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Abstract. Diffusion models have significantly advanced the state of the
art in image, audio, and video generation tasks. However, their applica-
tions in practical scenarios are hindered by slow inference speed. Draw-
ing inspiration from the consistency models, we propose the Sub-Path
Linear Approximation Model (SPLAM), which can accelerate diffusion
models while maintaining high-quality image generation. SPLAM treats
the PF-ODE trajectory as a series of PF-ODE sub-paths divided by
sampled points, and harnesses sub-path linear (SL) ODEs to form a pro-
gressive and continuous error estimation along each individual PF-ODE
sub-path. The optimization on such SL-ODEs allows SPLAM to con-
struct denoising mapping with smaller cumulative approximated error.
An efficient distillation method is also developed to facilitate the incor-
poration of pre-trained diffusion models, such as latent diffusion mod-
els. The extensive experimental results demonstrate SPLAM achieves
remarkable training efficiency, requiring only 6 A100 GPU days to pro-
duce a high-quality generative model capable of 2 to 4-step generation.
Comprehensive evaluations on LAION, MS COCO 2014, and MS COCO
2017 datasets also illustrate that SPLAM surpasses the existing accel-
eration methods in few-step generation tasks, achieving state-of-the-art
performance both on FID and the quality of the generated images.

Keywords: Diffusion Models - Accelerating Diffusion Models - Diffusion
Model Distillation - Consistency Models.

1 Introduction

Diffusion models, also known as score-based generative models, have emerged
as a potent paradigm in generative computer vision, enabling the synthesis of
highly realistic images by progressively refining random noise into structured
visual content [91f27129//42}/43|. Despite their impressive ability, one of the primary
challenges associated with diffusion models lies in their computational intensity,
often requiring hundreds of iteration steps to produce a single image. This has
spurred a surge of research focused on accelerating diffusion models to retain
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high-quality outputs while significantly reducing the computation cost during
the inference phase [19-22,/241(33139,41,/46L47].

Within the spectrum of acceleration techniques, consistency models [24}/41|
have garnered attention as they forge a consistent denoising mapping across
points on Probability Flow (PF) ODE trajectories. The learning strategy brings
consistency models a notable consistency property and could estimate the over-
all prediction errors as a summation of incremental errors, which are computed
as the difference between the predicted results of adjacent trajectory points. In
this paper, we recognize that the approximation of denoising mappings by con-
sistency models is essentially a minimization process targeting the endpoints of
sub-paths along ODE trajectories. We observe that the approximated perfor-
mance is currently limited by the accumulation of errors that arise from either
an overabundance of approximation operations, or the heightened challenge of
optimizing individual sub-path errors as the skipping step size expands.

To address these challenges, we propose a novel approach in this paper, desig-
nated as the Sub-Path Linear Approximation Model (SPLAM). SPLAM adheres
to the foundational concept of cumulative approximation of PF-ODE trajectories
but innovates through its sustained learning from Sub-Path Linear (SL) ODEs.
Specifically, we dissect the sub-path learning objective based on the noise pre-
diction design [9,[13] into two interrelated aspects, and establish the SL-ODEs
to give respective progressive or continuous estimation for each component, by a
carefully designed linear interpolation between the endpoints of sub-paths. We
then utilize the SL-ODEs to approximate the complete PF-ODE trajectories
which allows a more nuanced optimization. Consequently, the prediction error
of our approach is assessed through iterative solutions of all SL-ODEs, enabling a
reduction of cumulative errors and an enhancement in image generation quality.
Furthermore, we also develop an efficient distillation procedure for our SPLAM
which enables the incorporation with pre-trained latent diffusion models [31]
(e.g., Stable Diffusion). Our contributions can be summarized as below:

1. We identify that the optimization process for consistency models essentially
minimizes the cumulative approximated error along PF-ODE sub-path end-
points, and observe that the performance of such approximations is hindered
by the proliferating number of approximations or the amplified difficulty in
optimizing single sub-path errors for as skipping step size increases.

2. To address these challenges, we propose a novel approach as Sub-Path Lin-
ear Approximation Model (SPLAM). SPLAM employs Sub-Path Linear (SL)
ODEs to continuously approximate the complete PF-ODE trajectories and
progressively optimize the sub-path learning objectives, which could con-
struct the denoising mappings with smaller cumulative approximated errors.

