .
F2 undergoes average pooling with kernel size and stride of ks, yielding F3 ∈
RH3×W3×C2 . The resulting F2 and F3 features are flattened and then fed into
the Global Region Interaction (GRI) component, which employs Multi Head
Attention (MHA) [26]. In this setup, the flattened F2 functions as the Query
(Q), while flattened F3 serves as both the Key (K) and Value (V). The resul-
tant features, denoted as F4 , are obtained from the GRI module’s operation, as
indicated by the following formula:

F4 = GRI(Q = F2 ,K = F3 , V = F3 ). (1)

The specific implementation of MHA is detailed in [26], where the number
of heads is set to 8. To better leverage the positional information, we conduct
sin-cos positional embedding [26]. In the processing of the GRI component, we
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utilize higher-resolution F2 as the Query (Q), while lower-resolution F3 serves
as the Key (K) and Value (V), thereby shifting the focus of spatial interaction
from interactions among all spatial points to a greater emphasis on long-range
spatial regions, enabling global spatial interaction. After passing through the
GRI component, the spatial resolution of F4 remains the same as that of F2 . This
design further reduces the computational complexity, enabling the placement of
this module in the shallower layers of networks.

Next, C2 is restored to the original number of C1 channels using a linear
layer W , similar to Senet [12], resulting in feature F5 . Subsequently, a sigmoid
activation is applied to the F5 to generate weights M1 :

M1 = sigmoid(W (F5 )). (2)

M1 is then reshaped and upsampled to recover the original spatial scale, re-
sulting in the formation of weights M2 ∈ RH1×W1×C1 . Finally, the input features
F1 are element-wise multiplied with M2 and then passed through the ReLU and
BN layers to produce the output feature F6 :

F6 = BN(ReLU(F1 ⊗M2 )). (3)

In our implementation, we significantly reduce the complexity of the module
by compressing the channels and spatial dimensions. In the shallow layers of
the network, the features have a larger spatial size, so we primarily focus on
spatial dimension compression. Through judicious compression, we not only es-
tablish more effective long-range spatial dependencies but also enable MIIM to
be conveniently implemented on shallow specific modalities. In the deeper layers
of the network, characterized by longer channel lengths, our primary focus is on
channel compression. Compressing both ensures that the network maintains a
lightweight level of complexity during the following GRI operations.

To enable MIIM to better assist the network in information mining, we
employ separate MIIM for each modality after Block1 and Block2 to perform
specific-modality multi-dimension information mining, as shown in Figure 2. Fol-
lowing Block3 and Block4, a shared MIIM is applied, which allows the network
to perform the mining of shared-modality multi-dimension information.

3.2 Auxiliary-Information-based Contrastive Learning Approach

In this subsection, we introduce the proposed AICL approach, as illustrated in
Figure 2. The approach involves employing our designed CMKIC loss behind the
block4 layer of the network to guide the learning of modality-invariant features.
Subsequently, auxiliary information of the block3 layer is leveraged to enhance
the mining of modality-invariant information. Our CMKIC loss is different from
common contrastive loss. It doesn’t solely use one augmentation of the anchor
as the positive sample. Instead, it selects the top-K least similar samples (Key-
Instance) with the same ID but different modalities as positive samples. As
the anchor and positive samples are from different modalities, this approach
facilitates the network’s exploration of crucial modality-invariant information.
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Following the approach used in PCB [25] and MGN [30], we partition P5 ,
the features extracted by Block4, followed by a global average pooling layer,
to obtain local features R1 to RN . Also, another global average pooling layer
is directly applied to P5 to obtain the global feature Rg . Rg is then passed
through a MLP head [3, 4] to obtain Z5 , which is formulated as:

Z5 = W2 (ReLU(BN(W1 (Rg )))), (4)

where W1 and W2 represent a linear layer. Then, CMKIC loss is applied to
Z5 .

