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Fig. 1. From in-the-wild, outdoor image collections, we predict scene geometry, albedo,
distant environment illumination, and sky visibility. Sky visibility and illumination are
both modelled via spherical neural elds whereby we directly constrain illumination
via sky pixel observations. Our outside-in di erentiable visibility enables estimation of
cast shadows and avoids shadow baking into albedo.

Abstract.  Inverse rendering of outdoor scenes from unconstrained im-
age collections is a challenging task, particularly illumination/albedo
ambiguities and occlusion of the illumination environment (shadowing)
caused by geometry. However, there are many cues in an image that can
aid in the disentanglement of geometry, albedo and shadows. Whilst sky
is frequently masked out in state-of-the-art methods, we exploit the fact
that any sky pixel provides a direct observation of distant lighting in the
corresponding direction and, via a neural illumination prior, a statistical
cue to derive the remaining illumination environment. The incorpora-
tion of our illumination prior is enabled by a novel “outside-in' method
for computing di erentiable sky visibility based on a neural directional
distance function. This is highly e cient and can be trained in parallel
with the neural scene representation, allowing gradients from appear-
ance loss to ow from shadows to in uence the estimation of illumina-
tion and geometry. Our method estimates high-quality albedo, geometry,
illumination and sky visibility, achieving state-of-the-art results on the
NeRF-OSR relighting benchmark. Our code and models can be found at
https://github.com/JADGardner/neusky
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1 Introduction

Inverse rendering of outdoor scenes has diverse downstream applications such
as scene relighting, augmented reality, game asset generation, and environment
capture for Ims and virtual production. However, accurately estimating the un-
derlying scene model that produced an image is an inherently ambiguous task
due to its ill-posed nature [2]. To address this, many works use some combi-
nation of handcrafted [7,17] or learned priors|[4, §, 19, 47], inductive biases in
model architectures [13], or multi-stage training pipelines |[35, 36, 50]. This pro-
cess is made even more di cult when considering in-the-wild image collections
from the internet that contain transient objects, image lters, unknown camera
parameters and changes in illumination.

Outdoor scenes present particular challenges. Natural illumination from the
sky is complex and exhibits an enormous dynamic range. This causes strong cast
shadows when the brightest parts of the sky are occluded. These occlusions are
non-local and discontinuous making them hard to incorporate within a di er-
entiable renderer. OQutdoor scene geometry can also exhibit arbitrary ranges of
scale. On the other hand, sky illumination dominates secondary bounce lighting,
meaning it is reasonable to assume a spatially non-varying, distant illumina-
tion environment. In addition, natural illumination contains statistical regulari-
ties [14] that make it easier to model. For example, luminance generally increases
with elevation (the “lighting-from-above' prior), the sun can only be in one po-
sition and the range of possible colours from sun and sky light is limited.

In this paper, we tackle the outdoor scene inverse rendering problem by t-
ting a neural scene representation to a multi-view, varying-illumination photo
collection. We name our methodNeuSky and make four key contributions rela-
tive to prior work. First, we make a key observation: Any pixel in an image that
observes the sky provides a direct constraint on the illumination environment in
that direction. Second, we combine this insight with an HDR neural eld natu-
ral illumination model [1L6] learnt from natural environments, constraining this
model to outpaint plausible illuminations given the direct observations of illumi-
nation seen from the camera. Thirdly, we proposeoutside-in visibility, a novel,

di erentiable, neural approximation to sky visibility, computed with a single for-
ward pass through a directional distance function network. Finally, we deploy
this visibility representation to enable end-to-end training, removing the need
for phased training. Crucially, this means that shadows can in uence illumina-
tion and geometry estimation by appearance losses backpropagating through the
visibility network, enabling geometry estimation for non-observed scene regions
and also avoiding shadow baking into albedo.

2 Related Work

Relightable Neural Scenes The core NeRF [26] approach has been improved
in several key ways since its publication. Nerfstudio,|[3[7] a platform for research-
ing in Neural Fields, introduced NeRFacto taking advantage of many of these
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Fig.2: We surround our NeuS-Facto [48] volume with two spherical neural elds at
radius 1 and radius 1 modelling sky visibility and distant illumination respectively.
Blue arrows correspond to rays sampling distant illumination. Pink circles and Maroon
arrows are position and direction samples of our sky visibility network. In a given
direction, visibility changes with position but distant illumination does not. For speed
we only sample sky visibility on the surface of our scene, , and distribute
this visibility to all samples, , along a ray.

developments. It leverages the same proposal sampling and scene contraction as
Mip-NeRF 360 |3] alongside the hash-grid representation from Instant-NGP| [2[7]
to reduce network sizes and vastly speed up training. Implicit surface repre-
sentations were introduced in NeuS|[39] and VoISDF [45], which used a neural
Signed Distance Function (SDF) with NeRF volume rendering. NeuS-Facto, in-
troduced in SDFStudio [48], combined the NeRFacto improvements with NeusS.
This model, which is similar to that used by the current state-of-the-art in neural
surface reconstruction of large scenes [21], is the underlying model that we use.

