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Fig. 1: From in-the-wild, outdoor image collections, we predict scene geometry, albedo,
distant environment illumination, and sky visibility. Sky visibility and illumination are
both modelled via spherical neural fields whereby we directly constrain illumination
via sky pixel observations. Our outside-in differentiable visibility enables estimation of
cast shadows and avoids shadow baking into albedo.

Abstract. Inverse rendering of outdoor scenes from unconstrained im-
age collections is a challenging task, particularly illumination/albedo
ambiguities and occlusion of the illumination environment (shadowing)
caused by geometry. However, there are many cues in an image that can
aid in the disentanglement of geometry, albedo and shadows. Whilst sky
is frequently masked out in state-of-the-art methods, we exploit the fact
that any sky pixel provides a direct observation of distant lighting in the
corresponding direction and, via a neural illumination prior, a statistical
cue to derive the remaining illumination environment. The incorpora-
tion of our illumination prior is enabled by a novel ‘outside-in’ method
for computing differentiable sky visibility based on a neural directional
distance function. This is highly efficient and can be trained in parallel
with the neural scene representation, allowing gradients from appear-
ance loss to flow from shadows to influence the estimation of illumina-
tion and geometry. Our method estimates high-quality albedo, geometry,
illumination and sky visibility, achieving state-of-the-art results on the
NeRF-OSR relighting benchmark. Our code and models can be found at
https://github.com/JADGardner/neusky.
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1 Introduction

Inverse rendering of outdoor scenes has diverse downstream applications such
as scene relighting, augmented reality, game asset generation, and environment
capture for films and virtual production. However, accurately estimating the un-
derlying scene model that produced an image is an inherently ambiguous task
due to its ill-posed nature [2]. To address this, many works use some combi-
nation of handcrafted [7, 17] or learned priors [4, 6, 19, 47], inductive biases in
model architectures [13], or multi-stage training pipelines [35, 36, 50]. This pro-
cess is made even more difficult when considering in-the-wild image collections
from the internet that contain transient objects, image filters, unknown camera
parameters and changes in illumination.

Outdoor scenes present particular challenges. Natural illumination from the
sky is complex and exhibits an enormous dynamic range. This causes strong cast
shadows when the brightest parts of the sky are occluded. These occlusions are
non-local and discontinuous making them hard to incorporate within a differ-
entiable renderer. Outdoor scene geometry can also exhibit arbitrary ranges of
scale. On the other hand, sky illumination dominates secondary bounce lighting,
meaning it is reasonable to assume a spatially non-varying, distant illumina-
tion environment. In addition, natural illumination contains statistical regulari-
ties [14] that make it easier to model. For example, luminance generally increases
with elevation (the ‘lighting-from-above’ prior), the sun can only be in one po-
sition and the range of possible colours from sun and sky light is limited.

In this paper, we tackle the outdoor scene inverse rendering problem by fit-
ting a neural scene representation to a multi-view, varying-illumination photo
collection. We name our method NeuSky, and make four key contributions rela-
tive to prior work. First, we make a key observation: Any pixel in an image that
observes the sky provides a direct constraint on the illumination environment in
that direction. Second, we combine this insight with an HDR neural field natu-
ral illumination model [16] learnt from natural environments, constraining this
model to outpaint plausible illuminations given the direct observations of illumi-
nation seen from the camera. Thirdly, we propose outside-in visibility, a novel,
differentiable, neural approximation to sky visibility, computed with a single for-
ward pass through a directional distance function network. Finally, we deploy
this visibility representation to enable end-to-end training, removing the need
for phased training. Crucially, this means that shadows can influence illumina-
tion and geometry estimation by appearance losses backpropagating through the
visibility network, enabling geometry estimation for non-observed scene regions
and also avoiding shadow baking into albedo.

2 Related Work

Relightable Neural Scenes The core NeRF [26] approach has been improved
in several key ways since its publication. Nerfstudio, [37] a platform for research-
ing in Neural Fields, introduced NeRFacto taking advantage of many of these
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Fig. 2: We surround our NeuS-Facto [48] volume with two spherical neural fields at
radius 1 and radius ∞ modelling sky visibility and distant illumination respectively.
Blue arrows correspond to rays sampling distant illumination. Pink circles and Maroon
arrows are position and direction samples of our sky visibility network. In a given
direction, visibility changes with position but distant illumination does not. For speed
we only sample sky visibility on the surface of our scene, Green circles, and distribute
this visibility to all samples, Orange circles, along a ray.

developments. It leverages the same proposal sampling and scene contraction as
Mip-NeRF 360 [3] alongside the hash-grid representation from Instant-NGP [27]
to reduce network sizes and vastly speed up training. Implicit surface repre-
sentations were introduced in NeuS [39] and VolSDF [45], which used a neural
Signed Distance Function (SDF) with NeRF volume rendering. NeuS-Facto, in-
troduced in SDFStudio [48], combined the NeRFacto improvements with NeuS.
This model, which is similar to that used by the current state-of-the-art in neural
surface reconstruction of large scenes [21], is the underlying model that we use.

