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Fig. 1: FFHQ high-resolution (1024×1024) counterfactuals xδ for smiling.

Abstract. Visual counterfactual explanation (CF) methods modify im-
age concepts, e.g ., shape, to change a prediction to a predefined outcome
while closely resembling the original query image. Unlike self-explainable
models (SEMs) and heatmap techniques, they grant users the ability to
examine hypothetical "what-if" scenarios. Previous CF methods either
entail post-hoc training, limiting the balance between transparency and
CF quality, or demand optimization during inference. To bridge the gap
between transparent SEMs and CF methods, we introduce the GdVAE,
a self-explainable model based on a conditional variational autoencoder
(CVAE), featuring a Gaussian discriminant analysis (GDA) classifier and
integrated CF explanations. Full transparency is achieved through a gen-
erative classifier that leverages class-specific prototypes for the down-
stream task and a closed-form solution for CFs in the latent space. The
consistency of CFs is improved by regularizing the latent space with
the explainer function. Extensive comparisons with existing approaches
affirm the effectiveness of our method in producing high-quality CF ex-
planations while preserving transparency. Code and models are public.
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1 Introduction

Deep neural networks (DNNs), such as generative adversarial networks (GANs)
for image generation [25] and DNN classifiers [46], have achieved notable success.
However, they suffer from limited interpretability, often being considered black
boxes with decision processes not well understood by humans.

Generative explanation methods identify meaningful latent space directions
related to independent factors of variation (e.g ., shape). Previous work finds
these directions by enforcing disentanglement during training or analyzing the
latent space [3,8,9,20,25,38,39,42]. Explanations are obtained by visualizing the
effect of changes in the latent space. Generative models are also used in counter-
factual (CF) reasoning, which answers questions like, "How can the example be
changed to belong to category B instead of A?". This allows users to explore hy-
pothetical "what-if" scenarios [14]. Recent advances combine generative models
and classifiers to generate CF explanations, with enhanced techniques focusing
on realism and consistency [14,15,21,26,30,40,43]. However, many methods lack
transparency, as the CF generation often relies on a separate black-box model,
and the classifier itself may not guarantee transparency either.

Self-explainable models (SEMs) provide explanations alongside their predic-
tions without the need for post-hoc training [1,2,6,7,13]. Many SEMs are based
on prototype learning, using these transparent and often visualizable prototypes
as a bottleneck in a white-box classifier. This white-box classifier (e.g ., linear
predictor) is optimized end-to-end. However, generating CFs for these models is
only feasible through post-hoc methods, potentially reducing transparency.

To bridge the gap between transparent SEMs and CF methods, we introduce
GdVAE, a conditional variational autoencoder (CVAE) designed for transpar-
ent classification and CF explanation tasks. Full transparency is achieved with
a generative classifier using class-specific prototypes and a closed-form solution
for CFs in the latent space, inspired by Euclidean and Riemannian manifold per-
spectives. The prototype explanations come from the distributions provided by
the CVAE’s prior network, meaning the classifier has no additional trainable pa-
rameters. We solve the inference problem of the CVAE, which involves unknown
classes, using expectation maximization that iteratively uses the classifier. Fi-
nally, we generate local CF explanations in the latent space using a transparent
linear function that supports user-defined classifier outputs, and then use the
decoder to translate them back to the input space. Joint training of the classifier
and generative model regularizes the latent space for class-specific attributes,
enabling realistic image and CF generation. An additional regularizer ensures
consistency between query confidence and true confidence of the classified CF.

In summary, our contributions are: (i) We introduce a SEM for vision appli-
cations, based on a CVAE, with an intrinsic ability to generate CFs; (ii) We offer
global explanations in the form of prototypes directly utilized for the downstream
task, visualizable in the input space; (iii) We provide transparent, realistic, and
consistent local CF explanations, allowing users to specify a desired confidence
value; (iv) We conduct a thorough comparative analysis of our method, analyzing
performance, consistency, proximity, and realism on common vision datasets.
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2 Related Work

Since our work is a SEM with integrated visual CF explanations, we begin by
outlining the categorization criteria. Subsequently, we review generative and CF
explanations, as well as prototype-based SEMs tailored for vision tasks. Gener-
ative models naturally serve as an integral component of an explainer function
used for generating CF images. Typically, this function is learned through prob-
ing the classifier and optimizing it for specific properties. In CF research, while
various properties are discussed, realism, proximity, and consistency stand out
as widely accepted criteria. To simplify, CFs should resemble natural-looking
images (realism), make minimal changes to the input (proximity), and maintain
query confidence consistency with the classifier’s predictions when used as input
(consistency) [4,14,26,43]. Similarly, in prototype-based SEMs, transparency is
crucial, characterized by the visualization of prototypes (PT) in the input space
and their utilization in a white-box classifier [13]. To align our work with CF
methods and SEMs, we adopt the following predicates.