3. Leveraging the proposed SPLAM and SL-ODE framework, we put forth
an efficient distillation method. When integrated with powerful pre-trained
models like Stable Diffusion, our approach allows more efficient training and
respectively attains impressive FIDs as 10.09, 10.06, 20.77 in LAION, MS
COCO 2014, MS COCO 2017 datasets, achieving better performance and
close inference latency to all previous accelerating approaches.
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Fig. 1: Our Sub-Path Linear Approximation Model employs Sub-Path Linear ODEs
to approximate the sub-paths on the PF-ODE trajectories, which is determined by the
linear interpolation of corresponding endpoints. SPLAM is then trained based on the
consistent mapping along SL-ODEs to minimize the approximated errors.

2 Related Work

Diffusion Models @ have solidified their status as a corner-

stone in the realm of generative models, outshining previous approaches in creat-
ing rich and detailed images. Song et al. model this process from continuous-
time perspective with a stochastic differential equation (SDE), which iteratively
denoise an initial noise distribution leveraging the learned score of the data dis-
tribution to steer the process towards data points [9,[42}/43]. This reverse diffu-
sion process has been verified to be particularly adept at capturing the intricate
structures and variations inherent in complex data sets. They also demonstrate
that there exists an ordinary differential equation (ODE), dubbed as Probabil-
ity Flow (PF) ODE, which shares the marginal probability densities with the
reverse-time SDE and thus yields a deterministic sampling trajectory [13}/43]. In
contrast to other generative models like VAEs and GANs @I, diffusion
models demonstrate remarkable robustness in training and excel in producing
samples with substantial diversity and high fidelity, thereby offering a robust
solution for modeling complex distributions in an ever-expanding array of gen-
erative tasks.

Accelerating Diffusion Models. While diffusion models have demonstrated
their superiority in generating high-quality samples, the generation speed re-
mains a major hindrance due to requiring thousands of sampling steps, which
poses difficulties for practical and efficient applications. To address these is-
sues, a surge of advancements has emerged aiming to accelerate the inference
process. Some works concentrate on designing non-training fast diffusion sam-

plers [2,[11}[13}[18}[21},22[43][52], potentially cutting down the steps from one

thousand to a modest 20-50. In the realm of distillation , efforts have been

undertaken to condense the inference steps of pre-trained

diffusion models to fewer than 10. Progressive distillation (PD) [33] seeks to
amortize the integration of PF-ODE into a new sampler that takes half as many
sampling steps, displaying efficacy with as few as 2/4 steps. Consistency mod-



4 C. Xu et al.

els [241[25|40L[41], as a nascent class of models, offer the promise of high-quality
one-step generation by mapping any point along the PF-ODE trajectory back to
the origin. Representing flow-based approaches |17/19,20,44], InstaFlow [19.20]
propose a reflow technique to straighten the trajectories of probability flows and
refine the coupling between noises and images, which achieves a one-step SD
model. Concurrently, some strategies are exploring the inclusion of GAN-like ob-
jectives into diffusion models to afford fast generative capabilities [16}34,46,47].
DMD [47] additionally proposes a distribution matching method that enables
one-step high-quality image generation.

3 Preliminaries

Diffusion Models are a class of generative models that gradually transform
data into a noisy state through Gaussian perturbations and subsequently learn to
reverse this process to reconstruct the original data by progressively denoising it.
Denote xp as the data sampled from the original distribution g ~ pgete () and
a(t),o(t) as functions that define a noise schedule. Diffusion models transition
the data to a noise-corrupted marginal distribution, which can be expressed as:

pe(xi|wo) = N(@|a(t)zo, o (1)), (1)

for any time step ¢ € [0,77].
Song et al. [43] describe the diffusion process using a stochastic differential
equation (SDE):
dxy = f(xy, t)dt + g(t)dwy, (2)

where f(-,-) and g¢(-) denote the drift and diffusion coefficients, respectively,
and wy signifies the standard Brownian motion at time ¢. They also derive an
ordinary differential equation (ODE) corresponding to this SDE, which defines
the trajectories of solutions sampled at time ¢ according to p;(x;):

doy = | £, 0) — 5907 Vo logp(en)]| . g

referred to as the Probability Flow (PF) ODE. In the reverse denoising process,
models are taught to learn a score function sg(x¢,t) = V log pi(x;), adhering to
the PF-ODE. Therefore, diffusion models are also recognized as score-based gen-
erative models. Based on the diffusion process, latent diffusion models (LDMs)
additionally employ a VAE encoder £(-) and decoder D(+) to compress the image
@ into latent space as z = £(x) and reconstruct it by the decoder: & = D(z), and
implement the diffusion process on the compressed vector z via latent space |31].
With the latent diffusion process, the pre-trained large-scale LDMs like Stable
Diffusion (SD) Models could achieve more precise PF-ODE solutions and thus
generate high-quality images.