In parallel with these developments, several attempts have been made to
use neural scene representations for decomposition into its intrinsic properties.
NeRF-OSR [30] predicts albedo and density. For distant illumination, they pre-
dict per image Spherical Harmonic (SH) lighting coefficients and model shadows
via a shadow network conditioned on those SH coefficients. Whilst now provid-
ing a parametric model of illumination they are limited by the quality of nor-
mals obtained from NeRF density (we use a NeuS derivative with high-quality
geometry), shadows that are not related to the scene geometry (our shadow
network is directly tied to scene geometry) and the low frequency of SH (we
employ a neural field for illumination capable of capturing higher order lighting
effects). Methods such as PhySG [49] and NeRF-V [35] allow relighting but re-
quire known illumination. NeRFactor [50] additionally optimises visibility and
illumination together allowing shadows but with a low-resolution environment
map and no illumination prior. Similar to our work, FEGR [41] also uses a neu-
ral field representation for HDR illumination, however, they do not include a
prior over illuminations. Their rasterisation process to model visibility is also
a non-differentiable function, meaning cues from shading and shadows will not
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inform illumination or geometry estimations. SOL-NeRF [36] similarly convert
their SDF representation to a mesh for ray-tracing but instead use a combination
of Spherical Gaussians (SG), with a sunlight colour prior based on sun elevation,
and SH to model illumination. Also similar to our work, NeuLighting [20] uses
a prior over illuminations and visibility MLP but their framework is trained in
a cascaded manner, so visibility can not influence lighting and geometry esti-
mations compared to our method, furthermore their method considers shadows
only from the sun.

Directional Distance Fields SDFs measure the distance to the nearest sur-
face at a given point, signed to indicate outside/inside. In contrast, Directional
Distance Functions (DDFs) measure the distance to the nearest surface in a

given direction, making them 5D as opposed to 3D functions for SDFs. Interest
in DDFs has primarily been as a geometry representation that allows faster ren-
dering (no sphere tracing is required). Neural DDFs were primarily introduced
in [52] which developed the Signed Directional Distance Functions (SSDF) as a
model of continuous distance view synthesis and derived many important prop-
erties of SDDFs. This was later extended by [1], which enabled the modelling of
internal structures via dropping the sign and extending the representation via
probabilistic modelling. Subsequent works enable to model of shapes with no ex-
plicit boundary surface [38], refine the multi-view consistency of DDFs [22] and
employ SDDFs to improve optimisation of multi-view shape reconstruction [51].
Our usage of a DDF is most similar to that of FiRE [46] which also combines an
SDF scene representation with a DDF sampled only on the unit sphere. How-
ever, unlike FiRE, whose goal was fast rendering, we show how to use a spherical
DDF for fast, differentiable sky visibility. A more in-depth explanation of DDFs
is found in Section 3.2.

Neural Illumination and Visibility Boss et al. [5] proposed neural pre-
integrated lighting (PIL), a spherical neural field conditioned on a roughness
parameter to model an illumination environment convolved with a BRDF. This
enabled fast rendering but at the expense of being unable to model occlusions
of the illumination environment. RENI [15], proposed by Gardner et al., is
a vertical-axis rotation-equivariant conditional spherical neural field, trained on
thousands of HDR outdoor environment maps to learn a prior for natural illumi-
nation. The low-dimensional but expressive latent space is useful for constraining
inverse rendering problems. This was subsequently extended in RENI++ [16]
with the addition of scale-invariant training and a transformer-based architec-
ture. Several other recent methods aim to predict illumination from small image
crops [12,34], as a 5D light field network [44], from a text description [9] or using
diffusion models with differentiable path tracing [25]. Rhodin et al. [29] approx-
imate scene geometry with Gaussian blobs for differentiable visibility. Lyu et
al. [24] similarly use spheres for geometry and model illumination with spherical
harmonics for approximate differentiable shadows. Worchel and Alexa [43] use a
differentiable mesh renderer for classical shadow mapping [42].
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3 Method

Our method takes as input a dataset of N images. From these images we
compute poses with COLMAP [31, 32] and semantic segmentation maps with
ViT-Adapter [10] according to the Cityscapes [11] convention. The preprocessed

dataset comprises D = {(Ii,Ei,Ki,Si)}
N

i=1
, where I ∈ R

H×W×3 is an image,
S ∈ Z

H×W is the segmentation map and E = [R|t] ∈ R
3×4 and K ∈ R

3×3 are
the camera extrinsics and intrinsics respectively. To align the vertical axis of our
scene with gravity, we robustly fit a plane to the camera positions and rotate to
align with the x-y plane.

Scene Representation We model scene geometry as a neural SDF, such that
at any point x ∈ R

3, the signed distance is given by fSDF(x) ∈ R. We assume
that the scene is Lambertian, with diffuse albedo modelled by the neural field
a(x) ∈ [0, 1]3. We also assume that illumination is a distant environment that
depends only on direction d ∈ S2, with HDR RGB incident radiance given by
Li(d) ∈ R

3

≥0
.

Rendering We follow NeuS [40] and derive a volume density, σ(x), from the
SDF value. This allows volume rendering of the SDF in the same fashion as
in NeRF. For a ray r with origin o and direction v, the time-discrete volume
rendered RGB colour is given by:

c(r)=

S∑

j=1

wja(xj)

D∑

k=1

Li(dk)V (xE ,dk)max(0,n(xj) · dk), (1)

where the first summation is over the S samples along the ray, while the second
is over the D lighting direction samples. The lighting direction samples are dis-
tributed approximately uniformly over the sphere by using an 8-subdivided icosa-
hedron giving D = 642. wj is the volume rendering blending weight for the jth
sample point which depends on t1...j and σ(x1...j), with xj = o+ tjv. V (x,d) ∈
{0, 1} is the sky visibility in direction d at position x with xE being the position
at the expected termination depth of the ray xj . n(x) = ∇fSDF(x)/∥∇fSDF(x)∥
is the surface normal at x, derived from the gradient of the SDF.