CMKIC loss serves as the core component enabling AICL to fulfill its mission.
The design of our CMKIC loss for WRIM-Net is as follows:

LCMKIC_P5_V I =
∑

i∈Ivis

−1

top-K

∑
p∈Pinfra(i)

log
exp(zi ·zp/τ)∑

a∈A(i) exp(
zi ·za/τ)

, (5)

The VI in LCMKIC_P5_V I indicates that the anchor represents the Visible
feature, while the other samples involved in the loss correspond to the Infrared
light features. Ivis denotes the set of visible samples in the current training
batch. Pinfra(i) represents the set of the top-K least similar infrared samples
with the same ID as visible sample i. z is the feature obtained after applying
L2 normalization to the feature z5 from Figure 2. zp refers to the feature z
corresponding to a sample extracted from the set Pinfra(i), while za denotes the
feature z corresponding to a sample extracted from the set A(i). Here, A(i)
represents the set of all samples in the infrared modality with different ID from
i, as well as all samples in Pinfra(i). Similarly, for the case where the anchor
is the infrared feature, the corresponding CMKIC loss is LCMKIC_P5_IV (See
supplementary materials for the formula). And the final LCMKIC_P5

is:

LCMKIC_P5
=

1

2
(LCMKIC_P5_IV + LCMKIC_P5_V I). (6)

In addition, the global and local features are also jointly optimized using a
cross-entropy classification loss as:

Lcls_P5 =

(
E(− log p(Rg )) +

∑N
i=1 E(− log p(Ri ))

)
N + 1

, (7)

where p() is the probability that the feature is correctly predicted by the
classifier and E represents the expectation.

On the other hand, to fully leverage the auxiliary information from the ad-
ditional layer, we use the ID loss to guide the features generated by Block3, P4 .
Similar to those for P5 , we partition P4 and obtain global features denoted as
Qg and local features denoted as Q1 to QM . We apply the triplet loss [23] to
the global features Qg and cross-entropy loss for both the global features Qg

and the local features. Finally, the ID loss is written as:

LID_P4 = Lcls_P4 + Ltri_P4 . (8)
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The loss function Lcls_P4
is similar to Lcls_P5

. The detailed information for
Lcls_P4

and Ltri_P4
can be found in supplementary materials.

3.3 Training and Inference

During training, we consider the three losses, CMKIC, the cross-entropy classi-
fication loss, and the ID loss, and have the total loss as a weighted sum:

Ltotal = Lcls_P5
+ λ1LCMKIC_P5

+ λ2LID_P4
, (9)

where the hyper-parameters λ1 and λ2 are used to balance the contribution
of each loss function. During the testing phase, we combine Rg , R1 to RN , Qg

and Q1 to QM to form the final features for inference.

4 Experiments

4.1 Datasets and Evaluation Setting

SYSU-MM01 [36] dataset comprises 491 identities captured by four visible
(VIS) cameras and two infrared (IR) cameras, including two modes: All-Search
and Indoor-Search. The training set comprises 22,258 visible images and 11,909
infrared images of 395 unique individuals. The test set contains 96 IDs and uses
3,803 infrared images for the query set.

RegDB [20] dataset consists of 412 pedestrians, each of which has 10 visible-
light images and 10 infrared images. It randomly divides images of 412 individ-
uals into two equal parts to create the training and test sets. RegDB has two
test modes, including the VIS2IR setting and the IR2VIS setting.

LLCM [53] dataset is the latest VI-ReID benchmark, which comprises 30,921
images from 713 unique identities. The testing set includes 13, 909 images from
351 different identities. Both VIS2IR and IR2VIS modes are employed for evalu-
ating the performance of the VI-ReID. Compared to RegDB and SYSU-MM01,
LLCM poses a greater challenge, primarily in three aspects: (1) more images
from various perspectives. (2) complex low-light conditions. (3) a longer time
span. These collectively make the VI-ReID task considerably more challenging.

Evaluation metrics: To make fair comparisons, all experiments in this
study use two commonly used metrics to evaluate the performance: Rank-1 ac-
curacy and mean average precision (mAP).

4.2 Implementation details

We chose the pre-trained ResNet50 as the backbone. The BNNeck [18] was used
in the classification head, and the features of the last layer were split according to
the ideas of PCB [25] and MGN [30]. For SYSU-MM01 and LLCM, the number
of split local features is N = 2 and M = 0, respectively. For RegDB, N = 6 and
M = 2. The image size is resized to 384 × 144. The remaining implementation
details can be found in the supplementary materials.
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Table 1: Comparison of Rank-1 (%) and mAP (%) performances with the state-
of-the-art methods on SYSU-MM01 and RegDB. R1 is the abbreviation of Rank-1.
Red denotes the optimal value under the current metric, while blue represents the
suboptimal value.