Consistency Model has been proposed by Song et al. |[41] as a novel paradigm
within the family of generative models. Considering a solution trajectory of the
PF-ODE {(=¢,1) }+¢[e, 1], consistency models comply with a consistency function
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that projects every pair (xy,t) along the trajectory back to the starting point:
F(x,t) — x, for any t € [¢,T], to obtain a one-step generator. Here, € rep-
resents a small positive constant, thereby making x. a viable surrogate for x.
An important characteristic of the consistency models is the self-consistency
property:

F(xy,t) = F(x},t"), Vt,t' €leT), (4)

which is leveraged as the training constraint for the consistency models, whether
when distilling knowledge from a pre-trained model or training from scratch. The
model is parameterized as follows:

F9<wt7 t) = Cskip(t)wt + Cout(t)fo(wtv t)7 (5>

where ciip(t) and cout(t) are differentiable functions ensuring that cgip(e) =1
and cout(€) = 0, guaranteeing that Fy(x.,€) = x., and fg(x¢,t) is a deep neural
network. For the distillation approach called as Consistency Distillation, the
training objective is formulated as:

Lcp(0,07;0) =E[d(Fo(x,, ., tat1), Fo- (&7 ,t0))], (6)

where &7 = @, + (tn1 — tn)D(X4,, ., , tnt1; @) serves as a one-step estimation
of x;, based on x;,,, from &(-;¢), a update function of a one-step ODE solver,
and d(-,-) is a chosen distance metric. Consistency models also utilize the EMA
strategy to stabilize the training, and @~ is the running average of 6. Latent
Consistency Models (LCMs) [24] introduce consistency model into the distilla-
tion for latent diffusion models. To accelerate the training of consistency models,
LCM employs a skipping step size k to ensure consistency between the current
timestep and k-step away. With a conditional input ¢ and a guidance scale w
to achieve the CFG strategy [10], the modified learning objective for the latent
consistency distillation is formulated as:

»CLCD (07 0_; ¢) = E[d(FG(wt7l+k , W, C, tn+k)a FG_ (dji , W, C, tn))] (7)

4 Methodology

4.1 Approximation Strategy for Denoiser

One-step Denoiser Parameterization. To synthesize an image from a sam-

pled input x; at a large time step t in one-step, a natural approach is to adopt the

strategy from [9] that employs a neural network eg(x¢,t) to predict a standard

Gaussian distribution, which implements the denoising mapping parameterized
x—o(t)eg(@,t)

as fo(xs,t) = === - By redefining the target distribution for (x,t) as

xl = a(t)xo ~ pdata,t(a(t)z) and Do (x¢,t) = a(t)xfo(ws, t) = T —0(t)eq(xt, t),
this predictive formulation can be recast into a canonical denoiser function de-
fined in [13] that aims to minimize the denoising error as follows:

LD(0) = Eapnpiura .o (@how2n | Do(@i, t) — a(t)aol], (8)
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where | - | is an estimation of the error vector (e.g., a L2 distance). However,
the Eq. is hard to be optimized in practice. For instance, when a(t) decreases
over time step ¢ which implies a(t)xy — 0, the training is likely to collapse and
the denoiser is taught to generally give a zero output.

Approximation Strategy in Consistency Models. We observe that, con-
sistency models [24,/41] provide a solution to the aforementioned issues by lever-
aging the consistency property. As we presume that we have obtained a good
prediction result fo(ai—x) = xg, from a time step ¢ — k ahead of ¢ for k steps,
this property yields an approximated error estimation of Eq. as :

E[|De(x¢,t) — a(t) fo(xi—k,t — k)|]. 9)

By incorporating the expressions for fo(xi—k,t—k) and Dg(x;,t), we derive the
approximated error estimation based on €g(-,-) as:

Larpros(8) = Eller =~ 20w+ 0 so(t — Reo(@iost = K) = ot)eo(en )],
(10)

where the mentioned impact on optimization is reduced as the coefficient is am-
plified by a(t — k). When £ is limited to 1, the error between the mapping result
Sfo(x:,t) and the trajectory origin xg can be quantified by the accumulation
of incremental approximated errors |41]: |xg — fo(xs, )] < > |fo(ze,t) —
1<v<t
Sfo(xy_1,t' —1)|. Ideally if the error of one single approximation can be bounded,
we can reduce the cumulative error by decreasing the number of approximations.
This technique, also called SKIPPING-STEP in LCM [24], extends to optimize the
error for skipping sampled points on the trajectories as | fo (@, ') — fo(xy —k, t'—
k)| for a fixed skipping step size k. However, our insights reveal this precondi-
tion does not hold for extended situations. Denote {@4 }4 e[t/ as the sub-path
between x;_j, and x; from the original PF-ODE trajectory, we discern that the
learning objective in Eq. for eg(x¢,t) can be decomposed into two com-
plementary components: 1) dista(@i—g, T, t) = € — a(%_t)k)wt_k, which gauges
the incremental distance from x;_j, to x; attributable to the drift and diffusion
processes, and 2) distg g(@i—,t — k,t) = a(oz(_t)k)a(t — k)eg(@t—i,t — k), which
captures the denoising contribution from previous time steps that should be co-
herently propagated to subsequent time steps t. Thus we rewrite Eq. as a
sub-path learning objective:

