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Abstract. The seamless transformation of textual input into natural
and expressive sign language holds profound societal significance. Sign
language is not solely about hand gestures. It encompasses vital fa-
cial expressions and mouth movements essential for nuanced commu-
nication. Achieving both semantic precision and emotional resonance
in text-to-sign language translation is of paramount importance. Our
work pioneers direct end-to-end translation of text into sign language
videos, encompassing a realistic representation of the entire body and
facial expressions. We go beyond traditional diffusion models by tailor-
ing the multi-modal conditions for sign language videos. Additionally,
our modified motion-aware sign generation framework enhances align-
ment between text and visual cues in sign language, further improving
the quality of the generated sign language videos. Extensive experiments
show that our approach significantly outperforms the state-of-the-art
approaches in terms of semantic consistency, naturalness, and expres-
siveness, presenting benchmark quantitative results on the RWTH-2014,
RWTH-2014-T, WLASL, CSL-Daily, and AUTSL. Our code is available
at https://github.com/mingtiannihao/SignGen.
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1 Introduction

Approximately 466 million people worldwide experience hearing impairments [12].
It is imperative for this global deaf community to have equal access to informa-
tion. This involves two primary components: to be understood and to under-
stand. While significant strides have been made in the latter, known as sign lan-
guage recognition [9, 53, 64], in recent years, the former, termed Sign Language
Generation (SLG), remains a formidable challenge. Given the considerable ex-
penses tied to employing human translators for the deaf community, the urgency
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Fig. 1: The sign language video generation approaches. Given a spoken lan-
guage sentence, existing methods generate sign language poses or videos by Text2-
Gloss2Pose [44], Text2Pose [44,46], Gloss2Pose [51], Text2Pose2Video [17,42,58], and
Text2Gloss2Pose2Video [50, 57]. In this paper, we present SignGen, a Text2Video
method that streamlines the process by directly translating text into sign language
videos, bypassing intermediate stages for increased efficiency and coherence.

for a robust machine translation solution to cater to their daily communication
needs cannot be overstated.

Sign language generation approaches typically involve preprocessing input
text for morphosyntactic analysis to categorize words into types like nouns,
verbs, and particles. These words are then transformed into symbolic sequences
by machine translation models and subsequently rendered as symbolic glosses,
video representations, or animated avatars [4, 10, 25, 42, 44, 48, 50, 51, 58]. How-
ever, translating to sign glosses frequently results in misalignment with spoken
language, loss of contextual nuances, and unnatural translations. Moreover, cre-
ating realistic avatars is hindered by high data collection and annotation costs,
scalability issues, and the need for expert validation to ensure accuracy. Fig.1
illustrates the existing approaches in SLG, highlighting the lack of end-to-end
solutions in the established pipeline. The conversion from text to ”gloss” often
results in a significant loss of context, hindering the accurate conveyance of in-
tended meanings. Besides, generating realistic human videos from “gloss” poses
additional challenges, such as ensuring video quality and achieving naturalness
in the synthesized content. Compounding these issues is the problem of error
propagation, where inaccuracies at each stage magnify risks in subsequent steps,
potentially leading to compromised overall outcomes.

Actually, sign language translation extends beyond hand gestures. It incor-
porates crucial facial expressions and mouth movements, integral to conveying
nuanced communication. While existing approaches focus on maintaining only
the semantic content, they often neglect the emotional subtleties inherent in
sign language. Similar to how the hearing population discerns emotions from
facial cues, the deaf community intricately integrates emotions into sign lan-
guage [63]. In the text to sign video generation task, capturing both precise
meaning (semantic clarity) and emotional intent (emotional resonance)
is essential. An ideal sign language translation seamlessly amalgamates these
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aspects. Recently, diffusion models [8, 13, 15, 61, 71] have exhibited significant
potential in visual generation, outperforming traditional generative adversarial
networks in image synthesis and video generation. The stepwise process of diffu-
sion models offers precise control over generation, making them ideal for blending
gestures with facial and mouth cues.