1. Realism: CFs should stem from the data manifold with a natural appearance.
2. Consistency: The explainer function IF (x, δ) : (RN ,R) → RN should be

conform with the desired classifier output F (xδ) ≈ F (x)− δ̄ = δ, where δ̄ is
the desired perturbation of the output function, δ the desired output, and
xδ = IF (x, δ) the CF for the input x [43].

3. Proximity : The CF should minimally change the input.
4. Transparency: A model should use explanations (e.g., prototypes) as intrinsic

parts of a white-box predictor, and they should be visualizable in input space.

Generative Explanations (a). The first group of approaches aims to explain
pre-trained generative models (e.g ., GANs). Directions for interpretable control
can be derived through unsupervised [11, 22, 37, 49] or supervised [15, 42, 52]
analysis of generative models. GANalyze [15] employs a pre-trained classifier to
learn linear transformations in the latent space, whereas [42] directly use a linear
classifier in the latent space to define the direction. Except for UDID [49], all
mentioned methods use linear explainer functions for manifold traversal. Most
of these methods, due to their linear explainer function, provide transparency in
latent space manipulation. Transparent classification and CF generation aren’t
their primary focus, though they can generate CFs without optimizing for factors
like realism. Our method aligns with these post-hoc methods by using a transpar-
ent linear explainer function for CF generation. In contrast, our approach excels
by more effectively regularizing the latent space through end-to-end training.
Visual Counterfactual Explanations (b). The second category of meth-
ods focuses on CF generation, optimizing realism, proximity, and consistency .
EBPE [43] and its extension [14] explain pre-trained classifiers by using a GAN
to generate CF images with user-defined confidence values. Similarly, works like
[21,23,24,26,30,40], train generators with a simpler consistency task, where the
user pre-defines the class label only, without specifying the confidence. DiME [24]
optimizes CFs iteratively, incurring significant computational costs. Unlike other
methods, C3LT [26] only manipulates the latent space with neural networks,
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Table 1: Comparison of explanation methods. "Design" column groups approaches
according to the headings: (a), (b), and (c). The symbol ∼ indicates that most methods
use a transparent linear function for latent space traversal and may not be explicitly
designed for generating CFs. Explanations are categorized into Counterfactuals ("CF")
and Prototype-based ("PT"). †: some works [7, 50] use alternating optimization.

Design Approach Transparency Explanation OptimizationCF PT
(a) [11,15,22,37,42,49,52] ∼ ∼ post-hoc
(b) [14,21,23,24,26,30,40,43] ✓ post-hoc
(c) [7, 13,50] ✓ ✓ end-to-end†

GdVAE (ours) ✓ ✓ ✓ end-to-end

similar to methods in the first category, requiring access to a pre-trained gener-
ative model. A different line of research [16, 47] seeks to replace image regions
based on distractor images of the CF class. In [30] and [21], the classifier and
generator are closely coupled during training to enforce a latent space that en-
codes class-specific information. StylEx [30], like [24], requires time-consuming
inference-time optimization and classifier probing to identify influential coor-
dinates for each input image. In contrast, ECINN [21] is unique in its use of
a transparent linear explainer function and an invertible model. Our method is
closely related to ECINN, with the distinction that they require a post-hoc anal-
ysis of the training data to determine the parameters of the explainer function.
Consequently, unlike our model, they approximate the true decision function of
their classifier for CF generation, resulting in a loss of transparency. In contrast,
all the other methods described employ complex DNNs for CF generation and
the classifier, limiting their transparency. Our approach mirrors these CF gen-
eration processes but stands out with a transparent, linear explainer function
analytically linked to our white-box classifier’s decision function.
Self-explainable Models (c). The classifier and CF generation of our GdVAE
are closely tied to the same prototypical space. A line of works that comprises
this prototype-based learning can be found in SEM research [2,7,13,17,36,50,51].
In [13], a categorization of SEMs was introduced, and our specific focus is on
methods prioritizing the transparency property [7, 13, 50]. To maintain inter-
pretability, these SEMs employ similarity scores that measure the likeness be-
tween features and prototypes within the latent space. Afterwards, these scores
are employed within a linear classifier, which encodes the attribution of each pro-
totype to the decision. Unlike ProtoPNet [7] and TesNET [50], ProtoVAE [13]
uses end-to-end training, utilizing a model capable of decoding learned proto-
types, resulting in a smooth and regularized prototypical space.

Our GdVAE employs one prototype per class with a linear Bayes’ classifier,
implicitly utilizing Mahalanobis distance instead of a 2-norm-based similarity.
Unlike ProtoVAE, our SEM enhances transparency and CF generation, unifying
these research areas effectively. Refer to Tab. 1 for an overview.
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Fig. 2: The GdVAE has three branches: 1.) Feature Detection & Reconstruction: The
encoder, akin to a recognition network in a CVAE, generates latent code z. During
inference, with an unknown class y, the marginal q(z|x) acts as a feature detection
module. The decoder reconstructs the input image x using samples z⋆ from the marginal
and y⋆ from the classifier. 2.) Prior Encoder & Classifier: The prior encoder learns
the latent feature distribution independently of the input image, providing necessary
distributions for the generative classifier. 3.) Explanation: During inference, the model
generates a class prediction y⋆ and a latent variable z⋆. The user requests a CF by
defining a desired confidence value and uses a linear function zδ = If (z⋆, δ) to modify
z⋆ to zδ. The CF xδ is obtained by transforming zδ to image space using the decoder.
The CF illustrates crossing the decision boundary, showing features of digits 0 and 1.