We define our appearance loss for a batch of rays R as:

Lapp =
∑

r∈R

ℓ(cgt(r), sRGB(c(r))), (2)

where cgt(r) is the ground truth colour for ray r, sRGB(·) tonemaps the linear
image provided by our model and ℓ computes the sum of L1 and cosine errors
(to match both absolute RGB values and hue). To avoid overfitting we apply a
random rotation R ∼ U(SO(3)) to jitter the direction vectors dk in every batch.

Neural Illumination Model To restrict Li to the space of plausible natural
illumination environments, we use a neural illumination prior, RENI++ [16].
This is a conditional neural field, fLi

: S2 × R
3×K → R

3 that outputs log
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HDR RGB colours in the given input direction, conditioned on a normally dis-
tributed 3D latent code Z ∈ R

3×K , vec(Z) ∼ N (03K , I3K). The latent space
of RENI++ provides a low dimensional characterisation of natural, outdoor il-
lumination environments since it was trained on several thousand real-world
outdoor environment maps. This provides useful global constraints on the es-
timated illumination, which is only partially observable in any one image. In
addition, the normally-distributed latent space provides a prior while the latent
code is vertical-axis rotation-equivariant (rotating Z about the vertical axis cor-
responds to similarly rotating the environment). This vertical axis corresponds
to gravity and we therefore align the vertical axis of our scene with gravity as
described above. We optimise a RENI++ latent code, Zi, and absolute scale, γi,
for each image i in the training set and replace Li(dk) with γi exp(fLi

(dk,Zi))
in (1). To ensure the estimated illumination is plausible, we include a prior loss:
Lprior = ∥Z∥2

2
for all latent codes. In Section 3.1 we describe how the illumi-

nation environment in an image can be additionally constrained via sky pixel
observations.

Reducing Visibility Tests Visibility of the illumination environment from a
scene point is required in our rendering equation (1) and is essential for recreating
cast shadows and ambient occlusion effects. However, computing sky visibility
from a neural SDF is computationally expensive. It requires sphere tracing from
the query point in the light direction until the ray hits another part of the surface
or leaves the scene bounds. To render a single pixel, this must be performed
D times for each of the S sample points. We therefore propose two methods
to drastically reduce the number of visibility samples. First, since we are only
concerned with visibility on the surface of the scene, we define xE = o + tEv,
where tE is the current expected termination depth of the ray, and evaluate
visibility only at xE . This means we only need D visibility tests per pixel since
we reuse the computed visibilities for all sample points along the ray. Second,
any light direction in the lower hemisphere, i.e. where (dj)z < 0, will strike either
the scene or the ground. For these directions we set V (·) = 1, i.e. visible. The
rationale for this is that the RENI++ illumination environment will learn to
capture the colour of the ground or lower hemisphere of the scene, averaged over
all spatial positions. This provides an approximation to secondary illumination
from the ground. We found this to perform considerably better than setting
these directions as non-visible. In spite of these two speedups, the remaining
D/2 visibility tests still prove too expensive if performed via sphere tracing of the
SDF. For this reason, in Section 3.2 we propose a fast, softened approximation
for visibility.

3.1 Sky Pixel Constrained Illumination Prior

Pixels labelled in the semantic segmentation maps with the ‘sky’ class (hereafter
referred to as sky pixels) provide a direct observation of the distant illumination
environment in the direction given by the ray for that pixel. To the best of our
knowledge, this constraint has never been used to aid illumination estimation
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in inverse rendering methods. Since our illumination model, RENI++ [16], cap-
tures the space of plausible natural illuminations, even observing only a portion
of the sky provides a strong statistical cue. For example, if a bright region cor-
responding to the sun is observed, then RENI++ cannot create another sun
in an unobserved part of the environment. Alternatively, if all observed sky is
white, it is likely to be an overcast day and RENI++ will predict an ambient
environment without a discernible sun. Using sky pixel constraints alone can be
viewed as statistical outpainting of the whole environment from the portion ob-
served in an image. In practice, we incorporate this within our inverse rendering
framework such that the appearance loss of non-sky pixels also provides a rich,
indirect constraint on the illumination.

The sky segmentation also provides an additional constraint that is similar
to the widely used mask loss. Since we know that sky ray pixels miss the scene,
we penalise our neural scene representation from placing any density along the
ray, providing geometric supervision. Together, these form our sky loss:

Lsky =
∑

r∈R∩Ssky

ε(cgt(r), csky(r))− log(1−
∑

j

wj), (3)

where Ssky is the set of sky pixels. The first term is the error between the
observed sky pixel colour and predicted, csky(r) = sRGB(γ exp(fLi

(r,Z))), and
the second term is the binary cross entropy loss on the accumulated density in
sky pixels.

3.2 Outside-in Sky Visibility

Shadows offer a wealth of information about geometry, both within and beyond
the view frustum. For instance, if the sun is predicted to be behind the camera
and a prominent cast shadow appears on the floor, we can infer there is geometry
behind the camera and the likely sun direction. However, to fully leverage this
information it is necessary to have a differentiable model of visibility.