SYSU-MM01 RegDB

Methods
All-Search Indoor-Search VIS2IR IR2VISSingle-shot Multi-shot Single-shot Multi-shot

R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP
LbA [21] 55.4 57.4 57.4 59.1 - - - - 74.2 67.6 72.4 65.5
HCT [16] 61.7 57.5 - - 63.4 68.2 76.5 65.1 91.1 83.3 89.3 81.5
CM-NAS 62.0 60.0 68.7 53.5 67.0 73.0 - - 84.5 80.3 82.6 78.3
MCLNet [9] 65.4 62.0 - - 72.6 76.6 79.6 66.6 80.3 73.1 75.9 69.5
SMCL [34] 67.4 61.8 72.2 54.9 68.8 75.6 83.9 79.8 83.1 78.6
MPANet [38] 70.6 68.2 75.6 62.9 76.7 81.0 84.2 75.1 83.7 80.9 82.8 80.7
MAUM [17] 71.7 68.8 - - 77.0 81.9 - - 87.9 85.1 87.0 84.3
CMT [13] 71.9 68.6 80.2 63.1 76.9 79.9 84.9 74.1 95.2 87.3 92.0 84.5
MSCLNet [52] 77.0 71.6 - - 78.5 81.2 - - 84.2 81.0 83.9 78.3
SGIEL [8] 77.1 72.3 - - 82.1 83.0 - - 92.2 86.6 91.1 85.2
PartMix [14] 77.8 74.6 80.5 69.8 81.5 84.4 88.0 80.0 85.7 82.3 84.9 82.5
DEEN [53] 74.7 71.8 - - 80.3 83.3 - - 91.1 85.1 89.5 83.4
MUN [50] 76.2 73.8 - - 79.4 82.1 - - 95.2 87.2 91.9 85.0
CAL [37] 74.7 71.7 77.1 64.9 79.7 83.7 87.0 78.5 94.5 88.7 93.6 87.6
WRIM-Net 77.4 75.4 83.2 71.1 86.2 88.1 92.1 84.6 94.5 90.5 93.7 89.7

4.3 Comparison with state-of-the-art methods

SYSU-MM01 and RegDB: Table 1 compares our method with SOTA meth-
ods. From Table 1, it can be observed that our model achieved the best results by
almost all the metrics on both datasets, with only a slight gap in the Rank-1 met-
ric for one mode in RegDB and SYSU-MM01. Specifically, on the SYSU-MM01
dataset, WRIM-Net achieves substantial improvement in the Indoor-Search sce-
nario and Multi-shot mode.

LLCM: Table 2 compares WRIM-Net and previous methods on the LLCM
dataset. The results show that our model consistently outperforms the state-of-
the-art, with all metrics significantly exceeding it.

4.4 Ablation Study

The WRIM-Net consists two components: the MIIM module and the AICL ap-
proach. In this section, we perform a detailed ablation study to evaluate the role
of each component. The experiment was done on the LLCM dataset. The results
are shown in Table 3.

Baseline. The baseline method uses ResNet50 as the backbone network,
followed by the BNNeck [18], and finally a fully connected layer as the classifier.
The baseline employs both global and local features, guiding P5 solely through
cross-entropy loss, without auxiliary information of P4 .
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Table 2: Comparison of Rank-1 (%) and
mAP (%) with the state-of-the-art on LLCM.

Method
LLCM

IR2VIS VIS2IR
R1 mAP R1 mAP

DDAG [47] 41.0 49.6 48.5 53.0
LbA [21] 44.6 53.8 50.8 55.9
AGW [48] 46.4 54.8 56.0 59.1
CAJ [46] 48.8 56.6 56.5 59.8
DART [42] 52.2 59.8 60.4 63.2
MMN [54] 52.5 58.9 59.9 62.7
DEEN [53] 54.9 62.9 62.5 65.8
WRIM-Net 58.4 64.8 67.0 69.2

Table 3: Evaluation of different
components of the proposed method
on LLCM in terms of Rank-1 (%)
and mAP (%). The mode is IR2VIS.

Baseline MIIM AICL Rank-1 mAP
✓ × × 50.42 57.05
✓ ✓ × 55.31 61.56
✓ × ✓ 54.83 61.27
✓ ✓ ✓ 58.38 64.75

Effectiveness of MIIM and AICL. As shown in Table 3, the results are
significantly improved with the addition of MIIM compared to the baseline. This
implies that the MIIM module effectively mines modality-invariant information.
Table 3 also reveals significant improvements in the model’s capabilities with
the inclusion of AICL. Specifically, introducing MIIM alone results in a 4.89%
increase in Rank-1 and a 4.51% increase in mAP. Introducing AICL alone leads
to a Rank-1 increase of 4.41% and an mAP increase of 4.22%. When both MIIM
and AICL are incorporated into the model, the Rank-1 further rises by 7.96%,
and the mAP increases by 7.7%. For further details on the ablation of fusion
modes within the MIIM’s internal SCR module and auxiliary information in
AICL, please refer to the supplementary materials.