3 Method

Notation. We address a supervised learning problem with input samples x ∈ RN

(e.g ., images) and class labels y ∈ {1, . . . ,K}. The latent variable z ∈ RM is
used for both autoencoding and classification. Model parameters θ and ϕ de-
fine the neural networks (NNs) for probabilistic models. For example, we use a
Gaussian posterior qϕ(z|x, y) = N (µz(x, y;ϕ), Σz(x, y;ϕ)), with µz(x, y;ϕ) and
Σz(x, y;ϕ) as NNs. In discussions involving encoders and decoders, we omit the
class input y for simplicity and employ shorthand notations for encoders and de-
coders, such as h(x) = µz(x;ϕ) and g(z) = µx(z; θ). We express a probabilistic
classifier for discrete variables as pθ(y|z), which can be transformed into discrim-
inant functions, denoted as f (i)(z) = log pθ(y = i|z). For the two-class problem
we can use a single discriminant f(z) = f (c)(z)− f (k)(z), where positive values
correspond to class c and negative values to class k. The following explanation
methods are discussed solely for the two-class problem. The composition of the
encoder h(x) and the discriminant f(z) can be used as an input-dependent dis-
criminant function F (x) = (f ◦ h)(x). Similarly, we can obtain CF images by
generating CFs in the latent space with respect to f(z) and using the decoder
to transform them into the image space IF (x, δ) = (g ◦ If )(z, δ).
Overview. The GdVAE enhances an autoencoder with an integrated gener-
ative classifier. We consider a generative model pθ(x, y, z) = pθ(x|y, z)pθ(y, z)
with two distinct factorizations for pθ(y, z) = pθ(z|y)pθ(y) = pθ(y|z)pθ(z), defin-
ing coupled processes. The first factorization establishes a class conditional prior
pθ(z|y) for the latent variable z and delineates an autoencoder (M1), while the
second integrates a discriminative classifier pθ(y|z) (M2) using the latent vari-
able. Later, we’ll employ a generative classifier using the prior encoder’s mean
values as decision prototypes that will benefit from the discriminative learning
signal. See an overview and description in Fig. 2.
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3.1 Autoencoding and Generative Classification

Model Distributions. CVAE including a class prior (M1): For the first fac-
torization of pθ(x, y, z) we assume the observed variable x to be generated from
the set of latent variables z and y through the following process

y ∼ pθ(y) = Caty(π(θ)) , (1)
z|y ∼ pθ(z|y) = N (µz(y; θ), Σz(y; θ)) , (2)

x|y, z ∼ pθ(x|y, z) = N (µx(y, z; θ), Σx(y, z; θ)) , (3)

with categorical distribution Caty(π(θ))=
∏K

k=1 π(θ)
1{y=k}
k , where π is a proba-

bility vector and 1{·} is the indicator function. This process defines a CVAE [45]
with an added class prior pθ(y), capturing class frequency. Thus, we capture both
a prior encoder pθ(z|y) and a class prior, which are used by our classifier.

GDA model with latent prior (M2): The second factorization of pθ(x, y, z)
describes our classification model, where the target class y (observable during
training) is generated by the latent code z according to our second process

z ∼ p(z) = N (0, I) , (4)
y|z ∼ pθ(y|z) = Caty(τ(z; θ)) , (5)

x|y, z ∼ pθ(x|y, z) = N (µx(y, z; θ), Σx(y, z; θ)) . (6)

Instead of using a separate NN to estimate τ , we reuse M1’s distributions to
obtain the categorical distribution pθ(y|z)=ηpθ(z|y)pθ(y), where η is a normal-
ization constant in the context of Bayes’ theorem. In addition to this coupling,
both models are jointly trained using a unified learning objective.
Learning Objective. Our generative models feature non-conjugate dependen-
cies, making it intractable to maximize the conditional log-likelihood. Thus,
we employ a surrogate posterior qϕ(z|x, y) to approximate the true posterior
pθ(z|y) [27]. The surrogate, also called the recognition model, adapts the latent
code distribution based on x. Instead of maximizing the log-likelihood log pθ(x, y)
of our model, we use the evidence lower bound (ELBO) to define our loss. The
resulting per sample loss for the GdVAE is Lgd = αLM1 + βLM2, with

LM1=−Ez,y∼qϕ [log pθ(x|y, z)] +KL(qϕ(z|x, y)||pθ(z|y))− log pθ(y), (7)