To address this, we draw inspiration from works, NeRFactor [50] and NeRV
[35] and learn a neural model of visibility. However, to make training tractable,
[50] learn their visibility representation in a second training phase with geometry
pretrained and frozen and [35] require known illumination. Initial attempts to
model visibility using the same parameterisation as [35] were unable to fit in
our less constrained and end-to-end task. We desire a model of visibility that is
consistent with the geometry of our scene, fast to sample from and differentiable,
enabling gradients from visibility to inform illumination, albedo and geometry
estimation. However, this model must be constrained enough that training end-
to-end with our scene representation is tractable. To achieve this, we propose
outside-in visibility in which visibility is represented implicitly via a Spherical
Directional Distance Field (SDDF) defined on the radius 1 sphere that bounds
our scene and is tied to our SDF scene representation via consistency losses.
Our geometric volume is represented with the Mip-NeRF 360 [3] scene contrac-
tion. This means that parallel rays converge to a point on the radius 2 sphere
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(representing infinity). Hence, our visibility model resides on the radius 1 sphere
where position-dependent visibility can be reasoned about, while our distant
illumination model is defined on the radius 2 sphere (see Figure 3).

r = 2

r = 1

No contraction Contraction

Fig. 3: We model our illumination and illu-
mination visibility via two spherical neural
fields at radius ∞ and 1 respectively. How-
ever our world space is contracted as per
Mip-NeRF-360 [3], such that any point at
infinity is placed on the sphere of radius
2. Since we model distant illumination, the
sampled colour only depends on direction,
and two samples at different locations but
in the same direction will sample RENI++
[16] at the same point. However, visibility
of distant illumination is dependent on lo-
cation and the intersection of the ray on the
sphere of radius 1 is used to sample our vis-
ibility network.

Spherical Directional Distance

Function Consider a point s ∈ S2

lying on a bounding sphere of ra-
dius 1. The Spherical Directional Dis-
tance Function (DDF), fDDF : S2 ×
S2 → R, returns the (positive) dis-
tance from s for any inward-pointing
direction d to the first intersection
with the surface. In other words, the
spherical DDF stores an inward look-
ing depth map of the scene from any
viewpoint on the radius r sphere. The
DDF is related to the SDF: fSDF(s+
fDDF(s,d)d) = 0, such that moving
the distance given by the DDF must
arrive at the surface where the SDF is
zero. However, there may be multiple
such points and the DDF must return
the minimum, giving us another con-
straint: fDDF(s,d) = min{t|fSDF(s +
td) = 0}.

The DDF is required to learn a
very complex function: essentially an
inward-facing depth map of the scene from any position on the sphere. We found
that this function is easier to learn if we define a consistent coordinate frame
to parameterise directions for any given point on the sphere. We normalise the
inward-facing directions from world coordinates to a local coordinate system
such that the y-axis aligns with s (the sample position on the DDF), the x-axis
is orthogonal to y and to our world-up, and the z-axis is orthogonal to y and x.
See Figure 7 for a visualisation.

Sky Visibility via Directional Distance Fields Our key insight is to show
how to use the inward looking DDF as a representation for computing outward
sky visibility (see Figure 4). Consider a point x ∈ R

3 lying on the surface (and
inside the bounding sphere, such that ∥x∥ ≤ 1). We can use the DDF to check
whether x can see the sky or is occluded in a direction d. First we compute the
point s as the solution to s = x+ td, s.t. ∥s∥ = 1 and t ≥ 0, i.e. the point on the
radius r sphere that is intersected by the ray in direction d from x. Next, we
evaluate the DDF at s in direction −d (i.e. outside-in): fDDF(s,−d). If x is not
occluded then the DDF value should be similar to the actual distance between s

and x: fDDF(s,−d) ≈ ∥s−x∥. However, if s is occluded then the DDF will return
a distance significantly less than the actual distance: fDDF(s,−d) < ∥s − x∥.
Binary visibility can be computed by testing whether this difference is below
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a threshold ϵ: V = (∥s − x∥ − fDDF(s,−d) < ϵ). Note that this is equivalent
to classical shadow mapping [42] with the exception that we rely on a DDF
forward pass as opposed to (non-differentiable) rasterisation of a mesh from the
light source perspective.

However, binary visibility is discontinuous and so not suitable for propagating
loss gradients through visibility and back into geometry. For this reason, we
replace the discrete threshold with a softened approximation (see Figure 5):

V (x,d) = 1− κ (η(∥s− x∥ − fDDF(s,−d)− ϵ)) , (4)

where κ is the sigmoid function. The threshold ϵ controls the tolerance on what
is considered a shadow. We make this learnable and initialise it with a large
value (equal to the scene radius). When ϵ is large, no parts of the scene will
be considered occluded. As training converges, ϵ can be reduced to gradually
introduce more illumination occlusions. The parameter s controls the sharpness
of the transition between occluded and unoccluded.

DDF Intersection
/ Query Point
and Direction DDF Predicted Depth

Query Point
and Direction

Ground
Truth

Distance

Difference
=

GT - Predicted

Visibility = Difference < Threshold

Fig. 4: Visibility of our neural illumination
from a point in the scene is implicitly rep-
resented via our Directional Distance Field
(DDF) which represents the depth to the
surface of our scene from any point on the
unit sphere. The DDF is a spherical neu-
ral field that surrounds our scene at ra-
dius 1. The DDF is fully differentiable al-
lowing gradients obtained from shadowing
to inform illumination and geometry.