In this paper, we introduce SignGen, an enhanced diffusion model designed
to improve text-to-video generation for sign language translation. We utilize a
multi-modal condition fusion module that takes into account both text condi-
tions and motion conditions. Within motion conditions, we harness three criti-
cal features: optical flow, pose, and depth, tailored specifically for sign videos.
These features are intelligently fused in both temporal and spatial dimensions,
enabling us to capture the nuanced movements inherent in sign language expres-
sion. Efficiency and consistency in video generation are central to our approach.
To achieve this, we develop a motion-aware sign video generation structure. It
not only ensures semantic clarity but also prioritizes emotional resonance in the
resulting sign language videos. For semantic clarity, our model incorporates
text into the conditional encoder, providing guidance throughout the generation
process. Additionally, we introduce a novel spatio-temporal-semantic attention
mechanism that enhances the semantic aspects of the generated content, ensur-
ing faithful conveyance of intended meaning. For emotional resonance, our
approach places a strong emphasis on accurate facial features detection within
the pose features. These facial features play a pivotal role in conveying emotions
in sign language. To maintain the fluency and naturalness of emotional expres-
sions, we employ a U-Net-like architecture coupled with a unique design for
fully semantic-frame interaction. Our comprehensive approach addresses both
semantic clarity and emotional resonance, resulting in generated sign language
videos that faithfully convey meaning while embodying emotional depth and
authenticity.

The main contributions of this work can be summarized as follows:

– Our work pioneers directly translating text to sign videos, featuring a real-
istic representation of the entire body and facial expressions.

– We customize a diffusion model that goes beyond conventional approaches by
incorporating multi-modal conditions for sign video. To ensure both consis-
tency and efficiency in video generation, we devise an appropriate U-Net-like
architecture complemented by motion-aware attention blocks.

– We evaluate our model with five widely used sign language generation datasets.
Comprehensive evaluations firmly establish our framework as the leading so-
lution for sign language generation to date.

2 Related work

2.1 Sign Language Production

To bridge the communication gap between hearing and deaf and hard-of-hearing
individuals, researchers have explored sign avatars, such as Tessa [10], dicta-
sign [14], Sign3D [20] to perform sign language. These are 3D animated models
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that display signed conversations, replicating the motions of fingers, hands, facial
gestures, and the body. However, they’ve faced criticism for appearing unnat-
ural and missing non-manual information like eye gaze and facial expressions.
This led to avatars based on motion capture data, which are more realistic but
limited due to data collection costs. Recently, Saunders et al. [44] propose a
progressive transformer-based SLP model that translates spoken language sen-
tences into 3D sign pose sequences. Text2Gloss2Pose [44] uses a Symbolic Trans-
former for translating from source text to target gloss sequences. A Progressive
Transformer translates from the symbolic domains of gloss or text into continu-
ous sign pose sequences. Gloss2Pose [51] employs transformer encoders to yield
pose predictions, with these encoders formulating representations that assimi-
late both the spatial and temporal dimensions of text and corresponding poses.
Text2Gloss2Pose2Video [57] initially translates spoken language sentences into
sign gloss sequences through an encoder-decoder network. Following this, a data-
driven approach is applied to map the gloss sequences onto skeletal sequences,
which then conditions a generative model that synthesizes realistic sign language
video sequences. Recently, Saunders et al. [50] employ an encoder-decoder trans-
former to translate text to gloss and introduce a frame selection network that
refines the temporal coherence of the sign sequences. The process culminates
with a pose-conditioned human synthesis model that produces photo-realistic
sign language videos directly from the skeletal poses.

2.2 Video Generation

The realm of automatic image and video generation has been revolutionized by
deep learning, with several neural network-based architectures emerging as fron-
trunners. For example, Van den Oord et al. [33] bring PixelRNNs to the fore,
focusing on the sequential creation of image pixels. The combination of VAEs
and GANs, as StyleGAN [24], harnesses both stability and discriminative ca-
pabilities, making it particularly suitable for tasks like generating visuals of in-
dividuals and, notably, individuals performing sign language [3,43,44,52,57,60].
While these methodologies have ushered in advancements, challenges like mode
collapse, non-convergence, and instability persist. However, innovative solutions,
including the design of appropriate network architecture and the fine-tuning of
objective functions, are continuously proposed to mitigate these issues. Further-
more, the advent of video Diffusion models [8, 13, 15, 61, 71] has opened new
avenues in the field of video generation, promising more realistic and coher-
ent video sequences. While several recent studies [2, 17, 66] have explored the
application of the diffusion model in generating poses and gestures, they fall
short in producing realistic sign language videos, as shown in Fig.1 Text2Pose.
A significant challenge is that when converting pose data to a digital human
model, important contextual details, particularly facial expressions, are lost. In
our work, we propose a novel end-to-end diffusion-based framework specifically
designed for text-to-sign language video generation.
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Fig. 2: The Overview of SignGen. First, a video is decomposed into two types
of conditions, including text conditions and motion conditions. Then, we feed these
conditions into the motion condition fusion module or the CLIP module to embed
control signals. Finally, the resulting conditions are leveraged to jointly guide VLDMs
for denoising, and then are input to a video frame interpolation model.