In parallel with these developments, several attempts have been made to
use neural scene representations for decomposition into its intrinsic properties.
NeRF-OSR [30] predicts albedo and density. For distant illumination, they pre-
dict per image Spherical Harmonic (SH) lighting coe cients and model shadows
via a shadow network conditioned on those SH coe cients. Whilst now provid-
ing a parametric model of illumination they are limited by the quality of nor-
mals obtained from NeRF density (we use a NeuS derivative with high-quality
geometry), shadows that are not related to the scene geometry (our shadow
network is directly tied to scene geometry) and the low frequency of SH (we
employ a neural eld for illumination capable of capturing higher order lighting
e ects). Methods such as PhySG |[49] and NeRF-V|[35] allow relighting but re-
quire known illumination. NeRFactor [50] additionally optimises visibility and
illumination together allowing shadows but with a low-resolution environment
map and no illumination prior. Similar to our work, FEGR [41]/also uses a neu-
ral eld representation for HDR illumination, however, they do not include a
prior over illuminations. Their rasterisation process to model visibility is also
a non-di erentiable function, meaning cues from shading and shadows will not
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inform illumination or geometry estimations. SOL-NeRF [36] similarly convert
their SDF representation to a mesh for ray-tracing but instead use a combination
of Spherical Gaussians (SG), with a sunlight colour prior based on sun elevation,
and SH to model illumination. Also similar to our work, NeuLighting [20] uses
a prior over illuminations and visibility MLP but their framework is trained in

a cascaded manner, so visibility can not in uence lighting and geometry esti-
mations compared to our method, furthermore their method considers shadows
only from the sun.

Directional Distance Fields SDFs measure the distance to the nearest sur-
face at a given point, signed to indicate outside/inside. In contrast, Directional
Distance Functions (DDFs) measure the distance to the nearest surfacén a
given direction, making them 5D as opposed to 3D functions for SDFs. Interest
in DDFs has primarily been as a geometry representation that allows faster ren-
dering (no sphere tracing is required). Neural DDFs were primarily introduced
in [52] which developed the Signed Directional Distance Functions (SSDF) as a
model of continuous distance view synthesis and derived many important prop-
erties of SDDFs. This was later extended by|[1], which enabled the modelling of
internal structures via dropping the sign and extending the representation via
probabilistic modelling. Subsequent works enable to model of shapes with no ex-
plicit boundary surface |38&], re ne the multi-view consistency of DDFs [22] and
employ SDDFs to improve optimisation of multi-view shape reconstruction [51].
Our usage of a DDF is most similar to that of FIRE [46] which also combines an
SDF scene representation with a DDF sampled only on the unit sphere. How-
ever, unlike FIRE, whose goal was fast rendering, we show how to use a spherical
DDF for fast, di erentiable sky visibility. A more in-depth explanation of DDFs

is found in Section[3.2.

Neural Illlumination and Visibility Boss et al. [5] proposed neural pre-
integrated lighting (PIL), a spherical neural eld conditioned on a roughness
parameter to model an illumination environment convolved with a BRDF. This
enabled fast rendering but at the expense of being unable to model occlusions
of the illumination environment. RENI [15], proposed by Gardner et al., is
a vertical-axis rotation-equivariant conditional spherical neural eld, trained on
thousands of HDR outdoor environment maps to learn a prior for natural illumi-
nation. The low-dimensional but expressive latent space is useful for constraining
inverse rendering problems. This was subsequently extended in RENI++|[16]
with the addition of scale-invariant training and a transformer-based architec-
ture. Several other recent methods aim to predict illumination from small image
crops [12,34], as a 5D light eld network [44], from a text description [9] or using
di usion models with di erentiable path tracing [25] Rhodin et al. [29]|approx-
imate scene geometry with Gaussian blobs for di erentiable visibility. Lyu et
al. [24] similarly use spheres for geometry and model illumination with spherical
harmonics for approximate di erentiable shadows. Worchel and Alexa [43] use a
di erentiable mesh renderer for classical shadow mapping [42].
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3 Method

Our method takes as input a dataset of N images. From these images we
compute poses with COLMAP [31,32] and semantic segmentation maps with
ViT-Adapter [10] according to the Cityscapes [11] convention. The preprocessed
dataset comprisesD = f(I;Ei;Ki;Si)gy,, wherel 2 R? W 3 is an image,
S 2 z" W is the segmentation map andE = [Rjt]2 R® “and K 2 R® 3 are
the camera extrinsics and intrinsics respectively. To align the vertical axis of our
scene with gravity, we robustly t a plane to the camera positions and rotate to
align with the x-y plane.

Scene Representation We model scene geometry as a neural SDF, such that
at any point x 2 R, the signed distance is given byf spr (x) 2 R. We assume
that the scene is Lambertian, with di use albedo modelled by the neural eld
a(x) 2 [0;1]°. We also assume that illumination is a distant environment that
depends only on directiond 2 S?, with HDR RGB incident radiance given by
Li(d) 2 R®,.