Impact of Different Configurations of MIIM. The results of differ-
ent configurations of MIIM are presented in Table 4. From Table 4, it can be
observed that when employing separate MIIM after Block 1 and 2 (Block1/2)
alone, the Rank-1 accuracy increases by 2.99%, and the mAP increases by 2.76%
compared to the configuration without MIIM. Furthermore, utilizing only shared
MIIM after Block 3 and 4 (Block3/4) yields a 1.33% increase in Rank-1 and a
1.45% improvement in mAP. It is evident that placing MIIM in shallower layers
of the network for specific-modality multi-dimension information mining, an as-
pect overlooked by existing methods, can lead to more significant performance
improvements. This is attributed to the innovative and low-complexity design of
MIIM. For more details on the ablation studies of MIIM configurations, please
refer to the supplementary materials.

Comparison with triplet loss and common contrastive loss. To vali-
date the superiority of the CMKIC loss, we compare it with the triplet loss and
common contrastive loss (randomly selecting one positive sample). The experi-
ments were conducted under complete configuration conditions, and the results
are presented in Table 5. From the table, we can observe that our CMKIC loss
significantly outperforms traditional triplet loss and contrastive loss.

Comparison with other attention mechanisms. To demonstrate the
superiority of MIIM over other attention methods, we compare MIIM with
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Table 4: Impact of different placement of
MIIMs on LLCM. The MIIM placed after
Block1 and 2 is the separate MIIM, while
the MIIM placed after Block3 and 4 is the
shared MIIM.

Block1/2 Block3/4 Rank-1 mAP
× × 54.83 61.27
✓ × 57.82 64.03
× ✓ 56.16 62.72
✓ ✓ 58.38 64.75

Table 5: Comparison with triplet
loss and common contrastive loss on
LLCM. "triplet" and "contrastive"
respectively represent WRIM-Net
replacing CMKIC loss with triplet
loss and common contrastive loss.

Rank-1 mAP
triplet 56.53 63.19
contrastive 56.79 63.39
WRIM-Net 58.38 64.75

Table 6: Comparison with other attention mechanisms on LLCM. The mode is IR2VIS.

flops(B) params(M) Rank-1 mAP
CBAM [35] 6.25 26.03 50.71 57.83
Non-Local [32] 7.27 27.20 50.66 57.25
MIIM 7.19 28.99 55.31 61.56

CBAM [35] and Non-Local [32]. CBAM conducts spatial and channel atten-
tions within each block of the backbone network, while Non-Local focuses solely
on spatial attention within specific blocks. From Table 6, we can observe that
MIIM significantly outperforms CBAM and Non-Local. Here, MIIM refers to
the network with the baseline augmented by MIIM. Non-Local and CBAM con-
figurations are applied to the backbone network based on [32, 35]. Our Rank-1
accuracy is 4.60% higher, and mAP is 3.73% higher compared to CBAM. Fur-
thermore, although MIIM demonstrates comparable complexity to Non-Local,
it notably outperforms Non-Local.

4.5 Parameters analysis

Analysis of parameters λ1 and λ2. Setting λ1 and λ2 to 0.5 and 0.1 respec-
tively gives the best results. Details can be found in the supplementary materials.

Table 7: Comparison of the results of dif-
ferent spatial compression ratios at each
stage on LLCM. The channel compression
ratios is set to 2/2/4/4.

rs1/rs2/rs3/rs4 8/4/2/2 4/2/1/1 2/1/1/1

Rank-1 57.87 58.00 57.71
mAP 64.17 64.32 64.04

Table 8: Comparison of the results of dif-
ferent channel compression ratios at each
stage on LLCM. The spatial compression
ratio is set to 4/2/1/1.

