
The Gaussian Discriminant Variational Autoencoder 1

The Gaussian Discriminant Variational
Autoencoder (GdVAE): A Self-Explainable Model

with Counterfactual Explanations

Supplementary Material

Table of Contents

The Supplement is structured as follows:

– Limitations and societal impacts are discussed in Appendix A.
– In Appendix B, you can find the ELBO derivation (Eqs. (7) and (8)), as well

as proofs for the EM-based approach (Algorithm 1) and the optimality of
linear explainer functions (Eq. (10)).

– Detailed information about the models used, the training process, and ex-
perimental specifics, such as compute resources, hyperparameters, dataset,
and asset details, can be found in Appendix C.

– Appendix D delves into the metrics employed for predictive performance
analysis and CF quality assessment.

– Additional results related to hyperparameter tuning, trade-off between con-
sistency and realism (Figs. 9 and 10) as well as supplementary qualitative
results are presented in Appendix E.

A Limitations and Societal Impacts

A.1 Limitations

We acknowledge several limitations concerning the GdVAE and the evaluation
methodology:

– Our datasets for quantitative evaluation were selected to balance computa-
tional efficiency, alignment with previous studies, and adherence to the Re-
producibility Checklist, emphasizing the provision of central tendency and
variation (e.g., mean, standard deviation). Unlike prior CF research, our
focus on analyzing both central tendency and variability has led to exper-
iments that are four times more costly (see Appendix C.4). By doing so,
we acknowledge the limitations imposed by our dataset selection criteria,
yet we argue that these limitations are counterbalanced by the gains in the
reproducibility of our experimental results.

– Our method, unlike [30] and [14], enables simultaneous manipulation of all
class-related attributes but lacks fine-grained control over individual im-
age attributes. Incorporating multiple prototypes, as in [13], could enhance
GdVAE’s predictive performance and capability to manipulate individual
image attributes.

2 A. Haselhoff et al.

– Our quantitative evaluation of CF methods is currently limited to binary
classification problems, and future evaluations of multi-class problems are
needed to advance CF literature. Unfortunately, most visual CF methods
(Tab. 1) evaluate CFs for binary tasks like CelebA, where attributes are not
mutually exclusive. Those that use multi-class settings do not scale well to
a high number of classes without modification, requiring the training of a
model for each binary CF class pair [26,40]. Other approaches require time-
consuming inference-time optimization [24,30] or an additional image of the
CF class to guide CF generation [16, 47]. Our method can be expanded to
multiple classes. For multiple classes, our CFs (Eq. (10)) can be generated
without changes by choosing a reference class. Ambiguity between logits and
softmax makes user interaction less convenient, yet setting δ < 0 achieves
CFs inducing class flips. Results for MNIST and CIFAR, presented in Figs. 15
and 16, demonstrate CFs for the simpler consistency task by swapping the
logits of the predicted and counterfactual classes. This strategy is effective for
high-confidence class predictions, such as with MNIST, though it formally
only changes the class without necessarily switching to the specified CF class.

– Our approach utilizes a class-conditional encoder model qϕ(z|x, y). Signif-
icantly reduced computational costs can be achieved by employing uncon-
ditional models, such as qϕ(z|x). In [12], a clustering solution is presented,
directly leveraging unconditional encoder and decoder models. However, fur-
ther analyses are needed to conclude the performance implications.

– The EM-based method described in Algorithm 1 is an integral part of the er-
ror backpropagation process. Consequently, using a high number of iterations
results in very deep computational graphs, which can introduce challenges,
including issues like vanishing gradients and other forms of instability.

– All our experiments employ relatively simple network architectures, and we
strive to maintain uniform training configurations as closely as possible. For
instance, our baselines share the same backbone architecture, are trained
with loss functions as faithful as feasible to the original implementations, and
undergo training for a duration of 24 epochs. These limitations may result in
methods like EBPE performing below their full potential, considering that in
their original versions, both EBPE and its extension, DISSECT, were trained
for 300 epochs. Results after additional training epochs are in Tab. 12.

A.2 Societal Impacts

Our GdVAE is not inherently associated with specific applications that directly
cause negative societal impacts. However, it does possess the potential for mis-
use in unethical ways. For instance, given our generative models, there exists
the possibility of their modified use for generating deep fake images with altered
attributes. Furthermore, although our SEM provides insights into the model, it
does not guarantee the detection of all fairness issues, existing biases, or results
that align with attribution-based explanations. Our methods complement ex-
isting fairness ([33]) and explainability ([34,35]) enhancement techniques rather
than replacing them.

The Gaussian Discriminant Variational Autoencoder 3

B Proofs

B.1 Variational Lower Bound of the Joint Log-Likelihood

In this section, we derive the Evidence Lower Bound (ELBO) for our main
paper’s loss function, which is represented by Eqs. (7) and (8). We define the
key variables as follows with x representing the input data (e.g., an image), y
corresponding to the target class, and z representing our latent variables. The
general ELBO for the model is derived by

log pθ(x, y) = log

∫
pθ(x, y, z)dz = log

∫
pθ(x, y, z)

qϕ(z|x, y)
qϕ(z|x, y)

dz

= logEqϕ(z|x,y)

[
pθ(x, y, z)

qϕ(z|x, y)

]
≥ Eqϕ(z|x,y)

[
log

pθ(x, y, z)

qϕ(z|x, y)

]
(ELBO)

= Eqϕ(·)[log pθ(x, y, z)]− Eqϕ(·)[log qϕ(z|x, y)]
= Eqϕ(·)[log pθ(x|y, z)] + Eqϕ(·)[log pθ(y, z)]− Eqϕ(·)[log qϕ(z|x, y)]
= −LM1,2(θ, ϕ;x, y),

with qϕ(·) = qϕ(z|x, y). The loss function for the first model M1 including a
CVAE with an additional class prior pθ(y, z) = pθ(z|y)pθ(y) is given by

LM1 = −Eqϕ(·)[log pθ(x|y, z)]− Eqϕ(·)[log pθ(y, z)] + Eqϕ(·)[log qϕ(z|x, y)]
= −Eqϕ(·)[log pθ(x|y, z)]− Eqϕ(·)[log pθ(z|y)]

− Eqϕ(·)[log pθ(y)] + Eqϕ(·)[log qϕ(z|x, y)]
= −Eqϕ(·)[log pθ(x|y, z)] +KL(qϕ(z|x, y)||pθ(z|y))− log pθ(y).

The loss for the second model M2 with a classifier and latent prior pθ(y, z) =
pθ(y|z)pθ(z) is given by

LM2 = −Eqϕ(·)[log pθ(x|y, z)]− Eqϕ(·)[log pθ(y, z)] + Eqϕ(·)[log qϕ(z|x, y)]
= −Eqϕ(·)[log pθ(x|y, z)]− Eqϕ(·)[log pθ(y|z)]

− Eqϕ(·)[log pθ(z)] + Eqϕ(·)[log qϕ(z|x, y)]
= −Eqϕ(·)[log pθ(x|y, z)] +KL(qϕ(z|x, y)||pθ(z))− Eqϕ(·)[log pθ(y|z)] .

The loss function L̃gd = L̃gd(θ, ϕ;x, y) for a joint training of the conditional
variational autoencoder and classifier can be obtained by combining LM1 =
LM1(θ, ϕ;x, y) and LM2 = LM2(θ, ϕ;x, y). We then obtain

L̃gd =αLM1 + βLM2

=− (α+ β)Eqϕ(·)[log pθ(x|y, z)] + α (KL(qϕ(z|x, y)||pθ(z|y))− log pθ(y))

+ β
(
KL(qϕ(z|x, y)||pθ(z))− Eqϕ(·)[log pθ(y|z)]

)
,

(12)

with qϕ(·) = qϕ(z|x, y).

4 A. Haselhoff et al.

B.2 Variational Expectation Maximization for the Marginalization
Process (Algorithm 1)

In this section, we employ variational expectation maximization (EM) to provide
a proof for the iterative algorithm, as depicted in Algorithm 1. This algorithm
serves as a fundamental component for marginalization. It’s worth noting that
this EM process is nested within the overarching variational optimization of the
GdVAE. Consequently, we switch the roles of distributions, with p(·) representing
the variational distribution and q(·) signifying the model distribution.

Consider the variable pair (x, z, y) within the model distribution qϕ(x, z, y),
where only x is observable. The objective of variational EM is to optimize the
model parameters ϕ by maximizing the marginal likelihood qϕ(x). This optimiza-
tion is achieved by leveraging a lower bound on the marginal likelihood, using
the ’variational’ distribution pθ(z, y|x). This lower bound is defined by

log qϕ(x) ≥ Epθ(z,y|x)[log qϕ(x, z, y)] − Epθ(z,y|x)[log pθ(z, y|x)]

= −Epθ(z,y|x)

[
log

pθ(z, y|x)
qϕ(z, y|x)

]
+ log qϕ(x).