Supervising the DDF The DDF
indirectly determines visibility which
in turn determines appearance via the
rendering equation in (1). This means
that the DDF is partially supervised
by the appearance loss. However, we
also require that the DDF’s represen-
tation of scene geometry is consistent
with the SDF geometry. We enforce
this consistency through four losses.
First, Lddf_depth, enforces that the
depth predicted by the DDF should
match that of the scene parameterised
by the SDF. Second, Lddf_levelset, en-
sures that travelling the distance pre-
dicted by the DDF should arrive at
the SDF zero level set. Third, we en-
courage multiview consistency in the
DDF via a multiview consistency loss
Lddf_multiview. Finally, with, Lddf_sky,
we further take advantage of our sky
segmentation maps as an additional
constraint on our DDF. Rays that
intersect the sky have no occlusions
between the camera origin and our
DDF sphere. Our DDF should there-
fore predict at least the distance to
the camera origin for those intersecting rays. Detailed descriptions of these losses
can be found in the supplementary.
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3.3 Implementation

0
GT - Predicted

0

1

V
is

ib
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ty

Fig. 5: Soft visibility function. We plot ∥s −
x∥−fDDF(s,−d) on the x-axis versus V (x,d)
on the y-axis. When ground truth distance
is significantly smaller than the threshold ϵ,
we assign a visibility of 1. When significantly
larger, we infer an occlusion and a visibility
of 0. In the vicinity of ϵ we smoothly transi-
tion from visible to non-visible with a steep-
ness controlled by η.

We implement our method in
Nerfstudio [37], building on top
of NeuS-Facto [48]. We convert
our CityScapes [11] segmentation
masks into classes for sky, ground
plane, foreground and transient ob-
jects (vehicles, vegetation, people
etc). We sample ray batches only
from non-transient pixels. We use
a hash grid with 16 levels, 219 hash
table size, 2 features per entry and a
course and fine resolution of 16 and
2048 respectively. Our SDF and
albedo networks are both 2-layer
256-neuron MLPs. We initialise our
SDF as a sphere with radius=0.1.
We use the pre-trained RENI++
[16] model with a latent dimension
K = 100 and initialise latent codes
as zeroes, corresponding to the mean environment provided by the RENI++
prior. We initialise the per-image illumination scale as γ = 1.

Our visibility network is a FiLM-Conditioned [8] SIREN [33] with 5 layers
and 256 neurons in both the FiLM Mapping Network and the main SIREN. We
condition our network on positions on the sphere using the same dimensional
hash grid as our SDF. We first map from position to a hashed latent, this latent
is then provided to the FiLM mapping network to condition the model. As
per Section 3.2 we normalise direction to a local coordinate frame and these
directions are positionally encoded as per NeRF [26]. We use a sigmoid activation
function scaled by the size of our scene bounds to ensure a depth prediction
within the correct range. We generate samples for DDF supervision via our
PyTorch re-implementation of fast von Mises-Fisher distribution sampling from
Pinzón et al [28]. We used a concentration parameter of 20.0 for the distribution
and sampled 8 positions and 128 directions per batch exclusively from the upper
hemisphere.

We optimise our Proposal Samplers, SDF/Albedo Field and DDF using
Adam [18] optimisers with a Cosine Decay [23] schedule and 500-step ‘warm-
up’ phase. Our loss is the sum of Lapp, Lprior, Lsky, the four DDF supervision
losses and a proposal sampler interlevel loss as per Mip-NeRF 360 [3]. Our ini-
tial learning rates are 1e−2, 1e−3 and 1e−4 respectively. Our RENI++ latent
codes and the visibility threshold parameter use Adam [18] optimisers with an
exponentially decaying learning rate which is initialised at 1e−2 and 1e−3 re-
spectively.
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Fig. 6: Comparion of albedo and normals produced by NeRF-OSR [30], FEGR [41],
SOL-NeRF [36] and our method. We produce much sharper albedo and normals than
all prior works whilst training end-to-end.
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Fig. 7: Three views of the depth predicted by the Spherical DDF (top row) and its
pseudo ground truth from the scene representation (bottom row) for Site 1 in the
NeRF-OSR [30] dataset (see Figure 1). Cameras are placed on the unit sphere looking
towards the origin. The DDF is trained concurrently with the scene representation and
can capture high-frequency details required for accurate shadows.
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4 Evaluation

Ambient Occlusion Shadow

Fig. 8: Ambient occlusion and shadows
from a point source computed from our soft
visibility via the DDF.

We begin by qualitatively evaluating
the output of our system components.
Figure 7 illustrates that our spheri-
cal DDF is able to produce detailed
depth maps via a single forward pass
from arbitrary viewpoints. The geom-
etry of the building and ground plane
are well reconstructed. In Figure 8 we
visualise the output of the visibility
network in two different ways. On the
left we average visibility over all di-
rections, giving a good approximation to ambient occlusion. On the right we
compute visibility for a single direction, producing a sharp shadow.

Shadows Informing Geometry Due to our visibility model training concur-
rently with our scene representation, shadows can inform geometry outside of the
view frustum. We can optionally apply stop gradients to visibility calculations to
prevent this capability. We demonstrate the advantage of training end-to-end in
Figure 13, which shows a rendering of Site 1 looking behind the view frustums
of all training cameras for that scene. To explain shadows seen during training
geometry has been generated outside the view of any training camera. This is a
key advantage of training our differentiable sky visibility network concurrently
with our scene representation.

Without Visibility Network Figure 14 demonstrates the benefit of our sky-
visibility network. When enabled our model is better able to disentangle shading
from albedo, particularly in scenes in which many of the images captured are
shaded, namely Site 3 of the NeRF-OSR [30] dataset. Here, shadows on the
ground, doors and building facade are removed from the albedo.