Rendering  We follow NeuS [40] and derive a volume density, (x), from the
SDF value. This allows volume rendering of the SDF in the same fashion as
in NeRF. For a ray r with origin o and direction v, the time-discrete volume
rendered RGB colour is given by:

x »
c(r)=  wa(x;) Li(d)V(xe;di)max(O;n(x;) d); (1)
j=1 k=1

where the rst summation is over the S samples along the ray, while the second
is over the D lighting direction samples. The lighting direction samples are dis-
tributed approximately uniformly over the sphere by using an 8-subdivided icosa-
hedron giving D = 642. w; is the volume rendering blending weight for thej th
sample point which depends orty.; and (X1 ), with xj = o+ tjv. V(x;d) 2
f0; 1g is the sky visibility in direction d at position x with xg being the position
at the expected termination depth of the ray x;. n(x) = r fspr (X)=kr fspr (X)k
is the surface normal atx, derived from the gradient of the SDF.
We de ne our appearance loss for a batch of rayRR as:
X
Lapp = \(Cgt (r); sSRGB(c(r))); (2)
r2r

where cg (r) is the ground truth colour for ray r, SRGB( ) tonemaps the linear
image provided by our model and” computes the sum of L1 and cosine errors
(to match both absolute RGB values and hue). To avoid over tting we apply a
random rotation R U (SO(3)) to jitter the direction vectors dy in every batch.

Neural lllumination Model To restrict L; to the space of plausible natural
illumination environments, we use a neural illumination prior, RENI++ [16].
This is a conditional neural eld, f_, : S2 R3® X I RS2 that outputs log
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HDR RGB colours in the given input direction, conditioned on a normally dis-
tributed 3D latent code Z 2 R® K;veqZ) N (03« ;lsk ). The latent space
of RENI++ provides a low dimensional characterisation of natural, outdoor il-
lumination environments since it was trained on several thousand real-world
outdoor environment maps. This provides useful global constraints on the es-
timated illumination, which is only partially observable in any one image. In
addition, the normally-distributed latent space provides a prior while the latent
code is vertical-axis rotation-equivariant (rotating Z about the vertical axis cor-
responds to similarly rotating the environment). This vertical axis corresponds
to gravity and we therefore align the vertical axis of our scene with gravity as
described above. We optimise a RENI++ latent code,Z;, and absolute scale, ;,
for each imagei in the training set and replace L;(dy) with ; exp(f., (d«;Z;))
in (@. To ensure the estimated illumination is plausible, we include a prior loss:
L prior = kag for all latent codes. In Section we describe how the illumi-
nation environment in an image can be additionally constrained via sky pixel
observations.

Reducing Visibility Tests Visibility of the illumination environment from a
scene point is required in our rendering equation[(fl) and is essential for recreating
cast shadows and ambient occlusion e ects. However, computing sky visibility
from a neural SDF is computationally expensive. It requires sphere tracing from
the query point in the light direction until the ray hits another part of the surface

or leaves the scene bounds. To render a single pixel, this must be performed
D times for each of theS sample points. We therefore propose two methods
to drastically reduce the number of visibility samples. First, since we are only
concerned with visibility on the surface of the scene, we de nexg = 0 + tgv,
where tg is the current expected termination depth of the ray, and evaluate
visibility only at xg. This means we only needD visibility tests per pixel since
we reuse the computed visibilities for all sample points along the ray. Second,
any light direction in the lower hemisphere, i.e. where(d;), < 0, will strike either
the scene or the ground. For these directions we se¥ () = 1, i.e. visible. The
rationale for this is that the RENI++ illumination environment will learn to
capture the colour of the ground or lower hemisphere of the scene, averaged over
all spatial positions. This provides an approximation to secondary illumination
from the ground. We found this to perform considerably better than setting
these directions as non-visible. In spite of these two speedups, the remaining
D=2 visibility tests still prove too expensive if performed via sphere tracing of the
SDF. For this reason, in Section 3.2 we propose a fast, softened approximation
for visibility.

3.1 Sky Pixel Constrained lllumination Prior

Pixels labelled in the semantic segmentation maps with the “sky' class (hereafter
referred to assky pixelg provide a direct observation of the distant illumination
environment in the direction given by the ray for that pixel. To the best of our
knowledge, this constraint has never been used to aid illumination estimation
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in inverse rendering methods. Since our illumination model, RENI++ [16], cap-
tures the space of plausible natural illuminations, even observing only a portion
of the sky provides a strong statistical cue. For example, if a bright region cor-
responding to the sun is observed, then RENI++ cannot create another sun
in an unobserved part of the environment. Alternatively, if all observed sky is
white, it is likely to be an overcast day and RENI++ will predict an ambient
environment without a discernible sun. Using sky pixel constraints alone can be
viewed as statistical outpainting of the whole environment from the portion ob-
served in an image. In practice, we incorporate this within our inverse rendering
framework such that the appearance loss of non-sky pixels also provides a rich,
indirect constraint on the illumination.

The sky segmentation also provides an additional constraint that is similar
to the widely used mask loss. Since we know that sky ray pixels miss the scene,
we penalise our neural scene representation from placing any density along the
ray, providing geometric supervision. Together, these form our sky loss:

X X
Lsky = "(Cqt (r); Csky(r))  log(1 w); 3)
r2R\S gy j

where Sgy is the set of sky pixels. The rst term is the error between the
observed sky pixel colour and predictedcsiy (r) = SRGB( exp(f., (r;Z))), and
the second term is the binary cross entropy loss on the accumulated density in
sky pixels.