LM2=−Ez,y∼qϕ [log pθ(x|y, z)] +KL(qϕ(z|x, y)||p(z))− Ez∼qϕ [log pθ(y|z)] . (8)

α and β control the balance between M1 and M2, and KL denotes the Kullback-
Leibler divergence. The derivation of the loss and ELBO can be found in the
Supplement. Note that during inference, we cannot directly sample from the
encoder qϕ(z|x, y) since the class y is unknown. Instead, we conduct ancestral
sampling by first sampling from qϕ(y|x) and afterwards from qϕ(z|x, y) to approx-
imate qϕ(z|x). To ensure coherence between the training and inference processes,
we compute the expectations relative to qϕ(z|x) and qϕ(z, y|x) during training,
respectively. This alignment enhances the accuracy of predictions.
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Marginalization. The training process is straightforward when labels are ob-
servable, and we can directly sample from the conditional encoder qϕ(z|x, y).
Likewise, during inference with the model, we require an estimate of z given x
and y. The challenge here is that y is unknown during inference.

Therefore, we draw inspiration from semi-supervised learning [28], employ
a factorized probabilistic model qϕ(z, y|x) = qϕ(z|x, y)qϕ(y|x) and perform a
marginalization qϕ(z|x) =

∑K
y=1 qϕ(z|x, y)qϕ(y|x). In practice, besides the con-

ditional encoder qϕ(z|x, y), a classifier qϕ(y|x) is needed. To avoid the need for
sampling in the image space [45], we initialize the classifier with the class prior
pθ(y) and iteratively refine both the classifier and the latent feature model. This

Algorithm 1 An EM-based classifier
qϕ(y|x)← pθ(y)
for iterations t ∈ {1, . . . , T} do

E-Step: Ancestral sampling for GMM
z(s) ∼ qϕ(z|x) =

∑K
y=1 qϕ(z|x, y)qϕ(y|x)

E-Step: GDA classifier
pθ(y|z(s))← ηpθ(z

(s)|y)pθ(y)
M-Step: Assign mean confidence to q
qϕ(y|x)← pθ(y|z) = 1

S

∑S
s=1 pθ(y|z

(s))
end for
return qϕ(y|x)

expectation-maximization (EM)
approach is detailed in Algo-
rithm 1, with a proof in the Sup-
plement. In contrast to a stan-
dard EM for a Gaussian mix-
ture model (GMM), where we
usually estimate mean and co-
variance values, we employ the
GMM to generate S data sam-
ples z(s). Subsequently, we per-
form a soft assignment using the
fixed classifier pθ(y|z) and, akin
to [12], reestimate qϕ(y|x). The
closer our estimate aligns with
the true class of x, the more
samples z(s) we obtain from the correct class, as qϕ(z|x, y) is weighted by qϕ(y|x).

The algorithm yields the classifier qϕ(y|x), used in the learning objective to
estimate qϕ(z|x). We perform ancestral sampling, initially drawing samples from
qϕ(y|x), then from qϕ(z|x, y) to approximate qϕ(z|x) (see Algorithm 1).
Generative Classifier. The generative classifier is built upon a Gaussian dis-
criminant analysis model (GDA) [18] and does not have any additional parame-
ters. Its purpose is to transform the features z from the recognition network and
marginalization process into an interpretable class prediction.

During the training of the entire GdVAE, the prior network learns the class-
conditional mean µz(y; θ) = µz|y and covariance Σz(y; θ) = Σz|y as the parame-
ters of our distribution pθ(z|y) = N (µz(y; θ), Σz(y; θ)). We assume conditional
independence and decompose the likelihood as pθ(z|y) =

∏M
j=1 pθ(zj |y). In prac-

tice, this results in a diagonal covariance matrix Σz|y = diag
(
σ2
z1|y, . . . , σ

2
zM |y

)
.

We use this distribution to determine the likelihood values for the GDA classi-
fier. The class prior pθ(y) can be learned either jointly or separately as the final
component of the GDA model. Thus, we use the mean values as class prototypes
and the covariance to measure the distance to these prototypes.

To infer the class, we apply Bayes’ theorem using the detected feature z from
the recognition model pθ(y = i|z) = ηpθ(z|y = i)pθ(y = i), with the normalizer
η. For the explanation method, we further assume equal covariance matrices Σz
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(independent of y), yielding linear discriminants f (i)(z) = w(i)T z + b(i), where
the weight and bias are given by w(i) = Σ−1

z µz|i and b(i) = − 1
2µ

T
z|iΣ

−1
z µz|i +

log pθ(y = i). For two classes we get f(z) = f (c)(z)− f (k)(z) = wT z + b.