Lsub-p(0,k) = E[|dist a(xs, ik, t) + disto g(Ti—p, t — k,t) — o(t)ea(xy, t)]].

(11)
In Eq. , the learning process of dist o equates to modeling the denoising
distribution p(@¢_x|x:), which deviates from Gaussian for larger skipping step
sizes and is found to be intractable to estimate [13}[21}22,/45,46]. Consequently,
the approximated error escalates uncontrollably with increased k& due to reliance
on the flawed learning. Although LCM sets an empirical k of 20 to balance the

pros and cons, the fundamental issues remain unaddressed and unexplored.
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4.2 Sub-Path Linear Approximation Model

To improve the learning objective in Eq. , in this paper we introduce a new
approach for accelerating diffusion models termed Sub-path Linear A pproximation
Model (SPLAM). SPLAM introduces Sub-Path Linear (SL) ODEs to approxi-
mate the sub-paths on the PF-ODE trajectories as a linear interpolation between
the according sub-path endpoints. As the optimization based on such SL-ODEs
gives a respectively progressive and continuous estimation for the decomposed
two terms in Eq. 7 our SPLAM is trained based on the conducted SL-ODE
learning objectives, and achieves smaller overall prediction errors and better
generation quality. We also develop an efficient distillation procedure for latent
diffusion models [31], with Multiple Estimation strategy which improves the
estimated results of teacher models.

Sub-Path Linear ODE Based on the above analysis, in this paper, we in-
troduce Sub-Path Linear (SL) ODEs to model approximated sub-paths in the
original PF-ODE trajectories, which gives a progressive estimation for dist . For
a sampled sub-path {x };c—x,q on a solution trajectory dictated by Eq. ,
we interpolate a linear path from (@x;_,t — k) to (x4, t), guided by the vector
direction of dista(xs, xi—k,t). To distinguish the impacts of dist o and disty g,
we account for the drift component in the linear approximated path, causing a

shift on coefficient from (x;—x,t — k) to (aa(_t)k)act_k,t — k). The points on the

approximated path {x, :},e[0,1] are thus computed as:

a(t)

mmt_k + v« dista(xe, Ti—k, t)

Lyt =

a(t
(1- ’Y)mwtfk + Y%y,
for a sampled (xi—,t — k) and (@4, t).
Since x; and x;_ conform to distributions governed by the PF-ODE, our lin-

ear transformation effectively defines a linear ODE from distribution %mt_k ~

Di—k. i (Ti—k) to &y ~ p(x:) over v, where p; 1, (x;) has the property p; i (z:|zo) =

2
N(a(t + k)xo, [W] I):

d:c%t = [’}/ * d?:StA (Zﬂt, Tk, t)]d’}/ (13)
We denote it as Sub-Path Linear (SL) ODE. To apply the approximation strategy
on the SL-ODE, the Denoiser and generation function replacing x; with x ; are
given by:
D¢ (w'y,ta v t) =Tyt — 0'(77 t)ee (w'y,ta Y, t)»

De(m t7’77t) (14>
t) = ——n =,
.f@(w'y,ta'% ) OL(t)
Incorporating these into Eq. , we derive the sub-path learning objective for
our SPLAM model as :

LspLam (0, k) = E[ly*dista(@:, @i—,t) +disto,e(Ti—r,t,t — k) — (v, t)€q(x,t,7, )]
(15)
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which gives a progressive estimation for the otherwise intractable dist o objec-
tive. The value for o (v, t) can be precisely estimated from the distribution p;(x;)
and p;_g (x;—) but has a complex expression. Empirically we utilize an approxi-
mate result as o(7y,t) = (1—7) az(f)k) o(t—k)+~v+*o(t). Compared to consistency
models which adopt Eq. or Eq. (1), our £ maintains a progressive estima-
tion for dist A and a consistent estimation for disty g, which enables the learning
for large skipping step size. The overall prediction error can still be assessed
by the aggregate of approximated errors between the sub-path endpoints and
the approximated error between these points is continuously optimized through
the SL-ODEs. Consequently, the optimization for the approximated errors in
our SPLAM could be significantly improved. Our approach could further benefit
from the increased skipping step size, allowing our method to generate images
of higher quality with reduced sampling steps in more efficient training.