In this section, we will comprehensively present SignGen to showcase how
it can end-to-end generate sign language video that strictly aligns the meaning
of a given text. Firstly, we briefly introduce Video synthesis Latent Diffusion
Models (VLDMs) and the guidance directions upon which SignGen is designed.
Subsequently, we delve into the details of SignGen’s architecture, including the
multi-modal conditions for sign video and motion-aware sign video generation,
as illustrated in Fig.2.

3.1 Video synthesis with Latent Diffusion Models

Latent Diffusion Models (LDMs) [39], an efficient variant of the diffusion mod-
els [21], leverage the diffusion process within the latent space instead of the
traditional RGB space. The core of LDMs lies in two primary components. The
first component is an encoder, denoted as E , which compresses an image x into
a latent code z = E(x). This is complemented by a decoder, responsible for
reconstructing the image from the latent code, approximating x ≈ D(z). The
second component involves learning the distribution of these latent image codes,
z0 ∼ Pdata(z0), following the Denoising Diffusion Probabilistic Models (DDPM)
framework [21], which includes both forward and reverse processes. In our work,
we utilize a modified LDM tailored for sign video generation, operating within
the latent space to ensure enhanced local fidelity and preservation of the visual
manifold’s integrity.
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Represent Video in Latent Space. To efficiently process video data, we fol-
low LDMs by introducing a pre-trained encoder [16] to project the given video
x ∈ RF×H×W×3 into a more compact latent space representation z = E(x),
where z ∈ RF×h×w×c. A corresponding decoder D then maps these latent rep-
resentations back to the original pixel space, resulting in x̄ = D(z). We have
chosen specific dimensions with channels = 8 and a downsampling ratio of
H/h = W/w = 32 for efficient processing. This setup strikes a balance between
reducing data size for computational efficiency and retaining sufficient detail for
accurate reconstruction.
Diffusion models in Latent Space. To accurately model the video distribu-
tion P(x), diffusion models [21,55] focus on denoising normally-distributed noise
to reconstruct realistic visual content. This process effectively reverses a Markov
Chain of length T , typically set to 1000 steps for optimal balance between qual-
ity and computational tractability. In our approach, the reverse diffusion process
commences with the injection of noise into the latent representation z, forming
a noise-corrupted version zt [39]. Following this, a denoising function ϵθ(·, ·, t) is
applied to zt along with the selected conditions c, iteratively refining the latent
representation across the sequence t ∈ {1, ..., T}. The optimized objective can
be formulated as:

LV LDM = EE(x),ϵ∈N (0,1),c,t

[
∥ϵ− ϵθ(zt, c, t)∥22

]
. (1)

To exploit the inductive bias of locality and temporal inductive bias of sequen-
tiality during denoising, we instantiate ϵθ(·, ·, t) as a U-Net augmented with
temporal convolution and cross-attention mechanism following [1, 22,40].
Conditional Data Sampling. Classifier-free guidance is most widely employed
in recent works [32,36,41] for conditional data sampling from a diffusion model,
where the predicted noise is adjusted via:

ϵ̂θ(xt, c) = ωϵθ(xt, c) + (1− ω)ϵθ(xt), (2)

where xt = atx0 + σtϵ, and ω is a guidance weight. DDIM [56] is often adopted
to speed up the sampling process of diffusion models.

3.2 Multi-modal Conditions for Sign Video

We decompose sign language videos into two distinct modalities of conditions,
namely text and motion. Specifically, the text condition specifies the semantic
content of sign video, the motion information consists of optical flow, pose, and
depth, which can jointly determine the spatial and temporal patterns in the sign
language video.
Text Condition. To capture the essence of videos from textual descriptions,
focusing on their visual content and motion, we leverage the OpenCLIP ViT-
H/14 [35] text encoder to extract semantic embeddings from text, effectively
linking language to visual elements.
Motion Condition. To accomplish finer control along the temporal dimension,
we introduce the motion condition, which consists of three temporal information:
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Fig. 3: (a) Motion-aware Sign Video Generation and (b) Motion Condition Fusion
Module.