3.2 Counterfactual Explanations (CF)

Instead of directly employing a DNN to define an explainer function xδ =
IF (x, δ), we generate CFs in the latent space and visualize the outcome using
the decoder IF (x, δ) = g(If (z, δ)). Since the discriminant f(z) = wT z+ b of our
classifier is linear by construction, we will see that the optimal explainer function
is also linear If (z, κ) = z+ κw, where the latent vector is adjusted in the direc-
tion of w ∈ RM . Here, κ ∈ R—a tuning knob for data traversal—represents the
strength of the manipulation. Our proposed CF methods are shown in Fig. 4a.

1.) Local counterfactuals: A local explanation should meet both consistency
and proximity properties. Therefore, the optimal CF zδ minimizes the distance to
the current instance z while ensuring the decision function matches the requested
value δ. This involves solving the following constrained optimization problem

If (z, δ) = argmin
zδ

dist(zδ, z), subject to f(zδ) = δ, (9)

where dist(., .) is a distance metric that guarantees proximity and the constraint
ensures consistency. Regardless of whether we choose the common L2-norm [24,
43] or a Riemannian-based metric (Mahalanobis distance) induced by VAEs [5],
the solution to Eq. (9) is a linear explainer function

If (z, δ) = zδ = z + κw, with κ =
δ − wT z − b

wTw
, (10)

where w = Σ−1
z (µz|c−µz|k) is the gradient direction of our discriminant. In this

approach, any negative value of δ would lead to a change in the class prediction,
and δ = 0 corresponds to both classes having equal probability. To simplify user
interaction, one can specify the value in terms of a probability using the logit
function, such that δ = log pc

1−pc
with pc = p(y = c|zδ).

Using the L2-norm, we obtain the intuitive solution where w = w (local-L2).
The CF is generated by using the shortest path (perpendicular to the decision
surface) to cross the decision boundary (see Fig. 4a). The theoretical analysis
on Riemannian manifolds [5] shows that samples close in the latent space with
respect to a Riemannian metric lead to close images in terms of the L2-norm,
thus optimizing proximity. A Riemannian-based solution using the Mahalanobis
distance is w = Σzw (local-M). Training with a spherical covariance Σz=σ2I in-
stead of Σz=diag

(
σ2
z1 , . . . , σ

2
zM

)
yields equivalent functions and therefore equal

empirical results for both Riemannian and L2-based CFs. Proofs, assumptions,
and implications for non-linear methods are provided in the Supplement.

2.) Global counterfactuals: The second CF approach is to move directly in
the direction of the prototype of the opposing class, termed the counterfactual
prototype. In this scenario, we take a direct path from our current input z to the
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CF prototype µz|k, defining the direction as w = (µz|k − z), and reuse the local
explainer function from Eq. (10).

The local approach minimizes input attribute changes (proximity), while
global explanations gradually converge to common CF prototypes to reveal the
overall model behavior for a category of examples. Both methods maintain the
consistency property in the latent space. For realism, we argue that transitioning
directly to the CF prototype or minimizing a distance function is the most effec-
tive way to stay within the data distribution, resulting in a natural appearance.
Consistency Loss. Our explainer function implicitly assumes that the encoder
and decoder act as inverses of each other. Consequently, it is imperative to
ensure that a reconstruction xδ = g(zδ), based on the latent representation
zδ = If (h(x), δ), results in a similar latent representation when encoded once
more, i.e., h(xδ) ≈ zδ. This alignment is crucial to ensure that the classifier
provides the desired confidence when a CF is used as input. To enforce this
property, similar to [30,43,44], we introduce a tailored consistency loss

Lcon = Ep(δ)

[
KL

(
qϕ(z|xδ)||qϕ(zδ|x)

)]
, (11)

where the term addresses classification consistency for generated CF inputs. Es-
sentially, we are probing latent values between the distributions pθ(z|y = c) and
pθ(z|y = k) to optimize for the consistency property. qϕ(z

δ|x) is obtained by
applying the linear transformation of the explainer function If (z, δ) to qϕ(z|x).
In other words, we simply shift the mean value and keep the variance. We use
both global and local explainer functions to generate training samples. p(δ) de-
fines the desired perturbation of the latent variable and we use p(δ) = U(−ε, ε),
where ε can be specified in terms of a probability. The final loss is then given by
L = Lgd + γLcon, where γ controls the impact of the consistency regularizer.

4 Experiments

The empirical evaluation aims to validate the performance of our model, focusing
on two components: the predictive performance of the GdVAE and the quality of
the CFs. We present quantitative results of the predictive performance and CFs in
Secs. 4.1 and 4.2, along with qualitative results in Sec. 4.3. In the Supplement, we
conduct a hyperparameter investigation covering all method parameterizations.
This includes exploring the model balance between M1 and M2, consistency loss,
and presenting additional quantitative and qualitative results.
Datasets and Implementation. We employ four image datasets: MNIST [31],
CelebA [32], CIFAR-10 [29], and the high-resolution dataset FFHQ [25]. Our neu-
ral networks are intentionally designed to be compact. For CelebA, the encoder
has five convolutional layers and one linear layer for µz(x, y;ϕ) and Σz(x, y;ϕ),
which define the distribution qϕ(z|x, y). The decoder’s architecture is symmet-
rical to that of the encoder. Prior encoders use fully connected networks with
four layers to compute µz(y; θ) and Σz(y; θ), defining our distribution pθ(z|y).
All baseline methods employ identical backbones as the GdVAE, and when fea-
sible, publicly available code was adjusted to ensure a fair comparison. See the
Supplement for details on datasets, models, and metrics.
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Table 2: Predictive performance: Importance sampling (IS), ProtoVAE, and a black-
box baseline. Classifier accuracy (ACC) and mean squared error (MSE) of reconstruc-
tions (scaled by 102) are reported. Mean values and standard deviations are from four
training runs with different seeds. †: incl. ProtoVAE’s augmentation and preprocessing.