Sub-Path Linear Approximation Distillation In this paper, we adopt pre-
trained Stable Diffusion (SD) models [31] to obtain the solution PF-ODE tra-
jectories which we build our SL-ODEs upon, and we call the approach Sub-path
Linear Approximation Distillation (SPLAD). To achieve conditional generation
with the conditional input ¢, the noise prediction model is parameterized as
€o(zs, ¢, t) |21,/43]. We also introduce v into the prediction models for solving
our SL-ODEs, and leverage the y—conditioned training where ~y is converted to
Fourier embeddings and fed into the models as an input. Specifically, to predict
zo in the latent space, the generation function for SPLAM is defined as:

F@(Z’y,t7 ¢, t) = Cskip (t)z'y,t + Cout (t).fe(z'y,tv c, 7, t)a (16>

where fo(2.,c¢,7,t) mirrors Eq. while replacing €g (2., 7,t) with the con-
ditional form €g(z-,,¢,7,t). The functions cip and coy, are leveraged to en-
sure that Fg(21,0,¢,1,0) = 2o (we regard Fy as the same expression of fg since
Cskip(t) < Cout(t) for most time steps). Integrating this with Eq. (ED, our SPLAD
approach minimizes the following objective:

LspLAD(0,0750) = Eoyop, tmtalir) ot 0,1) | Fo (2,8 €7, ) = Fo (271 1y, 1, t_(k)l)L

17
where U denotes the uniform distribution, and k is a pre-determined skipping
step size. The «(t) in Eq. @D is omitted due to its negligible effect on optimization
in practice. The term 2ft_k = 2f_k is estimated using ODE solvers @(- - -; ¢)
derived from teacher models. In this paper DDIM [39] is employed as our choice
from the advanced solvers of LDMs. Moreover, to improve the estimation of 23 &
we apply the Multiple Estimation which executes the solver @(- - -, ¢) multiple
times with a reduced skipping step size k4. Denoting t4; = t — i * kg and
initializing z“f;o = z;, the multiple estimation is iteratively executed as:

227“1 = 221 +’LU§Z§(ZA£1 y td),iv t¢,i+17 C; ¢) + (1 —w)@(if;l, tqs’i, t¢,i+17 @; ¢)7 (18)

fori =0,1,2,..;¢ < % — 1, where @ denotes no conditional inputs and w is a
fixed guidance scale which controls the effect of conditional generation [10] from
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Algorithm 1 Sub-Path Linear Approximation Distillation (SPLAD)
Input: dataset D, initial model parameter 0, learning rate n, EMA decay rate p,

ODE solver &(-,; ¢), distance estimation | - |, a fixed guidance scale w, step size k,
VAE encoder £(-), noise schedule a(t), o(t)

0 806

repeat

sample (z,¢) ~ D,t ~U[k,T] and v ~ U[0, 1]
convert x into latent space: z = £(x)

sample z; ~ N(a(t)z,o(2))

2z, 0

repeat
2%,”1 — ii,i + wé(ﬁgﬂ ) t¢»’i7 t¢»’i+17 & ¢) + (1 - w)é(ﬁiywt%h t¢,i+17 Qh ¢)
14—i+1

until k =14 *x kg

Zyt — (1 —7) % %2?—1@ + v x 2z > Sample a point on the SL-ODE.

£0.07:0) « |(Fo(zyircin.t) — Fo(3F e 1t — k)|
0 0—nVeLl(0,07;0)
6~ « stopgrad(u@~ + (1 — p)0)

until convergence

the conditional input c. The pseudo-code for SPLAD is presented in Algorithm [I]
SPLAD shares a similar training pipeline with consistency models [24,{41] but
can be distinguished as it optimizes the sub-path learning objectives based on
the SL-ODEs and utilizes the y-conditioned training. For a pair of input noise
and time step (z¢,t), SPLAM gives the prediction of the denoised latent 2 as:

ﬁ0 :FH*(zl,th)t)’ (19)

for one-step generation, adhering strictly to the v = 1 condition. We also use
the same iterative sample strategy as illustrated in [41] which could improve
the quality of the generated images. In practice, we set the y-embedding to 0
for v = 1, thereby allowing the weights associated with trained ~y-embeddings
to be discarded post-training. Thus our Sub-Path Linear Approximation Model
(SPLAM) necessitates no additional parameters beyond the training phase and
can be utilized the same as teacher models.