3.2 Outside-in Sky Visibility

Shadows o er a wealth of information about geometry, both within and beyond
the view frustum. For instance, if the sun is predicted to be behind the camera
and a prominent cast shadow appears on the oor, we can infer there is geometry
behind the camera and the likely sun direction. However, to fully leverage this
information it is necessary to have a di erentiable model of visibility.

To address this, we draw inspiration from works, NeRFactor [50] and NeRV
[35] and learn a neural model of visibility. However, to make training tractable,
[50] learn their visibility representation in a second training phase with geometry
pretrained and frozen and [35] require known illumination. Initial attempts to
model visibility using the same parameterisation as|[35] were unable to t in
our less constrained and end-to-end task. We desire a model of visibility that is
consistent with the geometry of our scene, fast to sample from and di erentiable,
enabling gradients from visibility to inform illumination, albedo and geometry
estimation. However, this model must be constrained enough that training end-
to-end with our scene representation is tractable. To achieve this, we propose
outside-in visibility in which visibility is represented implicitly via a Spherical
Directional Distance Field (SDDF) de ned on the radius 1 sphere that bounds
our scene and is tied to our SDF scene representation via consistency losses.
Our geometric volume is represented with the Mip-NeRF 360 [B] scene contrac-
tion. This means that parallel rays converge to a point on the radius 2 sphere
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(representing in nity). Hence, our visibility model resides on the radius 1 sphere
where position-dependent visibility can be reasoned about, while our distant
illumination model is de ned on the radius 2 sphere (see Figuré:]?,).

Spherical Directional Distance

r=2
Function Consider a points 2 S?
lying on a bounding sphere of ra-
dius 1. The Spherical Directional Dis- — =1 —
tance Function (DDF), fppr : S?
S? | R, returns the (positive) dis-

tance from s for any inward-pointing
direction d to the rst intersection
with the surface. In Other, words, the Fig. 3: We model our illumination and illu-
spherical DDF stores an inward 100k- ination visibility via two spherical neural
ing depth map of the scene from any eigs at radius 1 and 1 respectively. How-
viewpoint on the radius r sphere. The ever our world space is contracted as per
DDF is related to the SDF: fspr(S+ Mip-NeRF-360 [B], such that any point at
fpor (s;d)d) = 0, such that moving innity is placed on the sphere of radius
the distance given by the DDF must 2. Since we model distant illumination, the
arrive at the surface where the SDF is Sampled colour only depends on direction,
zero. However, there may be multiple and two samples at di erent locations but
such points and the DDF must return in the same direction will sample RENI++

L o [16] at the same point. However, visibility
the minimum, giving us another con- . o .
. . . of distant illumination is dependent on lo-
straint: fppg (s;d) = min ftjf spr (s +

cation and the intersection of the ray on the

td)=0g. ) ] sphere of radius 1 is used to sample our vis-
The DDF is required to learn a jpjlity network.

very complex function: essentially an

inward-facing depth map of the scene from any position on the sphere. We found
that this function is easier to learn if we de ne a consistent coordinate frame
to parameterise directions for any given point on the sphere. We normalise the
inward-facing directions from world coordinates to a local coordinate system
such that the y-axis aligns with s (the sample position on the DDF), the x-axis
is orthogonal to y and to our world-up, and the z-axis is orthogonal toy and x.
See Figurd ¥ for a visualisation.

No contraction Contraction

Sky Visibility via Directional Distance Fields Our key insight is to show
how to use the inward looking DDF as a representation for computing outward
sky visibility (see Figure @) Consider a pointx 2 R® lying on the surface (and
inside the bounding sphere, such thatkxk 1). We can use the DDF to check
whether x can see the sky or is occluded in a directionl. First we compute the
point s as the solutiontos = x + td, s.t. ksk =1 andt 0, i.e. the point on the
radius r sphere that is intersected by the ray in directiond from x. Next, we
evaluate the DDF at s in direction d (i.e. outside-in): fppe (s; d). If x is not
occluded then the DDF value should be similar to the actual distance betweers
andx: fppr (s; d) k s xk.However, ifsis occluded then the DDF will return
a distance signi cantly less than the actual distance:fppr (s; d) < ks xk.
Binary visibility can be computed by testing whether this di erence is below
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a threshold : V = (ks xk fppr(s; d) < ). Note that this is equivalent
to classical shadow mapping|[42] with the exception that we rely on a DDF
forward pass as opposed to (non-di erentiable) rasterisation of a mesh from the
light source perspective.

However, binary visibility is discontinuous and so not suitable for propagating
loss gradients through visibility and back into geometry. For this reason, we
replace the discrete threshold with a softened approximation (see FigurE] 5):

Vix;d)=1  ( (ks xk fppor(s; d) )); (4)

where is the sigmoid function. The threshold controls the tolerance on what
is considered a shadow. We make this learnable and initialise it with a large
value (equal to the scene radius). When is large, no parts of the scene will
be considered occluded. As training converges, can be reduced to gradually
introduce more illumination occlusions. The parameters controls the sharpness
of the transition between occluded and unoccluded.