Method MNIST CIFAR-10 CelebA - Gender
ACC% ↑ MSE ↓ ACC% ↑ MSE ↓ ACC% ↑ MSE ↓

IS [45,48,54] 99.0±0.08 1.04±0.01 55.0±0.59 2.45±0.03 94.7±0.44 1.77±0.08
Ours 99.0±0.11 1.10±0.04 65.1±0.78 1.71±0.02 96.7±0.13 0.91±0.01
Baseline 99.3±0.04 1.12±0.02 69.0±0.54 1.45±0.01 96.7±0.26 0.82±0.00
ProtoVAE [13] 99.1±0.17 1.51±0.23 76.6±0.35 2.69±0.02 96.6±0.24 1.32±0.10

Ours† 98.7±0.05 0.93±0.01 76.8±0.91 1.18±0.02 96.8±0.04 0.71±0.01

4.1 Evaluation of Predictive Performance

Methodology. For a trustworthy SEM, performance should align with the clos-
est black-box model [13]. Thus, the goal of this evaluation is not to outperform
state-of-the-art results on specific datasets but to offer a relative comparison for
the GdVAE architecture and various training methods. In all approaches, both
the classifier and autoencoder are jointly trained, sharing the same backbone.
Baselines. First, optimal performance for the selected architecture is established
using a black-box model, comprising a jointly trained CVAE and classifier as
the baseline. Next, GdVAE’s inference method is evaluated against the leading
CVAE technique, importance sampling (IS) [45,48,54]. Lastly, ProtoVAE [13] is
referenced as a prototype-per-class VAE benchmark.
Results. The results in Tab. 2 indicate good generalization in classification and
reconstruction across MNIST and CelebA. The GdVAE’s EM-based inference
achieves performance close to the optimal baseline with a separate classifier,
except for CIFAR where there is a four-percentage-point gap in accuracy. Com-
paring our EM and the IS approach suggests that our method is more efficient
for higher-dimensional images, benefiting from sampling in the lower-dimensional
latent instead of image space. With data augmentation and normalization from
ProtoVAE, GdVAE achieves comparable results to ProtoVAE.

Takeaway: The inference procedure of our SEM closely matches the perfor-
mance of a discriminative black-box model. Furthermore, our method consis-
tently delivers competitive results to state-of-the-art approaches, particularly
when applied to higher-dimensional images. The class-conditional GdVAE offers
better reconstructions compared to ProtoVAE, the only unconditional model.

4.2 Quantitative Evaluation of CF Explanations

Methodology. The experiments aim to evaluate the quality of CFs regard-
ing realism, consistency, and proximity. Realism, as defined in [14, 26] or data
consistency [43], refers to the CF images being realistic and capturing identifi-
able concepts. To measure realism, we employ the Fréchet Inception Distance
(FID) [14, 26, 43] as a common metric. Akin to [26], proximity is assessed using
the mean squared error (MSE) between the CF and the query image.
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Table 3: Evaluation of CF explanations using Pearson correlation (ρp), ACC, and
MSE (scaled by 102) for consistency, Fréchet Inception Distance (FID) for realism, and
MSE (scaled by 102) for proximity. Mean values and standard deviations are from four
runs with different seeds. The first and second best results are bolded and underlined.

Method Consistency Realism Proximity
ρp ↑ ACC% ↑ MSE ↓ FID ↓ MSE ↓

M
N

IS
T

-
B

in
ar

y
0/

1 GANalyze [15] 0.84±0.04 5.5±1.3 6.75±1.27 54.89±4.19 6.33±1.73
UDID [49] 0.85±0.01 1.2±0.3 8.82±0.18 38.89±2.01 7.44±0.81
ECINN [21] 0.93±0.02 33.0±7.5 1.76±0.81 87.25±12.63 3.47±0.75
EBPE [43] 0.97±0.01 44.6±4.3 0.50±0.13 108.94±13.61 25.73±20.69
C3LT [26] 0.89±0.03 3.6±0.8 6.32±1.39 57.09±10.78 5.83±1.47
Ours (local-L2) 0.95±0.00 42.9±2.7 0.95±0.11 91.22±11.04 4.58±1.00
Ours (local-M) 0.95±0.01 44.6±2.5 0.87±0.13 89.91±5.58 4.10±0.37
Ours (global) 0.97±0.01 54.2±4.0 0.55±0.13 125.45±11.32 6.23±0.53

