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Overview

We provide more details about the submission in this document, which includes:

– A justification of the proposed flow-dynamics consistent geometric model.
(Sec. I)

– An in-depth look at the three datasets we generate/collect. (Sec. II)
– More detailed results on real-world datasets. (Sec. III)
– An additional discussion on the performance of all involved methods for

comparison, explaining the number reported in the paper according to an
ablation study. (Sec. IV)

I Justification of the Flow-Dynamics Consistent Model

As shown in [5], the success of geometric-model fitting to event data hinges on
using an accurate parametric model. To this end, we develop a time-variant
affine model that captures the true flow-field dynamics. To justify, we add a
comparison of our proposed time-variant affine model against the widely used
constant affine model, and also, the simplified affine model (assuming no hori-
zontal motion) by ECMD [9]. The evaluation metric used is the contrast of the
resulting image of warped events (IWE), and the goodness of fitting can also be
assessed qualitatively from the IWE’s sharpness. As seen in Fig. A, our method
outperforms the others, justifying the key insight of our method.

II Dataset

We elaborate on the three datasets introduced in Section 4.2 of the paper. Our
investigation reveals a significant lack of specific event datasets for the task of
time-to-collision estimation. To this end, we create three platforms (1 virtual
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Fig.A: Comparison of using different affine models.

Fig. B: A snapshot of three datasets. From top to bottom: Synthetic dataset, Slider
dataset, and FCWD dataset. From left to right: platform configuration, third-person
view of the TTC scenarios, intensity images, and event data (represented with a naive
accumulation of events).

+ 2 real) for data generation, and they consist of: 1) A customized virtual
environment that synthesizes data in traffic scenes (II.A); 2) A small-scale test
platform that mimics the discussed scenarios (II.B); and 3) A multi-sensor suite
employed on a real car for data collection (II.C). Fig. B provides a snapshot
of the platform and generated data for each dataset, and Tab. 1 details the
configuration of the sensors used. We detail the data generation process for each
dataset in the following.

II.A Synthetic Dataset

The simulation of forward-collision scenarios is built on top of CARLA [4], an
open-source simulation platform. CARLA offers extensive APIs for customizing
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Table 1: Hardware specifications for our datasets.

Dataset Name Sensor Type Rate Specifications Hardware-level Sync.

Synthetic

Carla DVS N/A 640× 480 pixels -FoV: 52◦H / 40◦V

Carla RGB 30Hz 640× 480 pixels -FoV: 52◦H / 40◦V
Carla Traffic Manager 1000Hz Report global location of all vehicle actors -

Slider

Inivation DVXplorer N/A 640× 480 pixels
✔FoV: 20◦H / 15◦V

DAHENG MER2 25Hz
1440× 1080 pixels

✔FoV: 17◦H / 13◦V
color with global shutter

Encoder of slider motor 100KHz Report the position and velocity of
✔the hybrid optical system on the slider.

FCWD

2×Prophesee EVKv4 N/A 1280× 720 pixels
✔baseline: 7.5cm FoV: 22◦H / 12◦V

2×FLIR Blackfly S
baseline: 7.5cm 20Hz

1920× 1200 pixels
✔FoV: 23◦H / 15◦V

color with global shutter

LiDAR: Livox HAP point rate: 452,000 points/s
frame rate: 10Hz

range 150 m @ 10% reflectivity
✔FoV: 120◦H / 25◦V

±3cm range precision @ 20 m

(a) The proposed small-scale test platform. (b) The composition of the hybrid opti-
cal system.

Fig. C: Illustration of our small-scale test platform and hybrid optical system.

vehicle motions and scenes, supporting a wide array of sensors commonly used in
robotics, including RGB cameras, LIDAR, IMU, and also, event-based cameras.
Three subsets are created, and each one features distinct motion patterns and
scenes. We set the synthesized event camera’s parameters as follows. The eps
value is set to 0.3, the refractory period is 1 × 10−5 seconds, and the contrast
threshold is 0.15. The calculation of the groundtruth TTC is based on the ab-
solute distance and relative speed between the host vehicle and the preceding
one.

II.B Slider Dataset

To narrow the gap between simulated data and real-world ones, we design a
small-scale test platform using a miniature replica of real vehicles to simulate
car crash scenarios. As shown in Fig. C, this test platform is composed of a
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Table 2: Comparison of Different Event-Centric Datasets.