Supervising the DDF The DDF

indirectly determines visibility which DDF Intersection
in turn determines appearance via the  and birection
rendering equation in @). This means S/
that the DDF is partially supervised
by the appearance loss. However, we
also require that the DDF's represen-
tation of scene geometry is consistent
with the SDF geometry. We enforce
this consistency through four losses.
First, Lddt deptn » €nforces that the
depth predicted by the DDF should
match that of the scene parameterised
by the SDF. Second,L gdf fevelset , €N-
sures that travelling the distance pre-
dicted by the DDF should arrive at
the SDF zero level set. Third, we en-
courage multiview consistency in the Fig.4: Visibility of our neural illumination
DDF via a multiview consistency loss from a point in the scene is implicitly rep-
L daf_ mutiview - Finally, with, Lt sky resented via our Directional Distance Field
we further take advantage of our sky (DDF) which represents the depth to the
segmentation maps as an additional su_rface of our scene frqm any pon_nt on the
constraint on our DDF. Rays that unit sphere. The DDF is a spherical neu-

intersect the skv have no occlusions ral eld that surrounds our scene at ra-
y dius 1. The DDF is fully di erentiable al-

between the camera origin and our lowing gradients obtained from shadowing
DDF sphere. Our DDF should there- 5 jnform illumination and geometry.

fore predict at least the distance to
the camera origin for those intersecting rays. Detailed descriptions of these losses
can be found in the supplementary.

DDF Predictt

GT - Predicted

Ground
Truth
Distance

Visibility = Di erence < Threshold
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3.3 Implementation

We implement our method in

Nerfstudio [37], building on top 1 \ —
of NeuS-Facto [48]. We convert L
our CityScapes [11] segmentation
masks into classes for sky, ground \\
plane, foreground and transient ob- \\
jects (vehicles, vegetation, people
etc). We sample ray batches only 0 (‘) 6
from non-transient pixels. We use GT - Predicted
a hash grid with 16 levels, 2'° hash

table size,2 features per entry and a Fig.5: Soft visibility function. We plot ks
course and ne resolution of16and XK foor (s; d) on the x-axis versusV (x; d)
2048 respectively. Our SDF and on the y-axis. When ground truth distance

abeco neworks are both 2iayer [ ST Seler an e tresroe
256-neuron MLPs. We initialise our 9 : g y

) g larger, we infer an occlusion and a visibility
SDF as a sphere with radius=0:1. 4 o | the vicinity of  we smoothly transi-
We use the pre-trained RENI++  tion from visible to non-visible with a steep-
[16] model with a latent dimension ness controlled by .

K =100 and initialise latent codes

as zeroes, corresponding to the mean environment provided by the RENI++
prior. We initialise the per-image illumination scale as =1.

Our visibility network is a FiLM-Conditioned [8] |SIREN [33]|with 5 layers
and 256 neurons in both the FiLM Mapping Network and the main SIREN. We
condition our network on positions on the sphere using the same dimensional
hash grid as our SDF. We rst map from position to a hashed latent, this latent
is then provided to the FiLM mapping network to condition the model. As
per Section[3.2 we normalise direction to a local coordinate frame and these
directions are positionally encoded as per NeRF [26]. We use a sigmoid activation
function scaled by the size of our scene bounds to ensure a depth prediction
within the correct range. We generate samples for DDF supervision via our
PyTorch re-implementation of fast von Mises-Fisher distribution sampling from
Pinzon et al [28]. We used a concentration parameter 020:0 for the distribution
and sampled8 positions and 128 directions per batch exclusively from the upper
hemisphere.

We optimise our Proposal Samplers, SDF/Albedo Field and DDF using
Adam [18] optimisers with a Cosine Decay|[23] schedule and 500-step “warm-
up' phase. Our loss is the sum ofL app, Lprior » Lsky, the four DDF supervision
losses and a proposal sampler interlevel loss as per Mip-NeRF 360 [3]. Our ini-
tial learning rates are 1e 2, le 3 and le 4 respectively. Our RENI++ latent
codes and the visibility threshold parameter use Adam|[18] optimisers with an
exponentially decaying learning rate which is initialised at 1e 2 and 1le 3 re-
spectively.

Visibility
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NeRF-OSR FEGR

Albedo

Normal

Sol-NeRF QOurs

Albedo

Normal

Fig.6: Comparion of albedo and normals produced by NeRF-OSR [30], FEGR [41],
SOL-NeRF and our method. We produce much sharper albedo and normals than
all prior works whilst training end-to-end.

DDF Prediction

SDF Target

Fig. 7: Three views of the depth predicted by the Spherical DDF (top row) and its
pseudo ground truth from the scene representation (bottom row) for Site 1 in the
NeRF-OSR dataset (see Figureﬂ). Cameras are placed on the unit sphere looking
towards the origin. The DDF is trained concurrently with the scene representation and
can capture high-frequency details required for accurate shadows.
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4 Evaluation

We begin by qualitatively evaluating
the output of our system components. ~ Ambient Occlusion Shadow
Figure [7 illustrates that our spheri-

cal DDF is able to produce detailed

depth maps via a single forward pass |4
from arbitrary viewpoints. The geom-
etry of the building and ground plane

are well reconstructed. In Figure[§ we Fig.8: Ambient occlusion and shadows

visualise the output of the visibility  from a point source computed from our soft
network in two di erent ways. On the  visibility via the DDF.

left we average visibility over all di-
rections, giving a good approximation to ambient occlusion. On the right we
compute visibility for a single direction, producing a sharp shadow.