By rearranging the lower bound, we obtain the function J (p, ϕ), which serves
as the objective for the EM algorithm. This function is meant to be maximized
and is defined by

⇒ 0 ≥ J (p, ϕ) = −KL(pθ(z, y|x)||qϕ(z, y|x))

= −Epθ(z,y|x)

[
log

pθ(z, y|x)
qϕ(z, y|x)

]
= −Epθ(z,y|x)

[
log

p(y|z)pθ(z|x)
qϕ(y|x)qϕ(z|x)

]
.

We further assume conditional independence and apply the following factoriza-
tions qϕ(z, y|x) = qϕ(y|z, x)qϕ(z|x) = qϕ(y|x)qϕ(z|x), with
qϕ(z|x) =

∑K
y=1 q(z|x, y)qϕ(y|x). Likewise, we define pθ(z, y|x) = p(y|z)pθ(z|x).

The parameters θ and ϕ were omitted for the distributions assumed to remain
constant throughout the EM procedure. These distributions include p(y|z), rep-
resenting the classifier employing the prior encoder, and q(z|x, y), represent-
ing the recognition model of the GdVAE. The iterative EM procedure for step
t ∈ {1, . . . , T} can be expressed as follows:
E-Step:Choose a distribution p=pθ(z, y|x) that maximizes J (p, ϕ) for fixed ϕt.

– Since p(y|z) is fixed the optimum is given by choosing pθ(z|x) = qϕt(z|x).

M-Step:Choose parameters ϕt+1 that maximize J (p, ϕ) for fixed p=pθ(z, y|x).

– The optimum is given by choosing qϕt+1(y|x) = Eqϕt (z|x)[p(y|z)]. This choice

defines qϕt+1(z|x) =
∑K

y=1 q(z|x, y)qϕt+1(y|x) as well.

Proof for the M-Step: We can simplify the optimization process by assuming that
both qϕ(z|x) and pθ(z|x) are Gaussian mixture models with the same number,
denoted as K, of mixture components. Drawing inspiration from [10], we can next

The Gaussian Discriminant Variational Autoencoder 5

derive a lower bound, denoted as L(p, ϕ), for J (p, ϕ) through the application of
the log-sum inequality and by inserting pθ(z|x) = qϕt(z|x) into J (p, ϕ)

J (p, ϕ) = −
∫ K∑

y=1

p(y|z)qϕt(z|x) · log
p(y|z)

∑K
y⋆=1 q(z|x, y⋆)qϕt(y⋆|x)

qϕ(y|x)
∑K

y⋆=1 q(z|x, y⋆)qϕ(y⋆|x)
dz

≥ L(p, ϕ) = −
∫ K∑

y=1

p(y|z)qϕt(z|x) · log
p(y|z)q(z|x, y)qϕt(y|x)
qϕ(y|x)q(z|x, y)qϕ(y|x)

dz

= −Eqϕt (z|x)

[
K∑

y=1

p(y|z) log
p(y|z)qϕt(y|x)
qϕ(y|x)qϕ(y|x)

]
.

To maximize L(p, ϕ), we employ the Lagrange multiplier λ ∈ R and set the
derivative with respect to a specific class c to zero

0 =
∂

∂qϕ(c|x)

[
L(p, ϕ)− λ(

K∑
y=1

qϕ(y|x)− 1)

]
= Eqϕt (z|x)

[
2
p(c|z)
qϕ(c|x)

]
− λ,

⇒ qϕt+1(y|x) = Eqϕt (z|x)[p(y|z)] .

We determine the value of λ by solving this equation for K classes, incorpo-
rating the property

∑K
y=1 qϕ(y|x) = 1. Subsequently, we arrive at the solution

qϕt+1(y|x) = Eqϕt (z|x)[p(y|z)] or, equivalently, the parameter ϕt+1 that maxi-
mizes J (p, ϕ) while keeping pθ(z, y|x) fixed. This optimization is performed for
a single input x, and we approximate the expectation through Monte Carlo in-
tegration. Therefore, we sample z(s) from qϕt(z|x) and calculate qϕt+1(y|x) =

Eqϕt (z|x)[p(y|z)] ≈ 1
S

∑S
s=1 pθ(y|z(s)).

B.3 Optimality of Linear Explainer Functions (Eq. (9) and Eq. (10))

Euclidean Space (V := I). Our SEM is regularized to produce a linear sepa-
rating hyperplane due to the linear classifier we employ. This results in a linear
path for CF generation, where the classifier’s gradient vector w describes the
shortest path for CF generation (see Fig. 4a). This latent space closeness is also
used as an L2-based metric dist2I(z(1), z(2)) to measure CF proximity [43] or to
directly optimize a perceptual loss for CF generation [24].
Riemannian Manifolds (V := Σ−1

z). A generalized perspective on the dis-
tance function arises from considering the theoretical analysis on Riemannian
manifolds presented in [5,19]. According to [19], a Riemannian manifold, denoted
as the pair (M, vz), can be understood as a smoothly curved space M (e.g ., la-
tent space) equipped with a Riemannian metric vz. The Riemannian metric is
an inner product vz(a, b) = ⟨a, b⟩z = aTV (z)b on the tangent space TzM for
each z ∈ M. The metric tensor V (z) is a positive definite matrix that induces a
distance measure. Assuming a constant metric tensor or single metric learning,

6 A. Haselhoff et al.

the Mahalanobis distance is obtained [5, 19]

dist2V
(
z(1), z(2)

)
=

∥∥∥z(1) − z(2)
∥∥∥2
V
=

(
z(1) − z(2)

)T

V
(
z(1) − z(2)

)
. (13)

If the metric tensor is chosen to be the identity matrix V := I, we obtain the
L2-based Euclidean distance. To define a smooth continuous Riemannian metric
with a metric tensor in every point z, [19] propose

V (z) =

K∑
k=1

πk(z)Vk, (14)

where Vk are pre-trained metric tensors, e.g ., obtained by a Large Margin Near-
est Neighbor classifier, which are associated with the mean of each class. πk are
weights that change smoothly with z, where each πk > 0 and

∑K
k=1 πk = 1. As

an example of a smooth weight function, they use the following

πk(z) ∝ exp

(
−ρ

2

∥∥∥z − z(k)
∥∥∥2
Vk

)
, (15)

with the constant ρ and class means z(k). Based on this continuous Riemannian
metric (see Eq. (14)), [5] propose using the trained covariance matrices from a
VAE’s encoder qϕ(z|x) = N (µz(x;ϕ), Σz(x;ϕ)) to define the metric. Specifically,
they employ a weighted linear combination of Vk = Σ−1

z (x(k);ϕ), where the
training data, or a subset thereof, is used to approximate the metric in the latent
space. In addition to Eq. (14), there is a supplementary additive component
which is approximately zero. They further observe that, due to the Evidence
Lower Bound (ELBO) objective, variables that are close in the latent space with
respect to V (z) will also produce samples that are close in the image space in
terms of L2 distance, which is crucial for ensuring counterfactual proximity.
Optimization and Assumptions. In our analysis, we assume that the regu-
larizer included in the ELBO induces a surrogate posterior qϕ(z|x, y) that closely
approximates the true posterior pθ(z|y) = N (µz(y; θ), Σz(y; θ)). Given this ap-
proximation, we may consider using pre-trained metric tensors from the GDA
(Gaussian discriminant analysis) classifier instead of those derived from a Large
Margin Nearest Neighbor classifier [19]. By doing so, as referenced in Eq. (14),
we obtain a Riemannian metric

V (z) =

K∑
k=1

πk(z)Σ
−1
z (y = k; θ), (16)

with πk(z) = pθ(y = k|z). In our experiments, we use only two classes and have
chosen the covariance to be independent of the class y in order to obtain linear
discriminants. Consequently, this results in a constant metric tensor, effectively
employing a single metric

V (z) = π1(z)Σ
−1
z + (1− π1(z))Σ

−1
z = Σ−1

z = V. (17)

The Gaussian Discriminant Variational Autoencoder 7

Having defined two types of distance metrics, the L2 and Mahalanobis distances,
we can now optimize the objective

If (z, δ) = argmin
zδ

dist2V (z
δ, z), subject to f(zδ) = δ. (18)

To minimize the objective dist2V (zδ, z), we use a Lagrange multiplier λ ∈ R and
set the derivatives with respect to the counterfactual zδ and λ to zero

L(zδ) =
(
zδ − z

)T
V
(
zδ − z

)
+ λ(f(zδ)− δ), (19)

∂L(zδ)
∂zδ

= 2
(
zδ − z

)
V + λw = 0, ⇒ zδ = z +

λ

2
V −1w, (20)

∂L(zδ)
∂λ

= 0, ⇒ f(zδ) = wT zδ + b = δ. (21)

By combining Eqs. (20) and (21), we arrive at the solution

wT zδ = wT z +
λ

2
wTV −1w = δ − b, (22)

⇒ zδ = z + κV −1w, with κ =
δ − wT z − b

wTV −1w
. (23)

Given the assumptions used, we obtain a linear explainer function to generate
counterfactuals, regardless of whether we choose the common L2-based metric
V = I (Euclidean space) or the Riemannian metric V = Σ−1

z . Training with Σz=
σ2I instead of Σz = diag

(
σ2
z1 , ., σ

2
zM

)
results in equivalent explainer functions,

thus yielding equal empirical results for both L2-based and Riemannian-based
metrics. Consequently, a linear function is optimal, and thus there is no superior
solution for generating counterfactuals under these conditions. If the assumption
that qϕ(z|x, y) ≈ pθ(z|y) is not met, a non-linear CF method (e.g ., C3LT) may
better fulfill the proximity property in the image space.