5 Experiments

In this section, we conduct experiments to examine the performance of our pro-
posed Sub-Path Linear Approximation Model (SPLAM). Firstly, we describe the
experiment configuration and implementation details, and evaluate our models
comprehensively on the text-to-image task (Sec. . Secondly, we verify the ef-
fectiveness of our algorithm design through detailed ablation studies (Sec. .
Finally, we present the qualitative results of our SPLAM. (Sec. .
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Table 1: Quantitative results for SDv2.1-base with w = 8. The results of DDIM,
DPM, DPM++ and LCM* for LAION test-set are derived from [24]. LCM (fix w)
is our reproduction conducted as stated in the paper. The results on COCO-30k are
evaluated by us.

\ LATON-Aesthetics-6-+ \ COCO-30k
Methods

\ FID({) CLIP-Score(t) \ FID({) CLIP-Score(*)

‘ 1 Step 2 Steps 4 Steps 1 Step 2 Steps 4 Steps ‘ 1 Step 2 Steps 4 Steps 1 Steps 2 Steps 4 Steps
DDIM |39] 183.29 81.05 22.38 6.03 14.13  25.89 |431.26 229.44 32.77 2.88 7.72 28.76

DPM Solver |21] 185.78 72.81 1853 6.35 1510 26.64 [206.37 73.87 22.04 10.56 22.87 31.18
DPM Solver++ [22]|185.78 72.81 1843 6.35 15.10 26.64 |206.35 73.82 2211 10.57 22.87 31.16

LCM* |24] 35.36  13.31  11.10 24.14 27.83  28.69 - - - - - -
LCM (fix w) |24] 3241 1217 1043 2699 30.13  30.76 | 43.87 15.71 14.88 27.66 31.07 31.52
SPLAM ‘ 32.64 12.06 10.09 27.13 30.18 30.76 ‘40,52 14.59 13.81 27.83 31.00 31.45

5.1 Text-to-Image Generation

Experimental Configuration On text-to-image generation task, we train two
models with pre-trained Stable Diffusion-V1.5 (SDv1.5) and Stable Diffusion-
V2.1-base (SDv2.1-base) as teacher models respectively. Following the setting
of [24], the training dataset is one subset of LAION-5B [36]: LAION-Aesthetics-
6+. We choose DDIM-Solver as the ODE solver ¢ at skipping step kg = 20.
For evaluation, we adopt the commonly used FID and CLIP Score metrics.
The results are reported on both SDv1.5 and SDv2.1-base backbones, thus veri-
fying the generalizability of our method. For the experiment of distilling SDv2.1-
base, we bench-mark our model on two test sets, LAION-Aesthetics-6+ as used
in LCM [24] and MSCOCO02014-30k for zero-shot generalization. We also re-
produce a SDv2.1-base LCM according to the training configuration outlined
in [24] while replacing the w-condition with the fixed guidance scale, which has
also improved the performance. We generally set the guidance scale for distilling
SDv2.1-base to 8 and skipping step size to 20, which is consistent with [24]. For
the experiment of distilling SDv1.5, we compare our model with state-of-the-art
generative models including foundation diffusion models, GANs, and accelerated
diffusion models. The guidance scale is set to 3 to obtain the optimal FID, and
we adopt the huber |40] loss for our SPLAD metric. The skipping step size is set
to 100 for SPLAM which has shown fast convergence. We examine our method
on two commonly used benchmarks, MSCOC0O2014-30k and MSCOCO2017-5k.
More implementation details are provided in the supplementary materials.

Main Results The results for SDv2.1-base are presented in Tab. [1, we use
DDIM [39], DPM |21], DPM++ [22] and LCM [24] as baselines. It reveals that
our SPLAM surpasses baseline methods nearly across both test sets, at each step,
and on both FID and CLIP Score metrics. We suppose that the close results on
LAION are caused by overfitting, since the test set and train set are sourced
from the same data collection. For SDv1.5 under the guidance scale w = 3,
the quantitative results are demonstrated in Tab. and Tab. Our model
with 4 steps gets FID-30k of 10.06 and FID-5k of 20.77, which outperforms
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Table 2: Quantitative results for SDv1.5. Baseline numbers are cited from and .
All the results of LCM are our reproduction whose performance is aligned as stated in
the paper. T Results are evaluated by us using the released models.