Shadows Informing Geometry Due to our visibility model training concur-
rently with our scene representation, shadows can inform geometry outside of the
view frustum. We can optionally apply stop gradients to visibility calculations to
prevent this capability. We demonstrate the advantage of training end-to-end in
Figure [I3, which shows a rendering ofSite 1 looking behind the view frustums
of all training cameras for that scene. To explain shadows seen during training
geometry has been generated outside the view of any training camera. This is a
key advantage of training our di erentiable sky visibility network concurrently
with our scene representation.

Without Visibility Network Figure[I4 demonstrates the bene t of our sky-
visibility network. When enabled our model is better able to disentangle shading
from albedo, particularly in scenes in which many of the images captured are
shaded, namelySite 3 of the NeRF-OSR [30] dataset. Here, shadows on the
ground, doors and building facade are removed from the albedo.

Relighting We evaluate NeuSky's ‘ »

relighting capabilities on the NeRF- pSNRY MSE#  PSNR MSE#  PSNA- MSE#

OSR [30] relighting benchmark. The nerrosrfsd 1034 o012 1635 0027 1566  0.029
- FEGR [41, 2153 0.007 17.00 0.023 17.57 0.018

NeRF-OSR dataset consists of eight SOL-NeRF [36] 2123 00084 1818 0019 1758 0.028
sites captured over multiple sessions NeuSky (OUrs) 2250 0.005 1666 0023 1831 0016

each with di ering illumination con- Fig.9: Outdoor scene relighting results on

ditions along with Low Dyngmic the NeRF-OSR relighting benchmark.
Range (LDR) ground truth environ-

ment maps. The benchmark test relighting three of these scenes. Our results
can be found in Table[9. We achieve better relighting performance than both

NeRF-OSR [30] and FEGR [41] and beat SOL-NeRF|[36] on two of the three
scenes. Qualitatively our method also produces models with signi cantly higher

quality geometry and albedo than all three prior works, as shown in Figure f.

As shown in Figures 10 and I, NeuSky is capable of disentangling illumination,
albedo and shading and our sky visibility network and RENI++ combine to
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produce sharp shadows. Further results are shown in Figurg]1. In Figurg 11 we
demonstrate rendering scenes under novel illumination conditions.

Ground Truth Render Albedo Normals

Fig. 10: A render from Site-1 and Site-2 in NeRF-OSR @] Environment maps sam-
pled from the estimated illumination of RENI++ [16DIbedo and normals are shown
alongside the ground truth images. Our method accurately disentangles albedo, light-
ing and shadows whilst producing very high-quality geometry.

Fig.11: Relighting under novel illuminations.

5 Conclusion

We have presented the rst outdoor scene inverse rendering approach that in-
corporates a model of natural illumination, exploits direct sky pixel observations
and can be trained end-to-end with a visibility model. This enables our model
to reproduce accurate shadows, avoids shadow baking into albedo, allows shad-
ows to constrain geometry and illumination and achieves superior geometry and
albedo reconstruction on the NeRF-OSR dataset beating| [30]] [36] and [41] in
the relighting benchmark. There are a number of limitations of our work, namely

a high training GPU memory requirement when using large batches and at be-
tween 5-8 hours, our optimisation time is slow by modern neural eld standards.
The most obvious extension to our approach would be to use a more complex re-
ectance model and accompanying material parameters. For re ective surfaces,
second bounce illumination becomes more signi cant. It is possible that a DDF
could be used to speed up multibounce ray casting in this context.
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Ground Truth Render

Albedo Normal Relighting

Fig.12: Results on the Trevi Fountain scene showing decomposition and relighting.

Stop Gradients Enabled Stop Gradients Disabled G

- - Ay

Fig. 13: With stop gradients enabled (left), geometry outside the view frustum of all
training cameras is not generated. With stop gradients disabled (middle), gradients
from appearance losses are allowed to ow from our sky visibility network to the SDF
creating geometry not directly observed during training. This more closely matches the
ground truth for the scene (right).

With Visibility . Without Visibility
- "‘k.

Fig. 14: Whilst the majority of the training images for Site 3 in the NeRF-OSR
dataset show the front of the building in shadow. With our visibility network
enabled our predicted albedo removes that shading along with shadows around the
sign (a), at the joint between brick and plaster (b) and on the ground (c). Smaller
cutouts show renderings with sky visibility on the left and without sky visibility on the
right.



The Sky's the Limit 15

References

1.

10.

11.

12.

13.

Aumentado-Armstrong, T., Tsogkas, S., Dickinson, S., Jepson, A.D.: Representing
3D Shapes With Probabilistic Directed Distance Fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 19343 19354 (Jun 2022)

. Barron, J.T., Malik, J.: Shape, lllumination, and Re ectance from Shading.