Site 1 Site 2 Site 3

PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓

NeRF-OSR [30] 19.34 0.012 16.35 0.027 15.66 0.029

FEGR [41] 21.53 0.007 17.00 0.023 17.57 0.018

SOL-NeRF [36] 21.23 0.0084 18.18 0.019 17.58 0.028

NeuSky (Ours) 22.50 0.005 16.66 0.023 18.31 0.016

Fig. 9: Outdoor scene relighting results on
the NeRF-OSR relighting benchmark.

Relighting We evaluate NeuSky’s
relighting capabilities on the NeRF-
OSR [30] relighting benchmark. The
NeRF-OSR dataset consists of eight
sites captured over multiple sessions
each with differing illumination con-
ditions along with Low Dynamic
Range (LDR) ground truth environ-
ment maps. The benchmark test relighting three of these scenes. Our results
can be found in Table 9. We achieve better relighting performance than both
NeRF-OSR [30] and FEGR [41] and beat SOL-NeRF [36] on two of the three
scenes. Qualitatively our method also produces models with significantly higher
quality geometry and albedo than all three prior works, as shown in Figure 6.
As shown in Figures 10 and 12, NeuSky is capable of disentangling illumination,
albedo and shading and our sky visibility network and RENI++ combine to
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produce sharp shadows. Further results are shown in Figure 1. In Figure 11 we
demonstrate rendering scenes under novel illumination conditions.

Ground Truth Render Albedo Normals

Fig. 10: A render from Site-1 and Site-2 in NeRF-OSR [30]. Environment maps sam-
pled from the estimated illumination of RENI++ [16], albedo and normals are shown
alongside the ground truth images. Our method accurately disentangles albedo, light-
ing and shadows whilst producing very high-quality geometry.

Fig. 11: Relighting under novel illuminations.

5 Conclusion

We have presented the first outdoor scene inverse rendering approach that in-
corporates a model of natural illumination, exploits direct sky pixel observations
and can be trained end-to-end with a visibility model. This enables our model
to reproduce accurate shadows, avoids shadow baking into albedo, allows shad-
ows to constrain geometry and illumination and achieves superior geometry and
albedo reconstruction on the NeRF-OSR dataset beating [30], [36] and [41] in
the relighting benchmark. There are a number of limitations of our work, namely
a high training GPU memory requirement when using large batches and at be-
tween 5-8 hours, our optimisation time is slow by modern neural field standards.
The most obvious extension to our approach would be to use a more complex re-
flectance model and accompanying material parameters. For reflective surfaces,
second bounce illumination becomes more significant. It is possible that a DDF
could be used to speed up multibounce ray casting in this context.
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Ground Truth Render

NormalAlbedo Relighting

Fig. 12: Results on the Trevi Fountain scene showing decomposition and relighting.

Stop Gradients Enabled Stop Gradients Disabled Ground Truth

Fig. 13: With stop gradients enabled (left), geometry outside the view frustum of all
training cameras is not generated. With stop gradients disabled (middle), gradients
from appearance losses are allowed to flow from our sky visibility network to the SDF
creating geometry not directly observed during training. This more closely matches the
ground truth for the scene (right).

With Visibility Without Visibility

a) b) c)

Fig. 14: Whilst the majority of the training images for Site 3 in the NeRF-OSR
dataset [30] show the front of the building in shadow. With our visibility network
enabled our predicted albedo removes that shading along with shadows around the
sign (a), at the joint between brick and plaster (b) and on the ground (c). Smaller
cutouts show renderings with sky visibility on the left and without sky visibility on the
right.



The Sky’s the Limit 15

References

1. Aumentado-Armstrong, T., Tsogkas, S., Dickinson, S., Jepson, A.D.: Representing
3D Shapes With Probabilistic Directed Distance Fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 19343–19354 (Jun 2022)

2. Barron, J.T., Malik, J.: Shape, Illumination, and Reflectance from Shading.
TPAMI (2015)

3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF
360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022)

4. Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Transactions on
Graphics (TOG) 33(4), 1–12 (2014)

5. Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J.T., Lensch, H.: Neural-PIL:
Neural Pre-Integrated Lighting for Reflectance Decomposition. In: Beygelzimer,
A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems (2021), https://openreview.net/forum?id=fATZNtA1-V0

6. Boss, M., Jampani, V., Kim, K., Lensch, H., Kautz, J.: Two-shot spatially-varying
brdf and shape estimation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 3982–3991 (2020)

7. Bousseau, A., Paris, S., Durand, F.: User-assisted intrinsic images. In: ACM SIG-
GRAPH Asia 2009 papers, pp. 1–10. Association for Computing Machinery, New
York, NY, United States (2009)

8. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: Pi-GAN: Pe-
riodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 5799–5809 (Jun 2021)

9. Chen, Z., Wang, G., Liu, Z.: Text2Light: Zero-Shot Text-Driven HDR Panorama
Generation. ACM Trans. Graph. 41(6) (Nov 2022). https://doi.org/10.1145/
3550454.3555447, https://doi.org/10.1145/3550454.3555447, number of
pages: 16 Place: New York, NY, USA Publisher: Association for Computing Ma-
chinery tex.articleno: 195 tex.issue_date: December 2022

10. Chen, Z., Duan, Y., Wang, W., He, J., Lu, T., Dai, J., Qiao, Y.: Vision Trans-
former Adapter for Dense Predictions. In: The Eleventh International Confer-
ence on Learning Representations (2023), https://openreview.net/forum?id=
plKu2GByCNW

11. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The Cityscapes Dataset for Semantic Urban
Scene Understanding. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016)