(a) Results on MSCOCO2014-30k, w = 3. (b) Results on MSCOCO2017-5k, w = 3.
Family Methods Latency(}) FID({) Methods #Step  Latency(l)  FID({)
DALL-E - 27.5 ; t 4 0.21s 35.0
DPM Solver++ |22 p
DALL-E2 B 10.39 8 0.34s 21.0
Parti-750M - 10.71 1 0.09s 37.2
Parti-3B 6.4s 8.10 Progressive Distillation 2 0.13s 26.0
Parti-20B - 7.23 4 0.21s 26.4
Unaccelerated ~ Make-A-Scene 25.0s 11.84 CFG-Aware Distillation 8 0.34s 24.2
Muse-3B L3 788 InstaFlow-0.9B 1 0.00 234
GLIDE [27] 15.0s 12.24 nstat ow-0.2 s g
LDM [ 3.7 12.63 InstaFlow-1.7B w 1 0.12s 224
Imagen 9.1s 7.97 UFOGen 1 0.09s 225
eDiff-1 32.0s 6.95 : p
1] : L
LAFITE 0.02s 26.94 s :
GANs StyleGAN-T [35 0.10s 13.90 2 0.12s 23.07
SPLAM
GigaGAN 0.13s 9.09 4 0.19s 20.77
DPM+-+ (4step 0.26s 22.36 (c) Results on MSCOCO2014-30k, w = 8.
UniPC (4step) 0.26s 19.57
LCM-LoRA (4ste 0.19s 23.62 — o - p
InstaFlow-0.9B 0.09s 13.10 amiy cthods atency(J) )
Accelerated InstaFlow-1.7B 0.12s 11.83 DPM++ (dstep 0.26s 2244
Diffsi UFOGen 0.09s 12.78 UniPC (4step) . 0.263 23.30
: DMD 0.09s 11.49 LCM-LoRA (dstep 0.19s 23.62
LCM (3step) 0.12s 14.29 Accelerated  DMD 0.09s 14.93
SPLAM (2t 0'12, 12'31 Diffusion LCM (2step) 0.12s 15.56
3 (2ste -128 : SPLAM (2step 0.12s 14.50
LCM (4step) 0.19s 10.68 LCM (4step) 0.195 1453
SPLAM (4step 0.19s 10.06 SPLAM (4step 0.195 13.39
Teacher spvis Bt 2.59s 8.03 Teacher spvis i 2.59s 13.05

all other accelerated diffusion models, including flow-based method InstaFlow
20| and techniques that introduce GAN objectives such as UFOGen [46] and
DMD . Furthermore, SPLAM showcases commensurate results with state-of-
the-art foundation generative models such as DALL-E2 . Even in two steps,
SPLAM has achieved a competitive performance of FID-30k 12.31 with parallel
algorithms. In practical scenarios, a higher guidance scale w is typically favored
to enhance the resultant image quality. Accordingly, we trained our SPLAM with
w set to 8 and bench-mark it against a range of advanced diffusion methodologies,
as delineated in Tab. In this regime, SPLAM also demonstrates significant
advantages, achieving state-of-the-art performance with a four-step FID-30k of
13.39 which exceeds other models by a large margin and is close to the teacher
model. Notably, the FID-30k of our model with only two steps reaches 14.50,
surpassing the four-step LCM and DMD. While DMD training consumes over
one hundred A100 GPU days, which is more than 16 times our training duration.

5.2 Ablation Study

Skipping Step Size & Training Cost Fig. [2a] ablates the skipping step size
during training, where we compare SPLAM with or without the multiple esti-
mation strategy (Sec. and LCM. We can observe that: 1) Without multiple
estimation, when the skipping step size k is increasing, LCM suffers a more dras-
tic decline in performance due to heightened optimization challenges for sub-path
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—— LCM o i —s= LCM, step size 20 — Lcm
19 | —— SPLAM, w/o ME —i= LCM, step size 100 —— SPLAM
—+— SPLAM, w ME 35 —+— SPLAM, step size 20 0.06
18 —+— SPLAM, step size 100

S

0 20 40 100 0 10 20 30 40 50 60 70 80 200 400 600 800 1000
Skipping Step Size Training lteration (K) Timesteps

(a) (b) (c)

Fig. 2: (a) Ablations on skipping step size and skipping mechanism. ME denotes for
our Multiple Estimation strategy. (b) Training curve comparing LCM and SPLAM. Our
SPLAM with step size 100 is conducted with ME, which brings faster convergence. (c)
Estimation of the error § between consistency mapping values of two adjacent points
through PF-ODE. SPLAM consistently outperforms LCM in terms of the error.

w=3
o \‘\\ «\)1 TR

29.4 29.8 30.2 30.6
CLIP Score

(b)

Fig. 3: (a) Visualization for different guidance scale w on SPLAM. (b) The trade-off
curve of applying difference guidance scale. w increases from {3.0,5.0,8.0,12.0}.