Dataset Event HFOV Urgent Event RGB LiDAR Sync.Resolution Brake Stereo Stereo

MVSEC [13] 346× 260 65◦ ✖ ✔ ✔ ✔ Partially
DSEC [6] 640× 480 60◦ ✖ ✔ ✔ ✔ Fully

ViViD++ [8] 640× 480 44◦ ✖ ✖ ✖ ✔ Partially
M3ED [2] 1280× 720 63◦ ✖ ✔ ✔ ✔ Fully

Ours(FCWD) 1280× 720 22◦ ✔ ✔ ✔ ✔ Fully

motorized slider, a hybrid optical system based on an open-source design in [7],
and a 1:24 scale vehicle model. The hybrid optical system consists of an inivation
DVXplorer event camera of 640 × 480 pixel resolution, an RGB camera with a
spatial resolution of 1440×1080 pixel, and a beamsplitter that divides incoming
light into two paths, ensuring a unified field of view for both cameras. For pre-
cisely identifying event points within the bounding box of the leading vehicle, it
is important to establish a pixel-to-pixel correspondence map, and furthermore,
synchronize the time clocks of the two heterogeneous sensors. This pixel-to-pixel
mapping between the two cameras can be established through an offline cali-
bration scheme. To temporally synchronize these cameras, we use an STM32
development board, which sends a 25-Hz clock signal that triggers both cam-
eras, ensuring a precise synchronization. The hybrid optical system, mounted on
a slider, simulates collisions at three different speeds (i.e., 500 mm/s, 750 mm/s,
and 1000 mm/s, respectively). The groundtruth TTC is derived from the slider’s
position along the rail and its speed measured by the motor encoder.

II.C Forward Collision Warning Dataset (FCWD)

Publicly available datasets for autonomous driving using event cameras fall short
of addressing the specific requirements of TTC estimation research. As listed in
Table 2, these datasets either exhibit low spatial resolution (e.g ., 346×260 pixel
or 640× 480 pixel) or lack comprehensive temporal synchronization among sen-
sors. Additionally, these datasets are predominantly designed for tasks such as
Simultaneous Localization and Mapping (SLAM) and object detection, rather
than for TTC estimation. To achieve a wider Horizontal Field of View (HFOV),
all datasets utilize short focal length lenses for both event cameras and RGB
cameras. Moreover, the host vehicle, on which these sensors are mounted, typi-
cally decelerates in advance to keep a safe distance from the leading vehicle.

To this end, we develop a multi-sensor suite incorporating a stereo event
camera, a stereo RGB camera, and a LiDAR. Specifically, we employ a HD-
resolution (720p) event camera Prophesee EVKv4 to record event data. The
event camera is synchronized with other sensors to millisecond accuracy via a
triggering signal from an STM-32 development board. The RGB camera and the
LiDAR are synchronized to sub-millisecond accuracy using the Precision Time
Protocol (PTP). Additionally, we equip event cameras and RGB cameras with



Event-Aided Time-to-Collision Estimation for Autonomous Driving 5

Fig.D: Illustration of the input (event data and the bounding box) and a continuous
estimation results of TTC. From left to right: Three selected views of input data in a
chronological order and the TTC estimation results through the whole process. Note
that the first three columns correspond to the positions highlighted with yellow dots
in the right-most plots.

telephoto lenses, suitable for data collection in forward-collision scenarios. Note
that we only use one event camera and one RGB camera in this work.

Three sequences were recorded using our multi-sensor suite to evaluate our
algorithm in real-world settings. The multi-sensor system is mounted on the host
vehicle’s engine cover with suction cups. The vehicle is driven towards a station-
ary one ahead, breaking only at the minimum safety distance, as depicted in the
multimedia content. Groundtruth TTC values are obtained from the distance to
the leading vehicle, measured by the LiDAR, and the vehicle’s speed, determined
by the LiDAR-inertial odometry (Fast-lio [12]).

III Detailed Real-World Experiments of TTC Estimation

We provide more detailed results on our real data (Slider and FCWD). As shown
in Fig. D, our results are always consistent with the ground truth. We observe
that the TTC results become increasingly accurate as the distance between the
host vehicle and the leading vehicle decreases. This happens due to the fact
that the contour of the leading vehicle on the image plane enlarges, and it will
generate more event data, leading to linear time surfaces (LTS) with more spatio-
temporal information. We contend that improvements are feasible with further
engineering efforts. Given the current runtime statistics for a single computation,
an updating rate of 200 Hz, as claimed in the paper, can be achieved.