12. Dastjerdi, M.R.K., Hold-Geoffroy, Y., Eisenmann, J., Lalonde, J.F.: EverLight:
Indoor-Outdoor Editable HDR Lighting Estimation (2023), arXiv: 2304.13207
[cs.CV]

13. Dave, A., Zhao, Y., Veeraraghavan, A.: PANDORA: Polarization-Aided Neural
Decomposition of Radiance. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella,
G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022 - 17th European Confer-
ence, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part VII. Lecture Notes
in Computer Science, vol. 13667, pp. 538–556. Springer (2022). https://doi.

org/10.1007/978-3-031-20071-7_32, https://doi.org/10.1007/978-3-031-
20071-7_32, tex.bibsource: dblp computer science bibliography, https://dblp.org
tex.biburl: https://dblp.org/rec/conf/eccv/DaveZV22.bib tex.timestamp: Mon, 05
Dec 2022 13:35:31 +0100

https://openreview.net/forum?id=fATZNtA1-V0
https://doi.org/10.1145/3550454.3555447
https://doi.org/10.1145/3550454.3555447
https://doi.org/10.1145/3550454.3555447
https://doi.org/10.1145/3550454.3555447
https://doi.org/10.1145/3550454.3555447
https://openreview.net/forum?id=plKu2GByCNW
https://openreview.net/forum?id=plKu2GByCNW
https://doi.org/10.1007/978-3-031-20071-7\_32
https://doi.org/10.1007/978-3-031-20071-7_32
https://doi.org/10.1007/978-3-031-20071-7\_32
https://doi.org/10.1007/978-3-031-20071-7_32
https://doi.org/10.1007/978-3-031-20071-7_32
https://doi.org/10.1007/978-3-031-20071-7_32


16 J. Gardner et al.

14. Dror, R.O., Willsky, A.S., Adelson, E.H.: Statistical characterization of real-world
illumination. Journal of Vision 4(9), 11–11 (Sep 2004)

15. Gardner, J.A.D., Egger, B., Smith, W.A.P.: Rotation-Equivariant Conditional
Spherical Neural Fields for Learning a Natural Illumination Prior. In: Oh, A.H.,
Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Process-
ing Systems (2022), https://openreview.net/forum?id=cj6K4IWVomU

16. Gardner, J.A.D., Egger, B., Smith, W.A.P.: Reni++ a rotation-equivariant, scale-
invariant, natural illumination prior (2023)

17. Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset
and baseline evaluations for intrinsic image algorithms. In: 2009 IEEE 12th Inter-
national Conference on Computer Vision. pp. 2335–2342. IEEE (2009)

18. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980, tex.bibsource: dblp computer science
bibliography, https://dblp.org tex.timestamp: Thu, 25 Jul 2019 14:25:37 +0200

19. Kovacs, B., Bell, S., Snavely, N., Bala, K.: Shading annotations in the wild. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 6998–7007 (2017)

20. Li, Q., Guo, J., Fei, Y., Li, F., Guo, Y.: NeuLighting: Neural Lighting for Free
Viewpoint Outdoor Scene Relighting with Unconstrained Photo Collections. In:
SIGGRAPH Asia 2022 Conference Papers. SA ’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3550469.

3555384, https://doi.org/10.1145/3550469.3555384, number of pages: 9 Place:
Daegu, Republic of Korea tex.articleno: 13

21. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-Fidelity Neural Surface Reconstruction. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2023)

22. Liu, Z., Yang, B., Luximon, Y., Kumar, A., Li, J.: RayDF: Neural Ray-surface
Distance Fields with Multi-view Consistency. In: Thirty-seventh Conference on
Neural Information Processing Systems (2023), https://openreview.net/forum?
id=crZlhMnfeO

23. Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm
Restarts. In: International Conference on Learning Representations (2017), https:
//openreview.net/forum?id=Skq89Scxx

24. Lyu, L., Habermann, M., Liu, L., Tewari, A., Theobalt, C., et al.: Efficient and
differentiable shadow computation for inverse problems. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 13107–13116 (2021)

25. Lyu, L., Tewari, A., Habermann, M., Saito, S., Zollhöfer, M., Leimküehler, T.,
Theobalt, C.: Diffusion posterior illumination for ambiguity-aware inverse render-
ing. ACM Transactions on Graphics 42(6) (2023)

26. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In:
ECCV (2020)

27. Müller, T., Evans, A., Schied, C., Keller, A.: Instant Neural Graphics Primitives
with a Multiresolution Hash Encoding. ACM Trans. Graph. 41(4), 102:1–102:15
(Jul 2022). https://doi.org/10.1145/3528223.3530127, https://doi.org/10.
1145/3528223.3530127, number of pages: 15 Place: New York, NY, USA Publisher:
ACM tex.articleno: 102 tex.issue_date: July 2022

https://openreview.net/forum?id=cj6K4IWVomU
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3550469.3555384
https://doi.org/10.1145/3550469.3555384
https://doi.org/10.1145/3550469.3555384
https://doi.org/10.1145/3550469.3555384
https://doi.org/10.1145/3550469.3555384
https://openreview.net/forum?id=crZlhMnfeO
https://openreview.net/forum?id=crZlhMnfeO
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127


The Sky’s the Limit 17

28. Pinzón, C., Jung, K.: Fast Python sampler for the von Mises Fisher distribu-
tion (Aug 2023), https://hal.science/hal-04004568, tex.hal_id: hal-04004568
tex.hal_version: v3

29. Rhodin, H., Robertini, N., Richardt, C., Seidel, H.P., Theobalt, C.: A versatile
scene model with differentiable visibility applied to generative pose estimation.
In: Proceedings of the 2015 International Conference on Computer Vision (ICCV
2015) (2015), http://gvv.mpi-inf.mpg.de/projects/DiffVis