learning. Through leveraging our proposed Sub-Path Linear ODE, SPLAM can
progressively learn the dist s and effectively alleviate this collapse. 2) Equipped
with the multiple estimation strategy, SPLAM is capable of stably maintain-
ing high image fidelity with large steps. Moreover, we compare the convergence
trends between our method and LCM during training, as depicted in Fig.
When k£ = 20, although our metrics initially converge more slowly during the
early stages, the performance of our method gradually surpasses LCM by a large
margin. It indicates that our training strategy provides a more effective learn-
ing objective, enabling SPLAM to achieve a better result, while LCM quickly
becomes overfitted. As k raised to 100, larger skipping step size brings SPLAM
faster convergence that needs just 2K to 6K iterations which requires about
only 6 A100 GPU days training, facilitating practical applications with fewer
resources. Note that LCM needs 10k+ iterations for optimal performance which
costs about 16 A100 GPU days and can not be applied to larger skipping step
size due to the serious performance gap.

Approximated Error Estimation for SPLAM. To illustrate the efficacy of
our approach, we directly estimate the denoising mapping error between two ad-



LCM

Fig. 4: Comparsion of our SPLAM and LCM in 1,2 and 4-step generation. The
results of LCM are based on our reproduction as illustrated in Sec. SPLAM has
generated consistently higher-quality images that are clearer and more detailed. Note-
worthy is the remarkable performance of SPLAM in the 2-step generation, which aligns
closely with the 4-step generation results of LCM, highlighting the efficiency and effec-
tiveness of our approach in producing high-fidelity images with fewer generation steps.

jacent samples on the PF-ODE: 6(t, k) = E[| fo(x+,,, 1,0 )> fo(®t, . tn))|], which
is firstly defined in Eq. @ The results are shown in Fig. We randomly se-
lected 1000 samples from the COCO dataset and simulated adjacent points on
the ODE by adding the same noise with adjacent timesteps. We utilize k = 20
and the corresponding 50 timesteps for the DDIM scheduler, disregarding steps
smaller than 100 due to their relatively larger simulation deviation. It can be seen
that, especially at larger timesteps, the error ¢ of our SPLAM is further reduced
(about 10% at ¢t = 800). This observation substantiates that SPLAM indeed
contributes to minimizing approximated errors, boosting the model’s capacity
for high-quality image generation.

The Effect of Guidance Scale w. The guidance scale w is a critical hyper-
parameter in Stable Diffusion , with its adjustment allowing users to alter
the semantic alignment and the quality of the generated image. In this study, we
also examine the impact of varying the guidance scale w for our SPLAM based on
SDv1.5, which is visualized in Fig. 3] As well as vanilla Stable Diffusion, while a
higher w value contributes to better sample quality as reflected by CLIP Scores,
it concurrently leads to a degradation in FID performance and oversaturation.

5.3 Qualitative Results

To emphasize the boosted generation quality of our SPLAM, we display the
1,2 and 4-step generation results with the comparison to LCM in Fig. El
Moreover, we compare our SPLAM distilled from SDv1.5 with the most
advanced accelerating diffusion models in Fig. [5] which demonstrate that our
SPLAM has achieved the best generation quality across the existing methods.

6 Conclusion

In this paper, we propose a novel approach Sub-Path Linear Approximation
Models (SPLAM) for accelerating diffusion models. SPLAM leverages the ap-
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"create an image that depicts a majestic kingdom with towering castles, lush gardens, and vibrant colors.
show the bustling streets filled wi ively townsfolk and capture the enchanting atmosphere of the realm."

>

DMD InstaFlow SD (50 step)

SPLAM (2 step) SPLAM (4 step) LCM (4 step) UFOGEN InstaFlow SD (50 step)
(b)

Fig. 5: Qualitative Results. The text prompts are selected from DMD in (a) and
UFOGEN in (b), and the results of the two are also cited from respective papers.
Clearly, SPLAM demonstrates the best generation quality in 4-step generation except
for the SD models. When decreasing the sampling step to 2, SPLAM still maintains a
comparable performance, which generates even better results than 4-step LCM .

proximation strategy in consistency models and considers the PF-ODE trajecto-
ries as a series of interconnected sub-paths delineated by sampled points. Guided
by the optimization direction charted by each sub-path, Sub-Path Linear (SL)
ODE:s also enable our approach to progressively and continuously optimize the
approximated learning objectives and thus construct the denoising mappings
with smaller cumulative errors. We also develop an efficient distillation proce-
dure for SPLAM to enable the incorporation of latent diffusion models. Extensive
experiments on LAION, MS COCO 2014 and MS COCO 2017 datasets have con-
sistently demonstrated the superiority of our method across existing accelerating
diffusion approaches in a few-step generation with a fast training convergence.
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