8 A. Haselhoff et al.

C Training and Model Details

The software to train and perform inference with our GdVAE model is available
in the supplemental code.

C.1 Datasets

MNIST [31]. The MNIST dataset comprises two sets: a training set with 60,000
labeled examples and a test set with 10,000 labeled examples. Each example is
a 28x28 pixel grayscale image representing a handwritten digit ranging from 0
to 9. For the predictive performance analysis (Tab. 2) we use all classes and for
the evaluation of counterfactuals (Tab. 3) we exclusively utilize the digits 0 and
1 for the training and to generate counterfactuals (denoted by "MNIST-Binary
0/1"). We adhere to the standard data splits for both training and testing.
CIFAR-10 [29]. The CIFAR-10 dataset comprises over 60,000 images, along
with annotations for ten classes. Each example is a 32x32 pixel image with 3
color channels. We adhere to the standard data splits for both training and
testing. This dataset is used to analyze the predictive performance in Tab. 2.
CelebA [32]. The CelebA dataset comprises over 200,000 face images, along
with annotations that cover a range of attributes, including gender, age, and
facial expression. In our analysis, we employ a center crop of 128x128 pixels for
the images and resize them to 64x64 pixel images with 3 color channels. For
counterfactual evaluation (Tab. 3), we use the attributes of "smiling" (labeled
as 1) and "not smiling" (labeled as 0), while the "gender" attribute is used to
assess predictive performance (Tab. 2). We adhere to the standard data splits
for both training and testing. For licensing details and information on human
subject data collection, please see the reference [32].
FFHQ [25]. The Flickr-Faces-HQ (FFHQ) dataset comprises over 70,000 high-
resolution (1024x1024 pixels) images of human faces, curated for diversity in age,
ethnicity, and accessories. The dataset was developed by NVIDIA. For counter-
factual generation (Fig. 1), we use the attributes of "smiling" (labeled as 1)
and "not smiling" (labeled as 0) available at https://github.com/DCGM/ffhq-
features-dataset/. For licensing details and information on human subject data
collection, please see the reference [25].

C.2 GdVAE Details

GdVAE Training. The training algorithm is outlined in the supplemental code.
The fundamental GdVAE training procedure, does not include the consistency
loss. This particular training method is employed in Tab. 2 and in Tab. 3 the
consistency regularizer is incorporated. During the training process, we employ
both the global and local-L2 explainer functions to generate counterfactual (CF)
examples. To generate samples, we follow a random selection procedure, sampling
from either explainer function with equal probability. Fig. 5 illustrates the inputs
to the loss functions.

https://github.com/DCGM/ffhq-features-dataset/
https://github.com/DCGM/ffhq-features-dataset/

The Gaussian Discriminant Variational Autoencoder 9

Lgd = (α+ β)Lrec + α
(
Lcvae + Lprior

)
+ β

(
Lvae + Lcls

)
, with

Lrec = −Eqϕ(z,y|x)[log pθ(x|y, z)] , Lcvae = KL(qϕ(z|x, y)||pθ(z|y)) ,

Lprior = − log pθ(y), Lvae = KL(qϕ(z|x, y)||p(z)) , Lcls = −Eqϕ(z|x)[log pθ(y|z)] .

Lcon = Ep(δ)

[
KL

(
qϕ(z|xδ)||qϕ(zδ|x)

)]
Fig. 5: Diagram illustrating the GdVAE model components and their interactions,
highlighting the key elements that contribute to loss function computation.

The hyperparameters used for training and architectural decisions to repli-
cate the results from the paper are summarized in Tab. 5. The architectures are
presented in Tabs. 6 to 10. We maintain consistent hyperparameters (α/β = 1,
γ = 1, T = 3, S = 20) across all datasets. Baseline models adopt dataset-specific
settings for improved results, as indicated in Tab. 12.
GdVAE Architectures. The architecture of the neural network for the CelebA
GdVAE is inspired by the encoder and decoder configurations presented in [9].
When dealing with CelebA, we use 4 × 4 kernels for every convolutional layer,
with a stride of 2 and padding set to 1. However, the last convolutional layer
deviates from this pattern and employs the default stride of 1 with no padding.
In between these layers, Rectified Linear Units (ReLU) are applied.

For more detailed model specifications related to CelebA, please consult
Tab. 7. The notation "FC (×2)" signifies that two distinct fully connected net-
works are in use for both the mean and log variance calculations. In our archi-
tecture, "Conv2d" stands for 2D convolution, while "ConvT2d" corresponds to
2D transposed convolution. The stride and padding settings for these operations
are represented as "s" and "p", respectively. These operations are implemented
using the torch.nn package in PyTorch.

10 A. Haselhoff et al.

It’s worth noting that the prior encoder and label embeddings remain consis-
tent across all models and datasets, as displayed in Tab. 6. Architectural details
for other datasets are provided in Tabs. 8 to 10. For FFHQ we use the pre-trained
StyleGAN architecture based on [53]. Our GdVAE model, as shown in Table 10,
is integrated between StyleGAN’s encoder and decoder. For a comprehensive
understanding of the hyperparameters used in the experiments, please refer to
Tab. 5 in the case of experiments detailed in Tabs. 2 and 3. An ablation study
regarding the hyperparameters can be found in Appendix E.1.

Table 5: Hyperparameters and architectural decisions for our GdVAE model config-
urations on MNIST, CIFAR-10, and CelebA. Values specific to binary classification
scenarios (MNIST - binary 0/1, CelebA) that include the use of consistency loss are
enclosed in parentheses, if they differ from the parameters used in other experiments.
The ADAM optimizer is consistently employed across all datasets.

MNIST CIFAR-10 CelebA

Batch size 64 64 64
Learning rate 0.0005 0.0005 0.0005
Epochs 24 24 24
Number classes K 10(2) 10 2
Latent dimension M 10 64 64
Latent dimension L 10(4) 10 4
Samples S in Algorithm 1 20 20 20
Samples for E in Eq. (11) (10) - (10)
ϵ for p(δ) = U(−ϵ, ϵ) (2.94) - (2.94)
Samples O for E in Eqs. (7) and (8) 1 1 1
Iterations T in Algorithm 1 3 3 3

Table 6: Prior encoder and label embeddings. In binary classification tasks, we opt
for a class-independent choice of Σz(y; θ) = Σz(θ). Consequently, we employ a distinct
encoder network for the covariance Σz(θ), which is obtained by utilizing a constant
input, y = 1.

Prior Encoder pθ(z|y) = N (µz(y; θ), Σz(y; θ))

Input: K values
FC: L values ⇒ FC: L values ⇒ FC: L values
FC (×2): dim(z) = M values

Encoder Label Embedding for y in qϕ(z|x, y)

Input: K values ⇒ FC: 1 channel, W ×H image

Decoder Label Embedding for y in pθ(x|y, z)

Input: K values ⇒ FC: 1 value

The Gaussian Discriminant Variational Autoencoder 11

Table 7: Architecture for CelebA. We center crop and resize the images to have a
width and height of (W × H) = (64 × 64) and keep the three channels C = 3. The
class label y is incorporated into the input image as a fourth channel through a label
embedding (Tab. 6). The latent space’s dimensionality is defined as dim(z) = M = 64.
We utilize qϕ(z|x, y) = N (µz(x, y;ϕ), Σz(x, y;ϕ)), with diagonal covariance matrix
Σz(x, y;ϕ) = diag

(
σ2
z1|x,y, . . . , σ

2
zM |x,y

)
.

Encoder qϕ(z|x, y) Decoder pθ(x|y, z)

Input: 4× 64× 64 Input: dim(z) + 1 = M + 1 values
Conv2d: 32 channels, 4× 4 kernel, s=2, p=1 FC: 256 channels, 1× 1 image
Conv2d: 32 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 64 channels, 4× 4 kernel
Conv2d: 64 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 64 channels, 4× 4 kernel, s=2, p=1
Conv2d: 64 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 32 channels, 4× 4 kernel, s=2, p=1
Conv2d: 256 channels, 4× 4 kernel ConvT2d: 32 channels, 4× 4 kernel, s=2, p=1
FC: 2 · dim(z) = 2 ·M values ConvT2d: 3 channels, 4× 4 kernel, s=2, p=1
Output: M values for µz(x, y;ϕ) and logΣz(x, y;ϕ) Output: 3× 64× 64 image for µx(y, z; θ)

Table 8: Architecture for CIFAR-10.