• Optical Flow : Optical flow is a valuable representation for analyzing motion
in video data as it encodes the direction and magnitude of motion over time
at a pixel-level granularity. We extract this information using a pre-trained I3D
model [7].

• Depth Sequence: Depth maps capture the intrinsic 3D geometry of scenes and
provide per-pixel depth values. This additional structure from depth enables
more accurate reconstruction of spatial configurations between objects. We ex-
tract the depth information using a pre-trained DPT [37] model.

• Pose Sequence: To enable finer-grained spatial control, we utilize pose informa-
tion as an additional conditioning input. Pose maps effectively capture key artic-
ulations of objects at the pixel-level, especially the delicate features of faces and
hands. We extract pose representations from input frames using a pre-trained
image encoder from DWPose [67].

To fuse these multi-modal cues, we propose a Motion Condition Fusion
(MCF) module as in Fig.3. It takes as input the extracted features from the
optical flow, depth, and pose. Rather than simply concatenating the features,
the encoder learns to combine the complementary information through a series
of fusion operations. Precisely, a lightweight 2D convolutional network to extract
local spatial features, Batch normalization and linear projection are then applied
to regularize and project the convolutional features into a lower-dimensional em-
bedding space, capturing the localized appearance. To model long-range tempo-
ral dependencies lacking in per-frame representations, we introduce a FlashAt-
tention [11] module incorporating a non-recurrent self-attentive mechanism. For
textual conditions provided as embeddings, cross-attention is used to inject the
guidance. By explicitly embedding motion cues via motion condition fusion, our
method facilitates a unified conditioning interface to enhance temporal coher-
ence for diverse inputs. After processing all conditions, their outputs are fused
via element-wise addition and concatenated with the target latent code zt as
control signals.
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Fig. 4: The key frames generated by various baseline models with the same "anchor"
image and corresponding text.

3.3 Motion-aware Sign Video Generation

As illustrated in Fig.3, we design a novel structure termed motion-aware sign
video generation towards consistent and efficient video generation. Firstly, we
improve the 2D-Unet architecture backbones [39] by reforming the input repre-
sentation. Specifically, we integrate the spatial and temporal dimensions into a
single channel, allowing the convolutional operations to capture the spatiotempo-
ral relations better and ensure appearance consistency with less quality degrada-
tion. Secondly, we adopt a spatio-temporal-semantic attention module. It models
the dependencies across frames as well as the correlations between visual content
and linguistic semantics. Finally, we incorporate a fully semantic-frames atten-
tion mechanism to align better the semantics conveyed in text with the visual
patterns in sign videos. It helps generate videos with more faithful reproduction
of linguistic and semantic information.
Spatio-Temporal-Semantic Attention. Modeling the temporal coherence
across frames and establishing precise correspondence between video frames and
text is crucial for sign language video generation. Specifically, sign motions at
semantic switches and certain actions like greetings exhibit consistent patterns
across sentences due to similar sentence structures. Additionally, variations in
hand shape, size, and linguistic abilities across individuals necessitate considering
relationships between frames as well as alignment between frames and text. We
propose the Spatio-Temporal-Semantic Attention to the standard U-Net model
by incorporating various building blocks to better capture spatio-temporal de-
pendencies. A series of structural blocks in the downsampling and upsampling
path are presented, forming a nested Res-Spatial-Temporal-Res structure. More-
over, we utilize the Fully Semantic-frame Interaction to maintain visual coher-
ence across frames and interaction to jointly establish frame-text correspondence
during reconstruction.
Fully Semantic-frame Interaction. Leveraging the controllability of MCF,
motion sequences could provide coarse-level consistency in structure. Nonethe-
less, even using the same initial noise, individually producing all frames will lead
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to drastic inconsistencies in appearance. To keep the video appearance coherent,
we concatenate all video frames to become a "large image", so that their con-
tent could be shared via inter-frame interaction. Considering that self-attention
in SD [39] is driven by appearance similarities [65], we propose to enhance the
holistic coherency by adding attention-based Fully Semantic-frame Interaction.
As shown in Fig.3, it extends self-attention by adding interaction across all
frames: Attention(Q,K,V ) = Softmax(QKT

√
d

) · V , where Q = WQzt, K =

WKzt, V = W V zt, zt = {zi
t}N−1

i=0 denotes all latent frames at timestep t,
while WQ, WK , and W V project zt into query, key, and value, respectively.