C
el

eb
A

-
Sm

il
in

g

GANalyze [15] 0.78±0.03 15.2±3.3 5.42±0.97 147.43±19.49 13.47±9.36
UDID [49] 0.86±0.06 15.8±9.2 4.22±2.17 178.23±75.84 13.73±9.41
ECINN [21] 0.72±0.21 21.3±9.6 5.68±4.32 95.35±14.48 1.16±0.22
EBPE [43] 0.94±0.01 41.9±3.1 1.22±0.16 191.67±20.51 1.54±0.06
C3LT [26] 0.90±0.01 11.8±5.5 3.94±0.66 101.46±11.56 3.97±0.86
Ours (local-L2) 0.81±0.04 25.0±4.9 3.65±1.06 85.52±2.37 0.99±0.02
Ours (local-M) 0.82±0.05 25.7±5.1 3.51±1.05 85.56±2.39 0.92±0.03
Ours (global) 0.89±0.01 45.9±12.3 2.08±0.54 128.93±4.94 5.81±0.53

The consistency property, also known as compatibility [43] or importance
[14], is evaluated using mean squared error (MSE), accuracy (ACC), as well as
the Pearson correlation coefficient. We create CFs for every image by requesting
confidences within the range pc ∈ [0.05, 0.95], with a step size of 0.05. The metrics
compare the expected outcome of the classifier pc (desired probability score of
CFs) with the actual probability p̂c obtained from the classifier for the CF.
Baselines. We employ methods from different designs (see Sec. 2) as baselines
with shared backbones. To ensure a fair comparison, we slightly modify methods
that originally tackle the simpler consistency task [21, 26] or those intended
for unsupervised scenarios [49], aligning them with the consistency defined in
Sec. 2. First, we apply generative explanation methods, including GANalyze [15]
and UDID [49], while utilizing our pre-trained GdVAE as an autoencoder and
classifier. Second, we adapt post-hoc CF methods to be compatible with our
GdVAE architecture. We adapt the method from ECINN [21] to approximate
our classifier. C3LT [26] is trained to generate CFs for our GdVAE model using
a non-linear explainer function instead of our linear one. Finally, EBPE [43] is
adjusted to train an encoder and decoder based on the GdVAE architecture and
the pre-trained classifier. These approaches are compared to our CF methods.
Results. The results in Tab. 3 reveal performance across diverse datasets in
binary classification challenges. Considering that the GdVAE is the sole trans-
parent model, it is essential to bear in mind that most models operate on the
GdVAE’s pre-regularized latent space (Fig. 3) when interpreting the results.
Consequently, with the exception of EBPE, these methods face a less complex
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★
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✪
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xδ = g(Īf (µz|s̄, δ)))µx|s̄ = g(µz|s̄) µx|s = g(µz|s)

Fig. 3: Regularized latent space. a) Distribution pθ(z|y) with class-conditional mean
values for not-smiling (orange, •) and smiling (green, ✦), where y = s̄ = not−smiling
and y = s = smiling. b) Reconstructed random samples for not-smiling (top, orange
✪) and smiling (bottom, green ★), arranged in ascending order of their Mahalanobis
distance from left to right. In each column, the Mahalanobis distance is made consis-
tent by adding the same random vector ϵ (red vector in a) to the mean of both classes,
aligning samples along isocontours. c) The global explainer function interpolates be-
tween class-conditional means along the straight-line path (cyan arrow in a).

task and should approximate the "true" linear direction of our local CFs post-
GdVAE training. It becomes evident that our global CF method exhibits a higher
degree of consistency with the classifier, albeit falling short in terms of realism
when compared to the local approaches. This divergence is expected as the global
method converges toward the mean representation of the CF prototype, produc-
ing relatively blurred representations with a notable distance from the query
image (poor proximity). However, global CFs effectively uncover the model’s
overarching decision logic through its prototypes (see Fig. 3c).

Specifically, on the MNIST dataset, our local methods achieve the best or
second-best results in all consistency metrics, producing CFs with well-calibrated
confidence values. The notably high accuracy values indicate that our methods
generate CFs covering the entire confidence range, effectively capturing samples
near the decision boundary. However, the realism metric is affected due to the
absence of MNIST images near the decision boundary, notably those representing
shared concepts of digits 0 and 1 (see Fig. 2). In summary, a favorable trade-off
between consistency, realism, and proximity is achieved by EBPE, ECINN, and
our local methods. A distinct perspective arises when considering the CelebA
dataset, where our local methods excel in achieving optimal results for both
proximity and realism, maintaining a low FID score. In terms of consistency
metrics like ACC and MSE, our local method (local-M) ranks among the top
two performers. Global CFs are distinguished with a separating line in Tab. 3,
indicating their deviation from query images by consistently approaching the
same prototypes, which effectively reveals biases (e.g., toward female prototypes
in CelebA, see Sec. 4.3).