Encoder qϕ(z|x, y) Decoder pθ(x|y, z)

Input: 4× 32× 32 Input: dim(z) + 1 = M + 1 values
Conv2d: 64 channels, 4× 4 kernel, s=2, p=1 FC: 256 channels, 1× 1 image
Conv2d: 128 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 256 channels, 2× 2 kernel
Conv2d: 256 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 256 channels, 2× 2 kernel, s=2
Conv2d: 256 channels, 2× 2 kernel, s=2 ConvT2d: 128 channels, 4× 4 kernel, s=2, p=1
Conv2d: 256 channels, 2× 2 kernel ConvT2d: 64 channels, 4× 4 kernel, s=2, p=1
FC (×2): dim(z) = M values ConvT2d: 3 channels, 4× 4 kernel, s=2, p=1
Output: M values for µz(x, y;ϕ) and logΣz(x, y;ϕ) Output: 3× 32× 32 image for µx(y, z; θ)

Table 9: Architecture for MNIST.

Encoder qϕ(z|x, y) Decoder pθ(x|y, z)

Input: 2× 28× 28 Input: dim(z) + 1 = M + 1 values
Conv2d: 64 channels, 6× 6 kernel, s=2 FC: 256 channels, 4× 4 image
Conv2d: 128 channels, 5× 5 kernel ConvT2d: 128 channels, 5× 5 kernel
Conv2d: 256 channels, 5× 5 kernel ConvT2d: 64 channels, 5× 5 kernel
FC (×2): dim(z) = M values ConvT2d: 1 channel, 6× 6 kernel, s=2
Output: M values for µz(x, y;ϕ) and logΣz(x, y;ϕ) Output: 1× 28× 28 image for µx(y, z; θ)

Table 10: Architecture for FFHQ.

Encoder qϕ(z|x, y) Decoder pθ(x|y, z)

Input: 2× 96× 96 Input: dim(z) + 1 = M + 1 values
Conv2d: 32 channels, 4× 4 kernel, s=2, p=1 FC: 256 channels, 1× 1 image
Conv2d: 32 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 128 channels, 3× 3 kernel, s=1, p=0
Conv2d: 64 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 64 channels, 4× 4 kernel, s=2, p=1
Conv2d: 64 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 64 channels, 4× 4 kernel, s=2, p=1
Conv2d: 128 channels, 4× 4 kernel, s=2, p=1 ConvT2d: 32 channels, 4× 4 kernel, s=2, p=1
Conv2d: 256 channels, 3× 3 kernel, s=1, p=0 ConvT2d: 32 channels, 4× 4 kernel, s=2, p=1
FC: 2 · dim(z) = 2 ·M values ConvT2d: 1 channel, 4× 4 kernel, s=2, p=1
Output: M values for µz(x, y;ϕ) and logΣz(x, y;ϕ) Output: 1× 96× 96 feature map for µx(y, z; θ)

12 A. Haselhoff et al.

C.3 Details of Baseline Models and Assets

Black-Box Baseline. The optimal baseline for evaluating the predictive per-
formance of the GdVAE in Tab. 2 involves training a discriminative classifier
and a CVAE jointly. Unlike the GdVAE architecture, this classifier employs a
separate neural network as its backbone. This backbone network replicates the
structure of the CVAE’s encoder (refer to Tabs. 7 to 9), allowing the CVAE
to learn an optimal representation for reconstruction, while the discriminative
classifier learns an independent representation for classification.

The classifier leverages the CVAE encoder without the additional class input
to generate a latent representation z. Subsequently, this latent vector is processed
by a one-layer fully connected neural network, which uses a softmax function to
map z to the class output.
Importance Sampling (IS) [45, 48, 54] for Generative Classification.
An alternative approach to our EM-based inference is presented in [48], where
they use separate VAEs for different classes and perform an importance sampling
strategy to obtain a generative classifier. We extend this approach to CVAEs and
use the importance sampling strategy as a baseline in Tab. 2. The importance
sampling strategy for CVAEs to approximate the likelihood pθ(x|y) is given by

pθ(x|y) = Ez∼pθ(z|y)[pθ(x|y, z)] =
∫

pθ(x|y, z)pθ(z|y)dz (24)

≈ 1

S

S∑
s=1

pθ(x|y, z(s))pθ(z(s)|y)
qϕ(z(s)|x, y)

, (25)

where the samples z(s) are drawn from qϕ(z|x, y) and the likelihood is after-
wards used in a Bayes’ classifier pθ(y|x) = ηpθ(x|y)pθ(y). The drawback of this
approach is that in addition to the encoder it requires to invoke the decoder
model for each sample and since the dimensionality of the input space x ∈ RN

is typically larger than the dimensionality of the latent space z ∈ RM , more
samples are required for a good approximation.

This baseline method is denoted by importance sampling (IS) in Tab. 2.
The architecture and learning objective remain unchanged, but instead of using
Algorithm 1, importance sampling in the image space is employed. For a fair
comparison, we utilize S = 60 for the importance sampling method. This is in
line with the GdVAE, which uses S = 20 samples but conducts T = 3 iterations,
resulting in a total of 60 samples as well.
ProtoVAE [13] (https://github.com/SrishtiGautam/ProtoVAE). We utilized
the original implementation as detailed in [13]. In our adaptation, we substituted
the backbone network with the GdVAE backbone and configured the model to
work with a single prototype. Furthermore, we explored various hyperparameter
settings, such as adjusting the loss balance to match our reconstruction loss and
binary cross-entropy loss. The results are presented in Tab. 13.
GANalyze [15] (http://ganalyze.csail.mit.edu/). We utilized the original im-
plementation as detailed in [15]. The code already includes a PyTorch version,

https://github.com/SrishtiGautam/ProtoVAE
http://ganalyze.csail.mit.edu/

The Gaussian Discriminant Variational Autoencoder 13

which is mainly used for the implementation of the so called transformer T (z, α).
The transformer is equivalent to a linear explainer function

If (z, α, k) = zα = z + αw(k), (26)

where α is the requested confidence for the counterfactual class and w(k) is
the direction that is learned for each counterfactual class k. As in the original
implementation we use a quadratic loss between the desired confidence and the
classifier output and utilize the per sample loss

Lcf (x
α, α, k) = [pθ(y = k|xα)− α]

2
, (27)

where k is the counterfactual class with respect to the class label c of the input
image x, xα = If (h(x), α, k) the counterfactual, and h the encoder. We optimize
GANalyze by approximating the expectation in

LGANalyze(w) = Eα∼U(0,1)[Lcf (x
α, α, k)] (28)

with 10 samples for each training image. GANalyze’s primary objective is to learn
a vector w(k) for each class, as opposed to a single vector as seen in GdVAE.
Instead of using a GAN, we leverage our pre-trained GdVAE as an encoder,
decoder, and classifier. The conditional decoder takes the counterfactual class
k as its input. Moreover, we have explored various hyperparameter settings.
For instance, one such setting involves the use of normalization, a practice not
documented in the paper but applied in the code.

This normalization enforces the counterfactual distance from the origin to be
identical to the original input z = h(x)

Inorm
f (z, α, k) =

If (z, α, k)
∥z∥2

. (29)

The results of various hyperparameter settings are presented in Tab. 12.
UDID [49] (https://github.com/anvoynov/GANLatentDiscovery). We utilized
the original implementation as detailed in [49]. The code already includes a Py-
Torch version, which is mainly used for the implementation of the so called latent
deformator A(αek) and reconstructor R(x, xα) that are employed for unsuper-
vised latent space analysis. The deformater is a non-linear explainer function

If (z, α, k) = zα = z +A(αek), (30)

where ek ∈ RK are standard unit vectors defining the directions, one for each
class. α ∼ U(0, 1) defines the strength of manipulation and A(·) ∈M×K is defined
by a neural network. The primary objective of the reconstructor R(x, xα) =

(k̂, α̂) is to compare the original image x and the manipulated version xα, aiming
to replicate the manipulation in the latent space. Consequently, the method
seeks to discover disentangled directions. Instead of employing a GAN, we utilize
our pre-trained GdVAE as an encoder, decoder, and classifier. Additionally, we

https://github.com/anvoynov/GANLatentDiscovery

14 A. Haselhoff et al.

introduce a supervised learning component Lcf to align the method with other
supervised CF methods. We therefore employ a per-sample loss defined by

LUD(A) = Eα

[
Lcl(k, k̂) + λLr(α, α̂) + Lcf (x

α, α, k)
]
, (31)

where λ = 0.25 represents the weight for the regression task, Lcl corresponds
to the cross-entropy function, Lr pertains to the mean absolute error, and Lcf

denotes the supervised loss for the counterfactuals. The supervised loss aligns
with the one used in GANalyze (as in Eq. (27)). We use a sample size of 10 for
α to approximate the expectation. The results of various hyperparameter set-
tings are presented in Tab. 12. To enhance the method and refine the proximity
property, we incorporated a proximity loss Lprox(x, x

α) = ∥x− xα∥22, aiming to
maintain close resemblance between the counterfactual and query images.
ECINN [21]. ECINN employs an invertible neural network and applies a post-
hoc analysis of class conditional means within the latent space to determine an
interpretable direction. They make the assumption that the covariance matrix
Σz (see Sec. 3.1) is the identity matrix. Their post-hoc method is similar to our
local-L2 function, but it approximates the true classifier using empirical mean
values. Consequently, we view ECINN as an empirical implementation of our
method, additionally estimating the empirical covariance.