We propose a two-step approach to effectively fusing linguistic information
from input text with visual patterns in sign videos. First, self-attention is applied
in all video frames. Then, we perform cross-attention between encoded text
features and video features to guide the generation. Specifically, we modify the
standard cross-attention module by defining: Q as the encoded text features. K
and V are separately defined as the concatenated features of video and text,
where the weights for video and text features set to 0.4 and 0.6, respectively.
With this design, the encoder can learn the correspondence between video and
text. During decoding, the generation is constrained by video structure and
guided by text simultaneously, leading to higher quality and more semantically
accurate results.

3.4 Video Frame Interpolation

While the Motion-aware Sign Video Generation and Motion Condition Fusion
Module effectively preserve the realistic representation of the entire body and
facial expressions, the generated videos may still exhibit frame-level flickering
issues [30]. To address frame flickering, we introduce a video frame interpolation
model [38] that refines pixel space x̄ for smooth transitions between frames. Due
to space constraints, more experimental details can be found in the supplemen-
tary materials.

3.5 Training and inference

As a conditional video diffusion model, our method takes prompt text ct, an
anchor image I, and motion condition cm (optional) as input to predict the noise
at the current step. The anchor image provides prior knowledge (i.e., signer, pose,
and depth) for generation. Without an anchor image, our model could run as
well, but the signer will be generated randomly and the semantic consistency
will be reduced, as shown in Fig.6(a). The motion condition cm could consist of
optical flow co, pose cp, and depth cd information. During the training, we adhere
to Composer [23], using a probability of 0.1 to keep all conditions, a probability
of 0.1 to discard all conditions, and an independent probability of 0.5 to keep
or discard a specific condition. Therefore, in inference, even if certain conditions
are absent, we can still generate high-quality videos with the text and anchor
image as input. More details can be found in Fig.7.
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Table 1: Back translation results for the Text2Pose task.

Method Extra Data DEV TEST

ROUGE-L↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE-L↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

ProTran [45] n/a 34.05 33.12 20.71 14.71 11.43 31.07 29.74 17.62 12.53 9.68
MCG [47] n/a 33.68 31.84 20.58 15.61 12.65 32.74 30.93 18.99 13.72 10.81

MOMP [49] n/a 37.76 35.23 23.49 17.50 14.03 36.77 35.89 23.27 16.86 13.30
FS-NET [50] dictionary 40.94 - - - 19.14 40.60 - - - 18.78

SignGen n/a 45.00 43.71 31.56 25.63 20.21 44.56 45.18 30.68 24.31 19.71

Table 2: Video generation results on different datasets for 10 predicted key frames,
given inputs of text and anchor image (signer+pose+depth).

Dataset Method VDM [22] SVP [27] VideoLDM [5] VideoPD [68] VideoFusion [31] SignDiff [17] SignGen

AUTSL

FVD↓ 1638 2512 1836 1213 1678 1169 556
SSIM↑ 0.49 0.12 0.43 0.29 0.39 0.33 0.93
PSNR↑ 13.37 8.36 11.29 18.21 12.57 18.82 27.53
LPIPS↓ 0.28 0.79 0.29 0.82 0.31 0.52 0.03

RWTH-2014

FVD↓ 1289 1317 1301 1132 1032 930 579
SSIM↑ 0.67 0.59 0.59 0.69 0.72 0.63 0.73
PSNR↑ 15.58 13.27 12.30 19.27 14.53 16.22 20.22
LPIPS↓ 0.16 - 0.23 0.31 0.18 0.21 0.03

RWTH-2014T

FVD↓ 1445 1300 1267 659 896 661 640
SSIM↑ 0.60 0.51 0.61 0.71 0.67 0.70 0.89
PSNR↑ 14.11 11.20 14.21 20.31 14.80 21.23 24.84
LPIPS↓ 0.22 - 0.21 0.16 0.17 0.12 0.01

CSL-Daily

FVD↓ 1763 2411 1931 1682 1802 1326 424
SSIM↑ 0.21 0.09 0.23 0.11 0.27 0.25 0.93
PSNR↑ 8.23 7.61 9.27 13.56 11.34 18.92 34.92
LPIPS↓ 0.95 0.84 0.83 0.67 0.56 0.54 0.08