IV Discussion on Accuracy and Efficiency

This section elaborates on detailed configuration of each method we compare
against in Section 4.3 of the paper. The configuration and parameter selection
for each method significantly affect the accuracy of TTC calculations and run-
time. For a fair comparison, Table. 3 shows the result of each method under
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Table 3: Quantitative Analysis of Each Method Under Different Parameters. Lower
is better.

Method FCWD_1 FCWD_2 FCWD_3
eTTC Runtime (s) eTTC Runtime (s) eTTC Runtime (s)

Image’s FoE [11] 5.39% 0.017 5.70% 0.018 6.02% 0.017

FAITH [3] 25.49% 0.214 27.91% 0.203 39.15% 0.210

E
ve

nt
N

um 1
e5

CMax [5] 5.68% 1.73 5.65% 1.93 6.92% 1.79
Our Init + CMax [5] 5.85% 1.39 4.05% 1.61 4.52% 1.47

2
e5

CMax [5] 2.42% 2.53 2.39% 3.12 3.04% 3.34
Our Init + CMax [5] 2.33% 1.94 2.26% 2.38 2.97% 2.59

3
e5

CMax [5] 6.04% 2.93 4.37% 2.83 3.37% 2.83
Our Init + CMax [5] 2.10% 2.13 2.12% 1.99 2.57% 2.14

N
ei

gh
bo

ri
ng

Si
ze

s
=

2 ETTCM Scaling [10] 15.52% 0.307 18.45% 0.282 19.08% 0.295
ETTCM Translation [10] 19.44% 0.839 17.30% 0.772 21.20% 0.806
ETTCM 6-DOF [10] 28.00% 1.09 27.44% 0.997 36.78% 1.05

s
=

3 ETTCM Scaling [10] 28.07% 0.526 32.04% 0.484 266.50% 0.458
ETTCM Translation [10] 124.72% 1.53 117.06% 1.41 109.84% 1.44
ETTCM 6-DOF [10] 25.23% 2.02 32.52% 1.82 36.43% 1.91

Ours 9.84% 0.017 11.55% 0.023 14.09% 0.025
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Fig. E: Runtime and Accuracy Comparison of event based TTC Estimation
Methods: An Average Performance Evaluation on our FCWD.

various parameter settings on our FCWD dataset. The runtime reported in the
table represents the average computation time to get one TTC result on the
corresponding sequence.

Image’s FoE [11] takes as input the intensity images from an RGB camera
running at 10 Hz. Within the bounding box, the SURF [1] algorithm is employed
to extract feature points on the lead vehicle in two consecutive frames. Based
on the matched feature points, the affine motion model is estimated to calculate
the TTC. The runtime includes feature extraction and matching between two
consecutive frames, as well as the affine model fitting and the TTC calculation.
Note that the runtime does not include the system latency caused by the time
interval between two successive exposures.
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In FAITH [3], we employ default parameters from its open-source code.
Events triggered within the bounding box are used as input, and the runtime
represents the average time for each result.

For the methods of CMax [5] and Our Init + CMax, the main factor affecting
the accuracy of TTC estimation and computation time is the number of events
involved. There are two main strategies: using a fixed temporal window or a
constant number of events. In the forward-collision scenario, the number of events
within the bounding box fluctuates significantly over time with a fixed time
interval on our high-resolution event camera. At the beginning of each sequence,
the camera is far from the leading vehicle and only a small number of events
are triggered, resulting in large estimation error. As the leading vehicle gets
closer, an increasingly larger number of events are generated in a short period of
time, resulting in long computation time or even an abortion of the algorithm.
Therefore, we choose the second strategy, i.e., using a constant event number
of events. Table. 3 shows the estimation error under different event numbers.
To seek the balance between the computation time and estimation accuracy, we
report the result of 2e5 in the experiment result.

The ETTCM [10] method supports different motion models and neighbor-
ing sizes. We follow evaluate its performance under different configurations. Our
evaluation tries three motion models with a neighboring sizes of 2 and 3, re-
spectively, looking for a comprehensive performance in terms of accuracy and
efficiency. The combination of a scaling model and a neighbouring size of 2 is
selected in the report of our paper. The ETTCM method estimates the TTC
and reports computation time on a per-event basis. To simplify comparisons, we
define the computation time of the ETTCM method as the multiplication of the
time required by a single computation and the total number of events processed
by our method every time. This offers a standardized metric for comparing the
runtime of our approach against that of the ETTCM method.

Figure E presents a comparison of runtime and accuracy for all event-based
TTC estimation methods, indicating our method achieving a state-of-the-art
performance.
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