Furthermore, they create two counterfactuals: one with high confidence for
the opposing class and another precisely at the decision boundary. We replicate
and extend their approach by using our explainer function (refer to Eq. (10)),
wherein we empirically determine class conditional mean values and the covari-
ance matrix after training the GdVAE. Thus, we employ w = Σ

−1

z (µz|k − µz|c),
utilizing the empirical means µz|· and covariance Σz with the predicted class of
the GdVAE as label. The formula for the counterfactual at the decision boundary
is exactly the one that ECINN would employ.
AttFind [30] (https://github.com/google/explaining-in-style). We utilized the
original implementation as detailed in [30]. To accommodate our PyTorch-based
model, we translated their TensorFlow implementation of the AttFind method.
It’s important to emphasize that our usage of the AttFind method is solely for
identifying significant directions within the latent space of our GdVAE. We do
not employ their GAN architecture.

The AttFind method operates by iterating through latent variables, evaluat-
ing the impact of each variable on the classifier’s output for a given image, and
subsequently selecting the top-k significant variables. An image is considered ex-
plained once AttFind identifies a manipulation of the latent space that leads to
a substantial alteration in the classifier’s output, effectively changing the classi-
fier’s class prediction. We employ their Subset search strategy, which focuses on
identifying the top-k variables where jointly modifying them results in the most
significant change in the classifier’s output. This method is limited to producing
class flips and is not intended for generating CFs with desired confidence values.
Hence, we have labeled this method with AttFind† to denote its original purpose
of effecting class changes only. The results are presented in Tab. 15, though their
accuracy and MSE may not be directly comparable to those in Tab. 3.

https://github.com/google/explaining-in-style

The Gaussian Discriminant Variational Autoencoder 15

EBPE [43] (https://github.com/. . .by_Progressive_Exaggeration). We utilized
the original implementation as detailed in [43]. To accommodate our PyTorch-
based model, we translated their TensorFlow implementation. The most sig-
nificant modification involves replacing the GAN with the CVAE architecture
utilized by all approaches. EPBE, aside from GdVAE, uniquely required de-
coder training, resulting in distinct latent space characteristics and reconstruc-
tion quality. EBPE solely uses the pre-trained GdVAE for classification.

The original EBPE version was designed to work with the CelebA dataset,
which is more complex than the MNIST dataset. The MNIST classifier we aimed
to explain achieved remarkably high accuracy and confidence, resulting in some
bins within the EBPE training having no samples for generating images at spe-
cific confidence values. When a bin lacked any samples, it was impossible to
generate additional images from it. This issue could be addressed through hy-
perparameter tuning. For hyperparameter analysis, we define the loss

LEBPE = λcGANLcGAN (G,D) + λrecLrec(G)

+ λcycLcyc(G) + λcfClsLcfCls(G) + λrecClsLrecCls(G). (32)

Here, LcGAN represents EBPE’s conditional GAN loss, Lrec is the reconstruc-
tion loss, Lcyc denotes the cycle loss, LcfCls is the classification loss for the
counterfactual, and LrecCls stands for the classification loss for the reconstruc-
tion of the input image. λ represents the weight of the corresponding loss. For
further details, please see [43] and the original implementation. Detailed results
for different configurations can be found in Tab. 12.

As highlighted in the ’Limitations’ section, the results showcased in the main
paper utilized 24 epochs to maintain uniformity across all methods. For improved
EBPE performance with extended training, see the 96-epoch results in Tab. 12.
C3LT [26] (https://github.com/khorrams/c3lt). We utilized the original imple-
mentation as detailed in [26]. C3LT was initially designed for use with pre-trained
models, and we applied this implementation to our GdVAE models.

While C3LT was originally tailored for the simpler consistency task of class
modification without explicitly requesting a user-defined confidence, we extended
its functionality by introducing a supervised loss term, denoted as Lcf . This loss
term serves to align the user-requested confidence level (α) with the predicted
confidence (α̂), with α̂ = pθ(y = k|If (h(x), α, k)). For Lcf , we experimented
with both quadratic (Eq. (27)) and cross-entropy functions to assess their per-
formance. The results of these experiments can be found in Tab. 12.

In conclusion, we leveraged C3LT to facilitate these modifications and added
a supervised loss term to ensure alignment between the requested confidence
and the model’s predictions. The original version, without the added loss term,
is referred to as C3LT† in Tab. 15.

https://github.com/batmanlab/Explanation_by_Progressive_Exaggeration
https://github.com/khorrams/c3lt

16 A. Haselhoff et al.

C.4 Compute Resources

For training our GdVAE and baseline models, we had the option to utilize two
high-performance PCs equipped with multiple GPUs. The first PC featured an
Nvidia RTX 3090 and a Titan RTX, both boasting 24 GB of memory each. The
second PC made use of two Nvidia A6000 GPUs, each equipped with 48 GB of
memory. To establish a reference point for the required computational time, we
considered the GdVAE exclusively for the counterfactual tasks, as they represent
an upper limit for the models’ demands.

For an individual epoch on binary MNIST, it took 5 minutes, and for CelebA,
it took 60 minutes on the A6000. In the context of our hyperparameter sweep, we
explored 25=(5+8+6+6) different model configurations for MNIST and 12 for
CelebA, encompassing parameters like the number of samples S, iterations T ,
the balance between α/β, and the consistency weight γ. Each of these configura-
tions underwent four separate training runs to calculate the mean and standard
deviations, ultimately leading to the training of 100 models for MNIST and 48
for CelebA, respectively.

Consequently, the total computational time required for this parameter anal-
ysis sums up to (5 min/epochs · 100 · 24 epochs + 60 min/epochs · 48 · 24 epochs)
= 81120 min, which is equivalent to 1352 h of GPU time.

D Evaluation Metrics

D.1 Metrics for Predictive Performance in Tab. 2

Accuracy (ACC). In Tab. 2, we assess the predictive performance of the clas-
sifier using the accuracy (ACC) metric, defined as

ACC =
1

D

D∑
d=1

1
{
ŷ(d) = y(d)

}
, (33)

with the indicator function 1{·}. Here, ŷ is the class prediction, determined as
the class with the highest probability according to ŷ = argmaxi pθ(y = i|z). The
ground-truth class labels are denoted by y ∈ {1, . . . ,K} and we have D test data
samples. y(d) represents the d-th sample.
Mean Squared Error (MSE). To evaluate the reconstruction quality in Tab. 2,
we calculate the mean squared error (MSE) between the ground-truth input im-
age x and the reconstructed image x̂

MSE =
1

D ·N

D∑
d=1

N∑
i=1

(
x
(d)
i − x̂

(d)
i

)2

. (34)

We assume images to be vectorized, with x ∈ RN . Here, N is defined as the
product of the image’s width (W), height (H), and number of channels (C), i.e.,
N = W ·H · C. x(d) represents the d-th sample.

The Gaussian Discriminant Variational Autoencoder 17

D.2 Metrics for CF Explanations in Tab. 3

Realism. Realism in counterfactuals is essential, as they should resemble natural
data. To assess realism, we employ the Fréchet Inception Distance (FID) metric,
a standard measure for this purpose [14, 26, 43]. We compute the FID values
using the PyTorch implementation from [41].
Consistency. CF explanations aim to influence the behavior of a classifier to
obtain desired outcomes. In case of our method the consistency task is to guaran-
tee that the requested confidence value pc accurately matches to the confidence
prediction of the classifier p̂c = pθ(y = c|h(g(zδ))) for the CF zδ = If (z, δ). c is
consistently assigned to the class label of the original input.

As demonstrated in [43], a method for assessing consistency is to create a plot
that compares the expected classifier outcomes with the confidence predictions
of the classifier for the generated CF. The optimum is reached when we obtain
an identity relationship (pc = p̂c) between the two quantities. We use kernel
density estimates (KDE) to visualize this relationship (Figs. 10 and 17).