WLASL

FVD↓ 1782 2386 1842 1217 1324 972 493
SSIM↑ 0.19 0.11 0.27 0.32 0.32 0.57 0.91
PSNR↑ 8.11 9.73 10.56 15.76 15.24 17.63 32.72
LPIPS↓ 0.92 0.83 0.39 0.46 0.31 0.27 0.11

4 Experiment

4.1 Experimental Settings

Datasets. To demonstrate the robustness of the model across various back-
grounds and signers. We conducted experiments on five distinct datasets. The
RWTH-2014 [26] and RWTH-2014-T [19] datasets feature video recordings from
German weather forecasts, containing 6,842 sentences and 1,295 sign words by
9 signers. The AUTSL [54] dataset is a comprehensive multi-modal collection
featuring 36,302 isolated Turkish sign language video samples of 226 signs by
43 signers, set against 20 diverse backgrounds. The CSL-Daily [72] is a compre-
hensive Chinese sign language dataset for continuous sign language translation,
encompassing daily life scenarios such as travel, shopping, and medical care,
and includes spoken language translations and gloss-level annotations from 10
signers. The WLASL [28] (Word-Level American Sign Language) video dataset
contains more than 2000 words performed by over 100 signers.
Baselines. We evaluate our model against six publicly available approaches,
distinguishing between methods based on their foundational concepts. Among
these, one approach [27] is based on the idea of GAN. The remaining five [5,17,
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Fig. 5: We randomly showcase the outcomes generated by an "anchor" image across
five distinct datasets, illustrating the versatility and consistency of SignGen in diverse
settings.

Table 3: Ablation study results showcasing different conditions with provided "anchor"
image on the RWTH-2014 dataset.

Conditions FVD SSIM PSNR LPIPS Dev Test

Optical-Flow Pose Depth ROUGE-L BLEU-4 ROUGE-L BLEU-4

✓ 726 0.49 14.20 0.33 39.55 16.34 36.35 12.45

✓ ✓ 628 0.60 16.25 0.15 42.37 17.91 39.79 15.13

✓ ✓ ✓ 579 0.73 20.22 0.03 45.00 20.21 45.18 19.71

22, 31, 68] are primarily based on diffusion processes, demonstrating the recent
shift towards diffusion-based frameworks in video synthesis. Specifically, we in-
clude SignDiff [17], a novel approach that utilizes a ControlNet [69] architecture,
highlighting its unique position in the context of controlled generation.

Evaluation Metrics. We utilize three types of metrics to evaluate SignGen: i)
To evaluate the semantic consistency between the generated sign language video
and the original text input, we follow ProTran [44] to use the back translation
metric to evaluate the accuracy of SLG, which uses a pre-trained SLT model [6]
to translate sign language back to text and then calculates the BLEU [34]
and ROUGE-L [29] scores between the generated text and the original text.
ii) To evaluate the video quality of generated sign language content, we utilize
PSNR [18], SSIM [62], and LPIPS [70]. These metrics quantify the similarity
and structural integrity between the generated video and ground truth, empha-
sizing the precise reconstruction of motion details. iii) To evaluate the diversity
of generated sign video, we use the FVD [59] to gauge the diversity in generated
sequences, ensuring they reflect the variable temporal patterns seen in natural
sign languages.
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Fig. 6: (a) The generated video of SignGen with only text input is used for inference.
(b) The detailed facial expressions generated when facial key points are provided.

4.2 Qualitative and quantitative comparisons

To qualitatively assess our approach against leading contemporary approaches,
we present keyframes from sign language sequences synthesized using various
visual cues in Fig.4. As illustrated, our model accurately renders natural finger
and palm distributions and captures the nuanced movements characteristic of
sign language, including subtle facial features like eyebrow movements, mouth
shapes, and head poses, indicating our approach’s capability to produce tempo-
rally coherent sequences that effectively capture the dynamics of sign language.
In contrast, baseline approaches often produce ambiguous hand shapes and lack
detailed articulation.
Semantic Consistency. In line with prior studies, we evaluate our Text2Pose
task and compare it with state-of-the-art approaches, treating the generated
video as a skeleton for back translation metrics (Tab.1). Our approach sig-
nificantly surpasses the continuous SLG method [46] and outperforms the FS-
NET [50], which relies on additional high-quality isolated signs from sign lan-
guage lexicons. Compared with previous work [44, 48] that employs a cascaded
pipeline from Text2Gloss and Gloss2Pose, our method achieves better quanti-
tative results. We attribute the improvement to the avoidance of middle infor-
mation loss. The Spatio-Temporal-Semantic Attention and Fully Semantic-frame
Interaction further ensure the semantic consistency between generated video and
input text.
Video Quality. As illustrated in Fig.4 and Fig.5, our method outperforms
other sign language generation techniques in quantitative metrics. Specifically,
the groundtruth exhibits motion blurs in hand regions. Competing baselines ei-
ther fail to generate clear hands or introduce artifacts. In contrast, our approach
consistently generates sharp, accurate hand poses and motions. The proposed
method significantly surpasses six baseline approaches in PSNR and SSIM met-
rics, as detailed in Tab.2, indicating superior video quality in our generated
sign language. Furthermore, with notably lower LPIPS and higher PSNR scores
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Fig. 7: We present the generated results under three different input conditions for the
model: (i) text + anchor, (ii) text + anchor + pose, and (iii) text + anchor + pose +
depth.

