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1 Introduction

Here we provide qualitative ablations of our model highlighting improvements
over prior work, include further implementation details of our method and demon-
strate our method on the remaining NeRF-OSR [3] scenes.

2 DDF Losses

Here we provide detailed descriptions of our DDF losses. The purpose of these
losses is to encourage the geometry implied by the DDF to be consistent with
the scene geometry represented by the SDF. Since the DDF is used for visibility
and hence shadows which influence the appearance loss, this means that shadows
can drive changes to scene geometry, i.e. the SDF, via these DDF losses.

First, the depth predicted by the DDF should match that of the scene pa-
rameterised by the SDF:

Lddf_depth =
∑

(s,d)∈B

|dSDF(s,d)− fDDF(s,d)|, (1)

where B is a batch of positions (s, with ∥s∥ = 1) on the sphere and inward facing
directions (d, with ∥d∥ = 1). dSDF(s,d) is the expected termination depth for a
ray from s in direction d, computed from the current SDF.

Second, travelling the distance predicted by the DDF should arrive at the
SDF zero level set:

Lddf_levelset =
∑

(s,d)∈B

fSDF(s+ fDDF(s,d)d)
2. (2)
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This loss penalises any non-zero SDF value at the termination point predicted
by the DDF.

Third, we can impose multiview consistency on the DDF. Given an arbitrary
starting point s1 and inward facing direction d1, we compute a termination point
x1 = s1+fDDF(s1,d1)d1. Now, from an arbitrary second point s2, the predicted
DDF depth towards x1 must be no greater than ∥x1−s2∥, since x1 would occlude
s2:

Lddf_multiview =
∑

(s1,d1,s2)∈B

max (0, fDDF(s2,d2)− ∥x1 − s2∥)2 , (3)

where d2 = (x1−s2)/∥x1−s2∥ and this time the batch comprises pairs of points
and a direction.

Finally, we further take advantage of our sky segmentation maps as an ad-
ditional constraint on our DDF. Rays that intersect the sky have no occlusions
between the camera origin and our DDF sphere. Our DDF should therefore
predict at least the distance to the camera origin for those intersecting rays:

Lddf_sky =
∑

r∈R∩Ssky

max (0, ∥o− s∥ − fDDF(s,−r)) (4)

where s is the point where the camera ray r intersects the DDF sphere and o the
camera origin. Note that this last loss provides direct, ground truth supervision
for the DDF as opposed to the previous three losses that only ensure consistency
with the SDF. It plays the same role for the DDF as Lsky plays for the SDF,
except it is used in an inward facing setting whereas Lsky is outward facing.

3 High Dynamic Range

As our lighting and model are both optimised in linear HDR space we implicitly
reconstruct HDR sky (and scene) from the LDR input images. This enables HDR
post-processing of our renderings as shown in Fig 1.

Fig. 1: HDR post-processing capabilities of our model. LDR ground truth (left), depth-
of-field and HDR tonemapping (right).
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4 Additional Comparisons

In Figure 2 we highlight the improvement in shadow quality our model provides
over FEGR [5]. Our visibility and illumination models can represent high-quality
sharp shadows whilst being trained concurrently with our geometry and albedo
networks. Unlike FEGR which produces noisy artefacts and requires conversion
of the SDF scene representation into a mesh for ray-tracing.

Fig. 2: FERG (L) produces noisy shadows and is trained in a cascaded manner. Ours
(R) produces sharp detailed shadows and is trained end-to-end.

5 NeRF-OSR Relighting Benchmark

The relighting benchmark for NeRF-OSR [3], in which the ground truth environ-
ment map from a session is used to relight the scene and the appearance error
computed from a single viewpoint per session, for pixels within a provided mask,
covers sites 1− 3. To benchmark NeuSky we chose to tackle a more challenging
task and instead estimate our illumination environment from a single holdout
image, a test image from another viewpoint of the scene during the same cap-
ture session. From the holdout viewpoint, we hold our model static and optimise
only RENI++ latent codes and scale γ for each holdout image. For this, we only
optimise the appearance losses:

Leval_illumination = Lapp +
∑

r∈R∩Ssky

ε(cgt(r), csky(r))

We then position the camera in the test viewpoint and evaluate within the
provided mask. We decided to evaluate using this methodology for the following
reasons.
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1. The environment map to model alignment is unknown. SOL-NeRF [4] at-
tempted to address this via rotations of the environment until the highest
PSNR error was achieved and this was presumed to be the correct orienta-
tion.

2. The images are not HDR, we discussed with the author of NeRF-OSR and
their solution is an arbitrary scaling of saturated pixels, this scaling was set
to 10 for [3] and 30 in [4], to simulate HDR before fitting their illumination
model.

3. Our method is more challenging as we estimate the illumination rather than
being given provided with it. i.e. we simultaneously evaluate illumination
estimation and relighting.

We, therefore, consider this the best tradeoff between accuracy and repeatability
and recommend in the future others also use this evaluation method. We will
make our fitted environment maps available for future evaluations.

Ground Truth Render Albedo Normals

Fig. 3: Renders of four other scenes in NeRF-OSR [3]. Estimated illumination of
RENI++ [2], albedo and normals are shown alongside the ground truth images. Our
method accurately disentangles albedo, lighting and shadows whilst producing very
high-quality geometry.
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Fig. 4: NeuSky lighting prediction (left), reference (right).

6 Implementation Details

During data pre-processing, we assume all cameras are looking towards the ob-
ject of interest and align the average focus point of all cameras to be at the
centre of our scene.

As one of the classes in our CityScapes [1] segmentation masks is ground, we
have an optional ground plane alignment loss that enforces consistency between
the volume rendered normal and the world-up vector for rays inside that mask.
We use the normal consistency loss from MonoSDF [6]:

Lgp =
∑

r∈R∩Sgp

∥N(r)−w∥1 +
∥∥1−N(r)⊤w

∥∥
1
, (5)

where Sgp is the set of ground plane pixels, N(r) is the volume rendered normal
for ray r and w is the world-up vector defined as [0, 0, 1].

7 Further Results and Videos

In Figure 3 we provide more renderings of our model fit to the remaining
NeRF-OSR [3] scenes, demonstrating further our model’s ability to capture high-
frequency geometric details, and accurately disentangle shading and albedo am-
biguities. We encourage the reader to view the rendered videos on our project
page demonstrating the multi-view and re-lighting capabilities of our model. In
each video, we move the camera around the scene, once the camera comes to a
stop we rotate the illumination environment to demonstrate the accurate shadow
reproduction and relighting capabilities of our model. We also include videos of
our Directional Distance Field (DDF) which we used for our sky visibility esti-
mations and is trained concurrently with the scene representation. Each frame
of this video is a single forward pass through our DDF which is able to produce
the highly accurate depth maps required for accurate shadows.
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