30. Rudnev, V., Elgharib, M., Smith, W., Liu, L., Golyanik, V., Theobalt, C.: NeRF for
Outdoor Scene Relighting. In: European Conference on Computer Vision (ECCV)
(2022)

31. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

32. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision
(ECCV) (2016)

33. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit
Neural Representations with Periodic Activation Functions. In: Proc. NeurIPS
(2020)

34. Somanath, G., Kurz, D.: Hdr environment map estimation for real-time augmented
reality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 11298–11306 (June 2021)

35. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.:
NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 7495–7504 (Jun 2021)

36. Sun, J.M., Wu, T., Yang, Y.L., Lai, Y.K., Gao, L.: SOL-NeRF: Sunlight Model-
ing for Outdoor Scene Decomposition and Relighting. In: SIGGRAPH Asia 2023
Conference Papers (SA Conference Papers ’23) (2023)

37. Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen,
A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio:
A Modular Framework for Neural Radiance Field Development. arXiv preprint
arXiv:2302.04264 (2023)

38. Ueda, I., Fukuhara, Y., Kataoka, H., Aizawa, H., Shishido, H., Kitahara, I.: Neural
Density-Distance Fields. In: Proceedings of the European Conference on Computer
Vision (2022)

39. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: Learning
Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. In:
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neu-
ral Information Processing Systems (2021), https://openreview.net/forum?id=
D7bPRxNt_AP

40. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: Learning
Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. In:
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neu-
ral Information Processing Systems (2021), https://openreview.net/forum?id=
D7bPRxNt_AP

41. Wang, Z., Shen, T., Gao, J., Huang, S., Munkberg, J., Hasselgren, J., Gojcic, Z.,
Chen, W., Fidler, S.: Neural Fields meet Explicit Geometric Representations for
Inverse Rendering of Urban Scenes. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (Jun 2023)

https://hal.science/hal-04004568
http://gvv.mpi-inf.mpg.de/projects/DiffVis
https://openreview.net/forum?id=D7bPRxNt_AP
https://openreview.net/forum?id=D7bPRxNt_AP
https://openreview.net/forum?id=D7bPRxNt_AP
https://openreview.net/forum?id=D7bPRxNt_AP


18 J. Gardner et al.

42. Williams, L.: Casting curved shadows on curved surfaces. In: Proceedings of the 5th
annual conference on Computer graphics and interactive techniques. pp. 270–274
(1978)

43. Worchel, M., Alexa, M.: Differentiable shadow mapping for efficient inverse graph-
ics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 142–153 (2023)

44. Yao, Y., Zhang, J., Liu, J., Qu, Y., Fang, T., McKinnon, D., Tsin, Y., Quan, L.:
NeILF: Neural Incident Light Field for Physically-based Material Estimation. In:
Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer
Vision – ECCV 2022. pp. 700–716. Springer Nature Switzerland, Cham (2022)

45. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. In: Thirty-Fifth Conference on Neural Information Processing Systems
(2021)

46. Yenamandra, T., Tewari, A., Yang, N., Bernard, F., Theobalt, C., Cremers, D.:
FIRe: Fast Inverse Rendering using Directional and Signed Distance Functions
(2022), arXiv: 2203.16284 [cs.CV]

47. Yu, Y., Smith, W.A.P.: InverseRenderNet: Learning Single Image Inverse Ren-
dering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (Jun 2019)

48. Yu, Z., Chen, A., Antic, B., Peng, S.P., Bhattacharyya, A., Niemeyer, M., Tang,
S., Sattler, T., Geiger, A.: SDFStudio: A Unified Framework for Surface Recon-
struction (2022), https://github.com/autonomousvision/sdfstudio

49. Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: Physg: Inverse rendering with
spherical gaussians for physics-based material editing and relighting. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 5453–5462 (2021)

50. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron,
J.T.: NeRFactor: Neural Factorization of Shape and Reflectance under an Un-
known Illumination. ACM Trans. Graph. 40(6) (Dec 2021). https://doi.org/
10.1145/3478513.3480496, https://doi.org/10.1145/3478513.3480496, num-
ber of pages: 18 Place: New York, NY, USA Publisher: Association for Computing
Machinery tex.articleno: 237 tex.issue_date: December 2021

51. Zins, P., Xu, Y., Boyer, E., Wuhrer, S., Tung, T.: Multi-View Reconstruction using
Signed Ray Distance Functions (SRDF) (2023), arXiv: 2209.00082 [cs.CV]

52. Zobeidi, E., Atanasov, N.: A Deep Signed Directional Distance Function for Object
Shape Representation. CoRR abs/2107.11024 (2021), https://arxiv.org/abs/
2107.11024, arXiv: 2107.11024 tex.bibsource: dblp computer science bibliography,
https://dblp.org tex.timestamp: Fri, 04 Aug 2023 08:25:46 +0200

https://github.com/autonomousvision/sdfstudio
https://doi.org/10.1145/3478513.3480496
https://doi.org/10.1145/3478513.3480496
https://doi.org/10.1145/3478513.3480496
https://doi.org/10.1145/3478513.3480496
https://doi.org/10.1145/3478513.3480496
https://arxiv.org/abs/2107.11024
https://arxiv.org/abs/2107.11024

	The Sky's the Limit: Relightable Outdoor Scenes via a Sky-pixel Constrained Illumination Prior and Outside-In Visibility