compared to the other six baselines, our approach demonstrates greater seman-
tic consistency with the ground truth, effectively capturing the intricate content
structure of sign language. This superior performance in both visual quality and
semantic fidelity will further bridge the communication between signers and non-
signers. As demonstrated in Fig.6(b), by extracting facial poses, our approach is
guided to focus more on emotional expressions and subtle facial changes during
training, thereby enabling it to generate complex and nuanced facial expres-
sions during inference.

Generation Diversity. Diversity metrics, particularly FVD, provide meaning-
ful insights into generation quality when corroborated by PSNR/SSIM scores,
as evidenced in Tab.2. Our method excels in both quality (PSNR, SSIM) and
FVD, maintaining FVD within an optimal range, signifying robust dynamic di-
versity, and effective one-to-many mapping in sign language generation. In the
absence of an "anchor" image, inputting identical text results in the generation
of distinct signers for each instance as in Fig.6(a). There is a noticeable decline
in the semantic consistency of the generated content.
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Table 4: Ablation study results on the RWTH-2014 dataset.

Metrics FVD SSIM PSNR LPIPS Dev Test
ROUGE-L BLEU-4 ROUGE-L BLEU-4

w/o MCSV 1014 0.54 10.20 0.53 36.55 13.34 36.35 12.45
w/o MSVG 631 0.61 19.11 0.15 41.23 17.32 40.02 13.65
SignGen 579 0.73 20.22 0.03 45.00 20.21 45.18 19.71

4.3 Ablation Study

Effect of the Proposed Modules. Tab.4 shows the efficacy of our proposed
modules in enhancing sign language video generation. The Multi-modal Con-
ditions for Sign Video module, integrating text, optical flow, depth, and pose
inputs, offers a richer understanding of cross-modal semantics. This leads to a
more accurate grounding of text in the video generation process. The Motion-
aware Sign Video Generation module, deviating from conventional U-Net ar-
chitecture, employs optical flow and 3D pose data to model motion dynamics.
This focus on temporal aspects, rather than just frame appearance, results in
more semantically aligned signing video, closely matching the text descriptions.
In essence, the integration of multi-modal information and emphasis on motion
dynamics address the challenge of semantic ambiguity in translation. These com-
bined innovations enhance the quality of text-to-video grounding, ensuring the
generated content faithfully mirrors the complexity of sign language.
Effect of Different Conditions. To further analyze the impact of additional
modalities, we conduct an ablation study where pose, optical flow, depth, and
text features are progressively incorporated into the multi-modal encoder. The
results in Tab.3 validate that introducing more visual modalities significantly im-
proves generation quality over a text-only baseline. Fig.7 clearly illustrates the ef-
fect on video generation when both pose and depth conditions are provided. The
stark contrast between the two underscores the essential role of multi-modality in
enhancing generation quality. In summary, this ablation study presents empirical
evidence that multi-modal modeling is important for sign language generation
through the collective extraction of semantic meanings encoded across visual
and linguistic data.

5 Conclusion

In this paper, we introduce SignGen, an innovative diffusion model for natural
sign language generation from text. Our approach has demonstrated superior
performance on benchmark datasets in terms of semantic consistency, natural-
ness, and expressiveness. While SignGen offers promising results, it is essential
to acknowledge the need to accommodate these dialectical variations. Current
models may not cover all dialects, potentially leading to inaccuracies or lim-
ited applicability in specific communities. As we look ahead, our future work
will focus on resolving this challenge and ensuring that sign language generation
becomes more inclusive and accessible across linguistic variations.
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