rc1/rc2/rc3/rc4 4/4/8/8 2/2/4/4 1/1/2/2

Rank-1 57.51 58.00 57.45
mAP 63.79 64.32 63.77

Analysis of spatial and channel compression ratio parameters. In
this section, to enable size compression at various ratios, we configure the input
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size to be 384 × 128. We compare and analyze the results of different spatial
and channel compression ratios at each stage on the LLCM dataset, as shown in
Tables 7 and 8. We denote rs1/rs2/rs3/rs4 as the spatial compression ratio and
rc1/rc2/rc3/rc4 as the channel compression ratio after Block1, Block2, Block3,
and Block4 in the MIIM, respectively. From Table 7 and Table 8, it is evident
that the most optimal performance is attained when the spatial compression ra-
tio is configured as 4/2/1/1 and the channel compression ratio is set to 2/2/4/4.
In both spatial and channel dimensions, performance initially improves before
declining as the compression ratio increases. In our view, excessively high com-
pression ratios lead to the loss of critical information, while excessively low ratios
impede effective information interaction. In terms of spatial dimensions, appro-
priate spatial compression enables the network to focus on global relationships,
such as the overall shape of the human body.

Table 9: Comparison of results
with different ks values in the
SCC on LLCM. The mode is
IR2VIS.

ks 1 2 3 4
Rank-1 57.77 58.01 58.38 57.98
mAP 64.11 64.49 64.75 64.23

Table 10: Comparison of results with different
top-K values in CMKIC loss on LLCM, where
′W ′ indicates top-K utilization and ′W/O′ de-
notes random selection. The mode is IR2VIS.

top-K 1 W 2 W 4 W 4 W/O 6 W 8 W

Rank-1 57.33 58.04 58.38 56.46 57.84 57.74
mAP 63.84 64.35 64.75 63.14 64.36 64.00

Analysis of the ks in SCC. To determine the optimal ks parameter, we
conducted parameter experiments. The results, shown in Table 9, indicate that
setting ks to 3 yields the best performance. Specifically, setting ks to 3 leads to
a 0.61% increase in Rank-1 and a 0.64% increase in mAP compared to setting
ks to 1 (equivalent to no compression). This compressed design enables GRI to
further facilitate global information interaction, enhancing network performance
while maintaining low complexity.

Analysis of top-K in CMKIC Loss. To validate the effectiveness of top-K
and determine the optimal value for CMKIC loss, experiments were conducted
as shown in Table 10. The results indicate that the best performance is achieved
when top-K is set to 4. In CMKIC loss, if we randomly select top-K positive
samples, there is a significant decrease of 1.92% in Rank-1 (as shown in the
fifth column). This indicates that our top-K Key-Instance design is effective in
assisting the network in mining modality-invariant information.

4.6 Visualization Analysis

To observe the MIIM module, we utilize Grad-Cam [24] to visually analyze the
features extracted by both the baseline network and the baseline network added
with MIIM. Figure 4 illustrates the visualizations obtained from an infrared
query image and its corresponding visible image from the gallery set. From
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Fig. 4: Grad-Cam feature visualization
analysis of MIIM. The second column
shows the Visualization Heat Map from
the baseline network, while the third col-
umn displays the Visualization Heat Map
with the MIIM module integrated.

Fig. 5: T-SNE feature visualization.
Each color represents an ID and the
circles and triangles represent different
modalities. As can be seen, AICL bet-
ter alleviates the modality discrepancy
and improves the discriminability.

Figure 4, it can be observed that after adding MIIM, the network effectively
focuses on pedestrians themselves, whether in the visible modality or the infrared
modality, while paying more attention to global information. We attribute this
to MIIM’s improved non-local spatial and channel interactions, along with its
specific-modality multidimensional information mining.

To observe the AICL, we use T-SNE [19] to visualize and compare the features
extracted by the baseline and AICL. As shown in Figure 5. After using AICL,
the feature distance of different modalities of the same ID is pulled closer while
the feature distance between different IDs is pushed farther. This allows the
network to more effectively mine modality-invariant information.

5 Conclusion

We have introduced the WRIM-Net for VI-ReID, which emphasizes modality-
invariant information mining across a wide range. To achieve this goal, we de-
veloped the MIIM module for extracting specific-modality and shared-modality
features through multi-dimension interactions. And as a plug-and-play module,
it is placed at different positions of WRIM-Net to expand the range of mining
information. We also designed the AICL approach, which guides the network to
better explore modality-invariant information by utilizing Cross-Modality Key-
Instance Contrastive loss. Extensive experiments on three standard datasets
demonstrated the superiority of WRIM-Net with the best performance of al-
most all the metrics on all three benchmarks.
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