TPAMI (2015)

. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF

360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022)

. Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Transactions on

Graphics (TOG) 33(4), 112 (2014)

. Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J.T., Lensch, H.: Neural-PIL:

Neural Pre-Integrated Lighting for Re ectance Decomposition. In: Beygelzimer,
A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems (2021) https://openreview.net/forum?id=fATZNtA1-VO

Boss, M., Jampani, V., Kim, K., Lensch, H., Kautz, J.: Two-shot spatially-varying
brdf and shape estimation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 3982 3991 (2020)

Bousseau, A., Paris, S., Durand, F.: User-assisted intrinsic images. In: ACM SIG-
GRAPH Asia 2009 papers, pp. 1 10. Association for Computing Machinery, New
York, NY, United States (2009)

Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: Pi-GAN: Pe-
riodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 5799 5809 (Jun 2021)

Chen, Z., Wang, G., Liu, Z.: Text2Light: Zero-Shot Text-Driven HDR Panorama
Generation. ACM Trans. Graph. 41(6) (Nov 2022). https://doi.org/10.1145/
3550454 .3555447, https://doi.org/10.1145/3550454.3555447 , humber of
pages: 16 Place: New York, NY, USA Publisher: Association for Computing Ma-
chinery tex.articleno: 195 tex.issue_date: December 2022

Chen, Z., Duan, Y., Wang, W., He, J., Lu, T., Dai, J., Qiao, Y.: Vision Trans-
former Adapter for Dense Predictions. In: The Eleventh International Confer-
ence on Learning Representations (2023), https://openreview.net/forum?id=
plKu2GByCNW

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The Cityscapes Dataset for Semantic Urban
Scene Understanding. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016)

Dastjerdi, M.R.K., Hold-Georoy, Y., Eisenmann, J., Lalonde, J.F.: EverLight:
Indoor-Outdoor Editable HDR Lighting Estimation (2023), arXiv: 2304.13207
[cs.CV]

Dave, A., Zhao, Y., Veeraraghavan, A.: PANDORA: Polarization-Aided Neural
Decomposition of Radiance. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella,
G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022 - 17th European Confer-
ence, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part VII. Lecture Notes
in Computer Science, vol. 13667, pp. 538 556. Springer (2022). https://doi.
0rg/10.1007/978-3-031-20071-7_32 , https://doi.org/10.1007/978-3-031-
20071-7_32, tex.bibsource: dblp computer science bibliography, https://dblp.org
tex.biburl: https://dblp.org/rec/conf/eccv/DaveZV22.bib tex.timestamp: Mon, 05
Dec 2022 13:35:31 +0100



16

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J. Gardner et al.

Dror, R.O., Willsky, A.S., Adelson, E.H.: Statistical characterization of real-world
illumination. Journal of Vision 4(9), 11 11 (Sep 2004)

Gardner, J.A.D., Egger, B., Smith, W.A.P.: Rotation-Equivariant Conditional
Spherical Neural Fields for Learning a Natural lllumination Prior. In: Oh, A.H.,
Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Process-
ing Systems (2022), https://openreview.net/forum?id=cj6K4IWVomU

Gardner, J.A.D., Egger, B., Smith, W.A.P.: Reni++ a rotation-equivariant, scale-
invariant, natural illumination prior (2023)

Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset
and baseline evaluations for intrinsic image algorithms. In: 2009 IEEE 12th Inter-
national Conference on Computer Vision. pp. 2335 2342. IEEE (2009)

Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980 , tex.bibsource: dblp computer science
bibliography, https://dblp.org tex.timestamp: Thu, 25 Jul 2019 14:25:37 +0200
Kovacs, B., Bell, S., Snavely, N., Bala, K.: Shading annotations in the wild. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 6998 7007 (2017)

Li, Q., Guo, J., Fei, Y., Li, F., Guo, Y.: NeuLighting: Neural Lighting for Free
Viewpoint Outdoor Scene Relighting with Unconstrained Photo Collections. In:
SIGGRAPH Asia 2022 Conference Papers. SA '22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3550469.
3555384 https://doi.org/10.1145/3550469.3555384 , humber of pages: 9 Place:
Daegu, Republic of Korea tex.articleno: 13

Li, Z., Muller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-Fidelity Neural Surface Reconstruction. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2023)

Liu, Z., Yang, B., Luximon, Y., Kumar, A., Li, J.: RayDF: Neural Ray-surface
Distance Fields with Multi-view Consistency. In: Thirty-seventh Conference on
Neural Information Processing Systems (2023), https://openreview.net/forum?
id=crzZIhMnfeO

Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm
Restarts. In: International Conference on Learning Representations (2017), https:
/lopenreview.net/forum?id=Skq89Scxx

Lyu, L., Habermann, M., Liu, L., Tewari, A., Theobalt, C., et al.: E cient and

di erentiable shadow computation for inverse problems. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 13107 13116 (2021)
Lyu, L., Tewari, A., Habermann, M., Saito, S., Zollhéfer, M., Leimkiehler, T.,
Theobalt, C.: Di usion posterior illumination for ambiguity-aware inverse render-
ing. ACM Transactions on Graphics 42(6) (2023)

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In:
ECCV (2020)

Miiller, T., Evans, A., Schied, C., Keller, A.: Instant Neural Graphics Primitives
with a Multiresolution Hash Encoding. ACM Trans. Graph. 41(4), 102:1 102:15
(Jul 2022). https://doi.org/10.1145/3528223.3530127 , https://doi.org/10.
1145/3528223.3530127, number of pages: 15 Place: New York, NY, USA Publisher:
ACM tex.articleno: 102 tex.issue_date: July 2022