Takeaway: Our SEM, featuring both linear local and global explanations,
yields results that stand on par with leading post-hoc explanation techniques
such as C3LT and EBPE. Moreover, our model slightly outperforms ECINN
across various metrics, with ECINN serving as an optimized post-hoc variant
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✚ zδ

▼

z̄δ

•
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•
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z2

(a) CF generation. Consider input x with la-
tent vector z⋆ and class prediction c. Our first
CF method, denoted as zδ (green ✚), walks
along the gradient direction w or the slightly
rotated gradient direction Σzw (omitted for
clarity). The second method creates a CF, z̄δ

(cyan ▼), by moving from z⋆ to the prototype
µz|k (orange •) of the contrasting class k. Here,
we show a solution for δ = 0 where the decision
boundary is crossed.

GAN-
alyze

UDID

ECINN

EBPE

C3LT

Ours
(local)

Ours
(global)

x⋆ xδ

ps =[ 0.05 0.25 0.5 0.75 0.95 ]

(b) We generate CelebA CFs (xδ) linearly for
the input, with increasing confidence for smil-
ing (y = s) from left to right. On the leftmost
side, x⋆ denotes the reconstruction of the in-
put x. Local denotes both local-M and local-L2
methods, as their images are indistinguishable.

Fig. 4: Left: Counterfactual generation. Right: Counterfactual examples.

of our local CFs. The findings suggest a trade-off between consistency and re-
alism, as no single method excels in all metrics. Notably, as realism decreases
(higher FID), consistency (correlation) increases, resulting in different working
points for each CF method. For further insights regarding this trade-off between
consistency and realism, please refer to the Supplement.

4.3 Qualitative Evaluation

Prototypical Space and Bias Detection. The prototypical space of the
GdVAE is shown in Fig. 3. This section’s results reinforce GdVAE’s transparency
through easily comprehensible global explanations and latent space visualization.
We achieve this by displaying the decoded prototypes and interpolating between
them through our global explainer function (see Fig. 3c). The transparent classi-
fier’s prototypes directly uncover biases without the need for quantitative anal-
ysis of counterfactuals on simulated datasets, as shown in prior work (e.g., [43]).

Table 4: CelebA bias.
Attr. ACC% ↑ MSE ↓

male 89.9±1.37 0.92±0.03

female 91.1±0.33 0.88±0.02

Illustrated in Fig. 3c, the classifier’s decision on
smiling is shaped by female prototypes, revealing a
potential bias or data imbalance not observed in our
local CFs and other CF methods. The gender bias is
exposed by evaluating the smile classifier across hid-
den attributes (Tab. 4), indicating reduced perfor-
mance with increased uncertainty in males. Finally,
we leverage the generative capabilities of the CVAE
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structure, generating samples for various classes. The results are presented in
Fig. 3b and organized based on their distance to the corresponding prior. Due
to regularization, the latent space preserves the identity of individuals when
generating samples for different classes using the same random vector.
CF Explanations. Regarding visual quality, Fig. 4b directly compares our ap-
proach with other tested methods, using a random CelebA image. Our local
method achieves visual quality comparable to state-of-the-art approaches, yield-
ing results akin to ECINN. C3LT demonstrates smooth outcomes reminiscent of
our global method, while EBPE preserves image concepts like our local method
but with slight reconstruction variations. The alignment of C3LT with our global
CFs, despite its expected approximation of the direction of our local CFs, high-
lights the advantage of our analytic link between the classifier and CFs.
High-resolution CFs. We showcase our classifier’s scalability in more com-
plex scenarios, such as higher resolutions, by embedding it within a pre-trained
StyleGAN architecture on the FFHQ dataset. Local CF explanations for smiling
with ps = 0.99 are depicted in Fig. 1. Similar to findings with CelebA data, our
method retains the background while altering only pertinent attributes.

5 Conclusion

In this paper, we present a novel self-explainable model capable of delivering
counterfactual explanations alongside transparent class predictions. Our ap-
proach uses a linear classifier in the latent space that utilizes visualizable proto-
types for the downstream task. With the known linear structure, we can provide
an analytical solution to generate counterfactual images. Our extensive exper-
iments substantiate our method’s ability to yield results that are on par with
state-of-the-art approaches in terms of consistency, proximity, and realism while
maintaining transparency. Furthermore, we illustrate how prototypes offer in-
sight into decision logic and aid in identifying classifier bias. We see our method
as a significant step toward the integration of self-explainable models and coun-
terfactual explanation techniques. In contrast to previous work that requires
post-hoc analysis for generating counterfactuals, our transparent model con-
strains the shared latent space to support consistency, proximity, and realism.
Finally, resembling C3LT, our approach scales and seamlessly integrates with
larger network architectures, as demonstrated on the FFHQ dataset.
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