Similar to [14], we quantitatively evaluate the existence of a linear relation-
ship using the Pearson correlation coefficient. In addition, we utilize the mean
squared error (MSE) between the desired pc and the estimated confidence p̂c

MSE =
1

D⋆

D⋆∑
d=1

(
p(d)c − p̂(d)c

)2

. (35)

Here, we have D⋆ samples and p
(d)
c represents the d-th sample. Given that we

request confidence values within the range pc ∈ [0.05, 0.95], with a step size of
0.05, we acquire 19 counterfactuals per test image. As a result, D⋆ = 19 · D,
where D represents the number of test images.

Accuracy (ACC). Finally, the accuracy metric, as defined in [26] and denoted
by "Val", is designed for the simpler consistency task, which assesses only class
flips as a binary classification problem. To evaluate continuous confidence re-
quests, we employ 12 bins b ∈ {1, . . . , 12} and treat the bin assignment of the
prediction as a multi-class problem. Therefore, we use Eq. (33) with ground-truth
bins b(d) and predicted bins b̂(d) for the D⋆ samples.

In particular, ACC and MSE are used to gauge whether the counterfactuals
are predominantly generated at the extreme confidence levels, near one or zero.
While the results may not be directly comparable, in the context of methods that
focus solely on generating class flips, such as C3LT† [26] and AttFind† [30], we
adopt accuracy with two bins as a reference point, as per the definition in [26] for
binary classification. Please note that this task is considerably simpler, resulting
in accuracy values in Tab. 15 being close to 100% for methods marked with †.
Proximity. The CF should only change the input in a minimal way xδ =
argminx′ ρ(x, x′), with respect to some user defined quantity ρ(·), e.g ., ρ(x, x′) =
∥x− x′∥2 [4].

Mean Squared Error (MSE). In [26] they measure proximity by means of the
L1-norm between the query image x and the counterfactuals xδ. We adopt this
metric by using Eq. (34) for the D⋆ counterfactual samples.

18 A. Haselhoff et al.

E Additional Results

E.1 GdVAE Hyperparameter Analysis

Parameterization of the Loss Function. Before arriving at the final loss,
we conducted several initial experiments on the MNIST dataset. Initially, we
compared our loss formulation (A) derived from Eq. (12) with the loss formu-
lation (B1) outlined in Sec. 3.1, where the training process is streamlined with
the inference process. Additionally, we fine-tuned the reconstruction and classi-
fication loss by adjusting the scale of the reconstruction loss using pθ(x|y, z) =
N (µx(y, z; θ), Σx(y, z; θ)), with Σx := Σx(y, z; θ) = 0.62 ·I for likelihood calcula-
tion (as in [12]), instead of the standard Σx = I. Furthermore, the cross-entropy
loss for classification was rescaled in proportion to the image size, using the fac-
tor 0.1 · W · H · C (B2), where W , H, and C represent the width, height, and
channels of the input image, respectively. Finally, using two priors p(z|y) and
p(z) is not essential, but they are part of the model. In our probabilistic view,
the used factorization (see Sec. 3) justifies including p(y|z) (and thereby p(z)),
in contrast to works that merely append p(y|.). However, using an uniform prior
for p(z), akin to excluding p(z) from the loss, is valid. For MNIST, incorporating
the normal prior results in a lower reconstruction error.

The results pertaining to these settings, including classification accuracy
(ACC) and mean squared error (MSE) as a metric for reconstruction quality,
are presented in Tab. 11. We adopted the B2 setting for all other experiments
and datasets without dataset-specific fine-tuning.

Table 11: Evaluation of different loss functions and settings of the GdVAE on the
MNIST dataset. We use α = β = 1, S = 20, and T = 3. MSE is scaled by a factor
of 102. Mean values, including standard deviation, are reported over four training
processes with different seed values.

Setting Details ACC% ↑ MSE ↓

A: Eq. (12), Σx = I 88.6±1.25 1.19±0.04
B1: Eqs. (7) and (8), Σx = I 96.0±0.85 1.04±0.02
B2: Eqs. (7) and (8), Σx = 0.62 · I 99.0±0.11 1.10±0.04

B2 w/o p(z): Eqs. (7) and (8), Σx = 0.62 · I 99.0±0.08 1.14±0.03

How to Parameterize the EM-Based Algorithm? The GdVAE (Algo-
rithm 1) requires user-defined values for the number of iterations (T) and sam-
ples (S). To determine the optimal number of iterations, we assess the stability of
the training process on the MNIST dataset. The evaluation involves measuring
the entropy of qϕ(y|x) during training epochs and comparing successive epochs.
The results, depicted in Fig. 6, illustrate the change in entropy with increasing
iterations, averaged over the entire test dataset. The error bars represent the
standard error across four training runs with different seeds. Convergence is ob-
served after 3 iterations. Other parameters are set to α = β = S = 1. Based on
the convergence analysis, we fix the value of T to 3 for subsequent experiments.

The Gaussian Discriminant Variational Autoencoder 19

Fig. 6: Evaluation of number of iterations T during the training process on the MNIST
dataset. Mean values, including standard error, are reported over four training processes
with different seed values.

Fig. 7: Quality of models trained on the MNIST dataset with a different number of
samples S.

After assessing convergence, we examine the influence of the number of
samples S drawn from qϕ(z|x) on performance. We evaluate classification ac-
curacy (ACC), reconstruction error (MSE), and the average ELBO of M1
and M2 through multiple training sessions with different random seeds using
S ∈ {1, 5, 10, 20, 40} and report the average values along with the standard
error. The results, depicted in Fig. 7, demonstrate the expected improvement
in performance with an increasing number of samples. All model trainings are
stable and result in accuracy values ≥ 98% and for S ∈ {20, 40} comparable
results are obtained with a small standard error regarding classification accu-
racy. By selecting S = 20, a balanced trade-off between computational load and
performance is achieved, as indicated by the evidence lower bound (ELBO).
How to Balance the Loss for Models M1 and M2? The proposed GdVAE
model incorporates two types of loss functions: the M1 and M2 losses. Both
losses include the reconstruction loss, but differ primarily in their impact on the
recognition model qϕ(z|x, y) and the classifier. While M1 focuses on training the
likelihood model for purely generative classification, M2 provides a discrimina-
tive training signal for the generative classifier and enforces a standard normal
distribution in the latent space. As described in Sec. 3.1, we ensure alignment

20 A. Haselhoff et al.

(a) MNIST (b) CIFAR-10 (c) CelebA

Fig. 8: Analysis of the optimal balance between models M1 and M2 on MNIST, CIFAR-
10, and CelebA datasets. Mean values, including standard error, are reported over four
training processes with different seed values.

between the training and inference processes, requiring both models to utilize
the EM-based classifier for calculating the reconstruction loss using pθ(x|z, y).
For the EM algorithm to function properly, a prerequisite is that, given an input
image x, the recognition model qϕ(z|x, y) must either have the lowest Kullback-
Leibler divergence KL(qϕ(z|x, y)||pθ(z|y)) for the correct class or be independent
of y (e.g ., [12]). The M1 loss does not consider these aspects, as it solely focuses
on minimizing KL(qϕ(z|x, y)||pθ(z|y)) for the correct class without enforcing it
to be smaller than for the other classes. The desired behavior is enforced by
adding the M2 loss, which incorporates a discriminative training signal and a
KL divergence term that promotes independence. Furthermore, the classifier
utilized in M2 relies on the likelihood function learned in M1, highlighting the
interdependence between both models.

We analyze the optimal interplay between models M1 and M2 by evaluating
the parameterization of the loss function defined by Eqs. (7) and (8), where we
select suitable values for α and β. To keep notation concise, we use the ratio
α/β instead of the individual values. We assess combinations of α and β from
the set {0, 1, 10, 100} and present the ELBO results graphically in Fig. 8. The
results indicate that assigning equal weight values to the models (α/β = 1) or
using α/β = 10 generally yields good performance across diverse datasets. To
slightly enhance classification accuracy, we opted for α/β = 1 in all experiments
discussed in the main paper. For the MNIST dataset, opting for α/β = 1 led to
an accuracy of 99.0%, as opposed to 98.8% with nearly identical reconstruction
error. Similar accuracy improvements were observed for CIFAR-10 (65.1% and
63.4%) and CelebA (96.7% and 96.4%) datasets. These results are used in Tab. 2.

How to Balance the Consistency Loss? The experiments aim to assess
the quality of counterfactuals (CF) when varying the impact of the consistency
loss. As in the main paper, we employ the Fréchet Inception Distance (FID) to
gauge realism and Pearson and Spearman’s rank correlation coefficients to gauge
consistency. Following a similar approach to [43], we also visualize the requested
versus the actual response of the classifier using a kernel density estimate plot.

The Gaussian Discriminant Variational Autoencoder 21

Fig. 9: Pearson correlation against FID scores on the MNIST dataset, where γl repre-
sents the consistency weight for the local method, and γg for the global one.