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

The Sky's the Limit 17

Pinzén, C., Jung, K.: Fast Python sampler for the von Mises Fisher distribu-
tion (Aug 2023), https://hal.science/hal-04004568 , tex.hal_id: hal-04004568
tex.hal_version: v3

Rhodin, H., Robertini, N., Richardt, C., Seidel, H.P., Theobalt, C.: A versatile
scene model with di erentiable visibility applied to generative pose estimation.
In: Proceedings of the 2015 International Conference on Computer Vision (ICCV
2015) (2015), http://gvv.mpi-inf.mpg.de/projects/DiffVis

Rudnev, V., Elgharib, M., Smith, W., Liu, L., Golyanik, V., Theobalt, C.: NeRF for
Outdoor Scene Relighting. In: European Conference on Computer Vision (ECCV)
(2022)

Schénberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

Schénberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision
(ECCV) (2016)

Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit
Neural Representations with Periodic Activation Functions. In: Proc. NeurlPS
(2020)

Somanath, G., Kurz, D.: Hdr environment map estimation for real-time augmented
reality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 11298 11306 (June 2021)

Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.:
NeRV: Neural Re ectance and Visibility Fields for Relighting and View Synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 7495 7504 (Jun 2021)

Sun, J.M., Wu, T., Yang, Y.L, Lai, Y.K., Gao, L.: SOL-NeRF: Sunlight Model-
ing for Outdoor Scene Decomposition and Relighting. In: SIGGRAPH Asia 2023
Conference Papers (SA Conference Papers '23) (2023)

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristo ersen,
A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio:

A Modular Framework for Neural Radiance Field Development. arXiv preprint
arXiv:2302.04264 (2023)

Ueda, |., Fukuhara, Y., Kataoka, H., Aizawa, H., Shishido, H., Kitahara, I.: Neural
Density-Distance Fields. In: Proceedings of the European Conference on Computer
Vision (2022)

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: Learning
Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. In:
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neu-
ral Information Processing Systems (2021), https://openreview.net/forum?id=
D7bPRxNt_AP

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: Learning
Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. In:
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neu-
ral Information Processing Systems (2021), https://openreview.net/forum?id=
D7bPRxNt_AP

Wang, Z., Shen, T., Gao, J., Huang, S., Munkberg, J., Hasselgren, J., Gojcic, Z.,
Chen, W., Fidler, S.: Neural Fields meet Explicit Geometric Representations for
Inverse Rendering of Urban Scenes. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (Jun 2023)



18

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

J. Gardner et al.

Williams, L.: Casting curved shadows on curved surfaces. In: Proceedings of the 5th
annual conference on Computer graphics and interactive techniques. pp. 270 274
(1978)

Worchel, M., Alexa, M.: Di erentiable shadow mapping for e cient inverse graph-
ics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 142 153 (2023)

Yao, Y., Zhang, J., Liu, J., Qu, Y., Fang, T., McKinnon, D., Tsin, Y., Quan, L.
NelLF: Neural Incident Light Field for Physically-based Material Estimation. In:
Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer
Vision ECCV 2022. pp. 700 716. Springer Nature Switzerland, Cham (2022)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. In: Thirty-Fifth Conference on Neural Information Processing Systems
(2021)

Yenamandra, T., Tewari, A., Yang, N., Bernard, F., Theobalt, C., Cremers, D.:
FIRe: Fast Inverse Rendering using Directional and Signed Distance Functions
(2022), arXiv: 2203.16284 [cs.CV]

Yu, Y., Smith, W.A.P.: InverseRenderNet: Learning Single Image Inverse Ren-
dering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (Jun 2019)

Yu, Z., Chen, A., Antic, B., Peng, S.P., Bhattacharyya, A., Niemeyer, M., Tang,
S., Sattler, T., Geiger, A.: SDFStudio: A Uni ed Framework for Surface Recon-
struction (2022), https://github.com/autonomousvision/sdfstudio

Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: Physg: Inverse rendering with
spherical gaussians for physics-based material editing and relighting. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 5453 5462 (2021)

Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron,
J.T.: NeRFactor: Neural Factorization of Shape and Re ectance under an Un-
known lllumination. ACM Trans. Graph. 40(6) (Dec 2021). https://doi.org/
10.1145/3478513.3480496, https://doi.org/10.1145/3478513.3480496 , hum-
ber of pages: 18 Place: New York, NY, USA Publisher: Association for Computing
Machinery tex.articleno: 237 tex.issue_date: December 2021

Zins, P, Xu, Y., Boyer, E., Wuhrer, S., Tung, T.: Multi-View Reconstruction using
Signed Ray Distance Functions (SRDF) (2023), arXiv: 2209.00082 [cs.CV]
Zobeidi, E., Atanasov, N.: A Deep Signed Directional Distance Function for Object
Shape Representation. CoORR abs/2107.11024 (2021), https://arxiv.org/abs/
2107.11024, arXiv: 2107.11024 tex.bibsource: dblp computer science bibliography,
https://dblp.org tex.timestamp: Fri, 04 Aug 2023 08:25:46 +0200