The ablation study, examining the influence of the consistency loss, is de-
picted in Fig. 10. We assess weight values λ for the consistency loss from the set
{0.0, 0.01, 0.1, 1.0, 10, 100}. The error bars represent the standard error across
four training runs with different seeds. We present results for both our local-L2
and global CF generation methods, as described in the main paper Sec. 3.2. x⋆

serves as the FID baseline, representing values obtained by applying the encoder
and decoder directly to the test data. Thus, the FID score for x⋆ reflects the
reconstructed test set.

The ablation study on the consistency loss in Fig. 10 reveals a trade-off
between consistency and realism. When the consistency parameter exceeds λ =
1, the FID score of the ground truth reconstructions is significantly affected.
Similarly, as the influence of the consistency regularizer increases, the correlation
and FID value also increases. In Fig. 9, we visualize this trade-off by directly
plotting the Pearson correlation against the FID scores.

The KDE plot uncovers an intriguing observation: even without utilizing the
consistency regularizer, reasonable counterfactual examples can be generated
with high correlation values (ρp ≈ 0.9). Interestingly, counterfactuals tend to be
generated at the extreme ends of the confidence range, near one or zero. There-
fore, the method effectively flips the class of the query image, but the confidence
values are not well calibrated. With increasing correlation values and improved
calibration, the realism measure (FID) yields inferior results. One possible ex-
planation is that more counterfactuals are generated near the decision boundary,
where there is less real data available, resulting in a compromised natural ap-
pearance. It becomes evident that, for the consistency task [26, 30, 40] in which
the user solely pre-defines the class label without specifying the confidence level,
generating realistic images with low FID scores is considerably easier. Further-
more, we observe that global CF generation exhibits greater consistency with
the classifier but lags behind in terms of realism when compared to the local
CF generation process. The KDE plots for each model’s four training runs are
displayed in Fig. 17. These are the models used in Tab. 3.

22 A. Haselhoff et al.

global local global local global local x⋆

γ = 0.0
ρp = 0.9

γ = 0.01
ρp = 0.93

γ = 0.1
ρp = 0.95

γ = 1.0
ρp = 0.97

Fig. 10: Consistency of counterfactual examples using the MNIST dataset. Top: Pear-
son’s ρp and Spearman correlation coefficients assess the relationship between the re-
quested confidence and the classifier’s output for counterfactual examples. Significance
in correlation is indicated by a p− value ≤ 0.001. Similarly, the Fréchet Inception Dis-
tance (FID) quantifies the image quality of the generated counterfactuals in comparison
to the real data. Mean values, including standard error, are reported over four training
processes with different seed values. Bottom: Consistency of the requested confidence
versus the actual classifier confidence is visually depicted using a kernel density esti-
mate (KDE) plot of the observations. The desired confidence output of the classifier
for a counterfactual example xδ is specified by pc, while the actual confidence acquired
by inputting the counterfactual to our classifier is represented by p̂c = p(y = c|xδ).
Additionally, the corresponding Pearson correlation coefficient ρp is visualized.

E.2 Analysis of Baseline Models

We conducted explorative parameter tuning for all baseline models, initially
using the parameterization from the original implementation. Subsequently, we
fine-tuned the parameters based on the results to achieve a balanced performance
across various metrics and datasets. Results regarding ProtoVAE can be found in
Tab. 13 and the results for the counterfactual methods are presented in Tabs. 12
and 15. Additionally, Tab. 14 presents the GdVAE realism results for various
ranges of query confidences for comparison with Tab. 12. In the main paper, the
FID scores for pc ∈ [0, 1] are reported.
ProtoVAE [13]. The hyperparameter analysis for ProtoVAE is detailed in
Tab. 13. Setting A represents the original parameterization of the loss func-
tion as introduced by [13]. In an effort to enhance results, we modified the loss
function based on our GdVAE settings, outlined in Tab. 11. Initially, we adjusted
the scale of the reconstruction loss using pθ(x|y, z) = N (µx(y, z; θ), Σx(y, z; θ)),
with Σx := Σx(y, z; θ) = 0.62 · I for likelihood calculation (B1), maintaining
the original weighting of the other loss terms. Setting B2 involves adjusting

The Gaussian Discriminant Variational Autoencoder 23

Table 12: CF explanations across diverse baseline model configurations. Mean values,
with standard deviation, are reported across four training runs with different seeds.
The configurations used in the main paper’s experiments (Tab. 3) are bolded.

Setup Consistency Realism (FID) ↓
ρp ↑ ACC% ↑ MSE ↓ p̂c /∈ [0.1, 0.9] p̂c ∈ [0.1, 0.9] p̂c ∈ [0, 1]

GANalyze [15]

MNIST
Binary 0/1

A 0.48±0.04 2.8±0.8 19.33±1.31 79.88±10.04 110.36±8.54 55.77±7.46
B1 0.84±0.04 5.5±1.3 6.75±1.27 51.65±5.25 96.20±8.93 54.89±4.19
B2 0.93±0.03 25.9±16.8 2.09±1.35 122.16±17.74 158.01±27.19 132.36±23.35

UDID [49]

MNIST
Binary 0/1

A 0.87±0.02 13.1±5.9 5.91±1.04 159.16±21.48 181.54±29.72 155.37±17.39
B1 0.87±0.03 0.6±0.2 8.47±0.12 46.74±4.34 104.99±12.26 42.98±3.93
B2 0.85±0.01 1.2±0.3 8.82±0.18 42.01±1.84 104.11±10.33 38.89±2.01
B3 0.80±0.01 2.9±0.5 10.45±0.16 45.90±1.01 104.46±7.61 42.40±1.14
C 0.79±0.05 4.7±1.5 8.82±0.18 74.71±21.85 106.04±22.54 72.64±24.42

CelebA
Smiling

A 0.98±0.01 71.5±6.8 0.24±0.13 411.09±22.61 381.26±24.01 370.69±19.59
B2 0.86±0.06 15.8±9.2 4.22±2.17 146.58±43.18 217.36±96.52 178.23±75.84

EBPE [43]

CelebA
Smiling

A 0.91±0.01 26.3±1.3 1.64±0.19 347.88±190.56 463.90±35.91 425.76±15.80
B1 0.86±0.02 20.0±4.6 3.21±0.92 217.41±0.76 252.24±12.78 241.99±8.13
B2 0.00±0.01 0.0±0.0 32.18±2.14 372.58±19.57 n/a 372.58±19.57
B3 0.99±0.01 80.8±3.3 0.09±0.05 387.15±11.34 403.74±9.36 391.91±16.79
C 0.94±0.01 41.9±3.1 1.22±0.16 193.99±20.44 191.90±20.66 191.67±20.51
D1 0.97 54.39 0.56 185.17 185.16 184.96
D2 0.96 53.62 0.57 148.02 146.75 146.73
D3 0.96 53.71 0.57 120.45 120.14 120.00

C3LT [26]
MNIST

Binary 0/1
A 0.84±0.08 2.0±0.8 4.71±2.21 94.13±12.06 106.90±14.25 92.30±19.59
B 0.89±0.03 3.6±0.8 6.32±1.39 63.49±8.73 96.11±17.22 57.09±10.78

CelebA
Smiling

A 0.89±0.04 3.5±2.5 3.52±0.71 122.29±12.06 138.82±15.33 133.13±13.56
B 0.90±0.01 11.8±5.5 3.94±0.66 96.65±4.97 113.70±19.52 101.46±11.56

Table 13: Hyperparameter analysis of ProtoVAE. We report classifier’s accuracy
(ACC) and mean squared error (MSE) of the reconstructions. MSE is scaled by a fac-
tor of 102. Mean values, including standard deviation, are reported over four training
processes with different seeds. Configurations for experiments in Tab. 2 are bolded.

Setting ACC% ↑ MSE ↓

M
N

IS
T A: ProtoVAE [13] 99.1±0.17 1.51±0.23

B1 98.0±0.12 1.00±0.01
B2 94.8±0.37 1.01±0.01
B3 94.8±0.31 0.99±0.01

C
IF

A
R

-1
0 A: ProtoVAE [13] 76.6±0.35 2.69±0.02

B1 58.4±1.31 0.92±0.02
B2 31.2±2.18 0.85±0.05
B3 30.0±3.25 0.37±0.02

C
el

eb
A

G
en

de
r A: ProtoVAE [13] 96.6±0.24 1.32±0.10

B1 96.0±0.22 0.76±0.02
B2 88.9±0.80 0.75±0.05
B3 85.8±0.50 0.74±0.03

24 A. Haselhoff et al.

Table 14: FID evaluation of GdVAE’s CF explanations for different confidence ranges.

Method Realism (FID) ↓
p̂c /∈ [0.1, 0.9] p̂c ∈ [0.1, 0.9] p̂c ∈ [0, 1]

MNIST
Binary 0/1

Ours (global) 126.93±8.73 140.11±9.04 125.45±11.32
Ours (local-L2) 91.80±10.35 101.25±11.07 91.22±11.04

CelebA
Smiling

Ours (global) 118.40±5.15 138.79±6.11 128.93±4.94
Ours (local-L2) 86.01±2.60 86.59±2.47 85.52±2.37

the weight of the reconstruction and classification loss according to our GdVAE
learning objective. Finally, setting B3, an extension of B2, incorporates a change
in the learning rate from 0.001 to the one used by our GdVAE, which is 0.0005.
As intended, we achieved a consistent reduction in reconstruction error; however,
this improvement came at the cost of lower classification accuracy. Hence, we
retained the parameterization from the original implementation.
GANalyze [15]. All hyperparameter tuning for GANalyze was done on the
MNIST binary dataset and the results can be found in Tab. 12. In the initial
setting (A), we employed the loss function from the original implementation,
which included the normalization of counterfactuals. In the second setting (B1),
we recreated the loss as described in the paper, omitting the normalization and
achieving enhanced results. To further explore the efficacy of setting B1, we
extended the training to 48 epochs (setting B2) instead of the original 24 epochs.
UDID [49]. The hyperparameter tuning for UDID primarily focused on op-
timizing the proximity loss and selecting the appropriate classification loss.
In setting A, we assessed the model with no proximity loss, defined as L =
LUD + γ · Lprox(x, x

α), where γ = 0. Settings B1, B2, and B3 were evaluated
with a proximity loss weighted by γ ∈ {0.1, 1.0, 10.0}. In the final configuration,
C, based on B2, we replaced the mean square error classification loss with cross-
entropy loss. For the CelebA dataset, we revisited settings A and B2 from the
MNIST experiments. Setting A yielded the highest accuracy and lowest MSE
(consistency), but the generated counterfactuals lacked coherence and showed
no resemblance to the input data, as indicated by the high FID score. The FID
played a crucial role in selecting setting B2, which includes the proximity loss.
AttFind [30]. As AttFind was not part of the main paper’s comparative study,
we applied it directly to our GdVAE’s latent space without optimization. Refer
to Tab. 15 for the results.
EBPE [43]. To evaluate EBPE, we experimented with different hyperparame-
ters and activation functions in the decoder’s output layer. The initial implemen-
tation, designed exclusively for CelebA, used the parameters detailed in Tab. 16
("Original") as our starting configuration. However, this configuration yielded
suboptimal performance on both MNIST and CelebA. For MNIST, setting A
from Tab. 16 was chosen for its balance between consistency and realism.

EBPE encountered challenges in generating good reconstructions for the
CelebA dataset with our backbone network and the original settings (see Tab. 16).
To address this issue, we explored different activation functions to prevent image
saturation, particularly as our GdVAE architecture employed a ReLU function
in the output layer. In setting A, we employed a Sigmoid function, while method

The Gaussian Discriminant Variational Autoencoder 25

Table 15: Evaluation of CF explanations for the simple consistency task. Methods
marked with a † exclusively induce class changes, rendering accuracy incomparable
to other methods. These † methods closely adhere to the original implementation.
We use ACC to assess the classification consistency for generated CFs. The Fréchet
Inception Distance (FID) is employed to gauge CF realism. Proximity is measured
with MSE (scaled by 102). Mean values, with standard deviation, are reported across
four training runs with different seeds. It is evident that all methods marked with †
achieve 100% accuracy in altering the class of the query image. The methods without
a † represent the modified versions discussed in the main paper. These methods enable
users to pre-define a confidence value when generating CFs.

MNIST - Binary 0/1

Method Consistency Realism (FID) ↓ Proximity
ACC% ↑ p̂c ∈ [0, 1] MSE ↓

AttFind† [30] 100.0±0.0 120.14±21.88 11.92±6.69
C3LT† [26] 100.0±0.0 88.67±11.01 14.92±0.85
C3LT [26] 3.6±0.8 57.09±10.78 5.83±1.47

CelebA - Smiling

Method Consistency Realism (FID) ↓ Proximity
ACC% ↑ p̂c ∈ [0, 1] MSE ↓

AttFind† [30] 100.0±0.0 109.18±14.82 2.32±1.37
C3LT† [26] 100.0±0.0 171.72±7.97 8.59±0.84
C3LT [26] 11.8±5.5 101.46±11.56 3.97±0.86

B1 utilized a hyperbolic tangent (tanh) function—the latter being used in the
original GAN model by the authors of EBPE. Hence, all subsequent settings
adopted the tanh function in the decoder architecture. Emphasis was placed on
optimizing the reconstruction quality and FID scores by varying the weight of
the conditional GAN loss (discriminator loss). Specifically, settings B1, B2, and
B3 utilized weights of λcGAN ∈ {0.01, 0.1, 0.001} for the discriminator loss.

Building on these findings, we enhanced the FID of version B1 by employing
a higher weight of λrec = λcyc = 103 for the reconstruction loss in setting C,
deviating from the previously used weight of 102. To validate our implementa-
tion, we used EBPE to explain a separate discriminative classifier. The objective
was to assess whether further improvements could be achieved by extending the
training time beyond the 24 epochs that was used by all other methods, as the
original implementation employed 300 epochs. Consequently, methods D1, D2,
and D3 were executed with 24, 48, and 96 epochs, respectively. To expedite
training, we employed a single discriminative classifier instead of the GdVAE,
and as a result, standard deviations are not reported. It’s evident that EBPE
requires more training time compared to the GdVAE, and with four times the
training duration, it converges toward similar FID values as our global method.
The results of this hyperparameter analysis are shown in Tab. 12.
C3LT [26]. We examined two loss function settings on MNIST and CelebA.
Setting A employs the mean squared error, as utilized by GANalyze (Eq. (27)),
while setting B is founded on the cross-entropy loss for Lcf . The results are
summarized in Tab. 12.

26 A. Haselhoff et al.

Table 16: Hyperparameters for EBPE.

MNIST
Setting λcGAN λrec λcyc λcfCls λrecCls Activation

A 0.01 1 10 10 0.1 ReLU
CelebA

Setting λcGAN λrec λcyc λcfCls λrecCls Activation
Original 1 102 102 1 1 tanh

A 0.01 102 102 1 1 Sigmoid
B1 0.01 102 102 1 1 tanh
B2 0.1 102 102 1 1 tanh
B3 0.001 102 102 1 1 tanh
C 0.01 103 103 1 1 tanh

a)

b)

c)

Fig. 11: a) Local-L2 CFs, b) Local-M CFs, and c) the difference, with white and black
indicating a deviation of approximately ±3%.

E.3 Qualitative Results

Additional results: MNIST in Fig. 12, CelebA in Fig. 13, FFHQ in Fig. 14, and
multi-class CFs for MNIST and CIFAR in Figs. 15 and 16. All local explanations
were generated using the L2-based method. A comparison of local-L2 and local-
M explanations is provided in Fig. 11.

The Gaussian Discriminant Variational Autoencoder 27

x xxδ xδ

Fig. 12: MNIST CFs.We generate CFs (xδ) linearly for the input, with decreasing
confidence for the true class from left to right. On the leftmost side of each section, x
denotes the input. We generate samples for pc = [0.99, 0.95.0.75, 0.5, 0.25, 0.05, 0.01]. a)
GANalyze, b) UDID, c) ECINN, d) EBPE, e) C3LT, f) Ours (global), g) Ours (local).

28 A. Haselhoff et al.

Fig. 13: CelebA CFs

The Gaussian Discriminant Variational Autoencoder 29

Fig. 14: FFHQ CFs

30 A. Haselhoff et al.

Prototypes and closest input image x

Counterfactuals

x
µx|y

Fig. 15: MNIST multi-class CFs.CFs for the simpler consistency task by swapping the
logits of the predicted and counterfactual classes. The green rectangle indicates the
input image, while the red rectangles highlight the image reconstructions. Global (top)
and local (bottom) CFs are each positioned to the left and right of the reconstructions,
respectively. The local CFs maintain key image characteristics, such as line thickness.
This CF strategy changes class predictions 100% of the time for the global method,
and 99% of the time for the local method.

Prototypes and closest input image x

Counterfactuals

x

µx|y

Fig. 16: CIFAR-10 multi-class CFs.CFs by swapping the logits of the predicted and
counterfactual classes. The green rectangle indicates the input image, while the red
rectangles highlight the image reconstructions. Global (top) and local (bottom) CFs
are each positioned to the left and right of the reconstructions, respectively. The CFs
are generated primarily through color adjustments and minor shape adaptations. This
CF strategy changes class predictions 97% of the time for the global method, and 89%
of the time for the local method.

The Gaussian Discriminant Variational Autoencoder 31

Fig. 17: MNIST KDE plots are employed to visually depict the relationship between
the requested confidence value pc and the predicted confidence by the classifier p̂c =
pθ(y = c|h(g(zδ))) for the counterfactual zδ = If (z, δ).

