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In this supplementary material, we present the implementation details and ad-
ditional experiments. Furthermore, we provide axial and generic motion magni-
fication results across various scenarios.

A Implementation Details

We provide the details of data generation pipeline (Sec. A.1), the loss function
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A.1 Data generation

Training Dataset. We randomly sample foreground textures ranging from 7
to 14 with segmentation masks from PASCAL VOC [1] and one background
from COCO [4]. For each layer, we sample the axial magnification factor α =
(αϕ;αϕ⊥) from the uniform distribution whose values are ranging from 1 to 80.
Each element of translation parameter d ∈ R2 is uniformly sampled from the
range −u to u, where u = min(10, 30/max(αϕ, αϕ⊥)). It limits input motions to
a maximum of 10 pixels or ensures amplified motions are kept under 30 pixels.
We sample the angle ϕ within the range of 0 to 90 degrees. Note that our method
enables axial motion magnification not only in the angle ϕ but also in the angle
ϕ⊥, thus facilitating axial motion magnification within the range of 0 to 180
degrees. To address the loss of subpixel motion due to image quantization, as
proposed in DMM [6], we apply uniform quantization noise to the images before
quantizing them.

Generic Evaluation Dataset. Based on the validation dataset of DMM [6],
we construct the generic evaluation dataset comprising the previous image, next
image, magnified image, and a single magnification factor. The generic evalua-
tion dataset consists of two datasets for the subpixel test and noise test. The
dataset for the subpixel test includes 15 levels of motion, ranging from a mo-
tion magnitude of 0.04 to 1.0 pixel, changing in a logarithmic scale. The motion
magnification factor is adjusted to ensure that the amplified motion magnitude
becomes 10 pixel. The dataset for the noise test includes 21 levels of noise, rang-
ing from a noise factor of 0.01 to 100 in a logarithmic scale. The amount of input
motion is 0.05 pixel, and the motion amplification factor is also set to ensure
that the amplified motion magnitude becomes 10 pixel.

Axial Evaluation Dataset. The axial evaluation dataset consists of the previ-
ous image, next image, axially magnified image, axial magnification factor vector,
and angle. The axial magnification factor vector is composed of two magnifica-
tion factors corresponding to two orthogonal orientations. The axial evaluation
dataset also includes two datasets for the subpixel test and noise test. For the
subpixel test dataset, we generate data with 15 levels of motion ranging from
0.04 to 1.0 pixel in a logarithmic scale. We set the motion amplification factor
vector to guarantee that the magnified motion magnitude along a random ori-
entation equals 10 pixel. For the other orientation axis, we allocate half of that
value. For the noise test dataset, we have 21 levels of noise factor ranging from
0.01 to 100 in a logarithmic scale. The input motion size along two orthogonal
orientations is 0.05 pixel, and the motion magnification factor is set to achieve
an amplified motion size of 10 pixel for one of the orthogonal axes, while the
motion magnification factor for the other axis is set to half of that value. The
angle ϕ is randomly sampled between 0 and 90 degrees, except in the experiment
of Fig. 5 in the main paper, where ϕ is set to the 0 degrees for comparison with
the phase-based method [10].
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Fig. S1: Projection layer. The projection and inverse projection layers facilitate the
synthesis of arbitrarily rotated representations through a linear combination. In (a),
the representations aligned with the x and y-axes undergo projection onto the ϕ and
ϕ⊥ directions. Within the ϕ and ϕ⊥ directions, these representations are manipulated
before being projected back onto the x and y-axes, i.e., inverse projection (c).

A.2 Loss Function

DMM [6] proposes the texture loss Ltexture and shape loss Lshape to represent
intensity and motion information, respectively. These losses are combined with
the reconstruction loss Lrecon, forming the composite loss function of DMM. We
slightly modify the loss of DMM to separately impose the loss to the x-axis and
y-axis shape representations. The total loss function Ltotal is as follows:

Ltotal = Lrecon(Î
ϕ, Ĩϕ) + β(Ltexture(T1,T2) + Lshape(Sx

2 , Ś
x

2)) + Lshape(S
y
2, Ś

y

2),
(1)

where we set β to 0.5. We train our model using two NVIDIA Titan RTX GPUs.

A.3 Projection Layer

Motivated by the concept of steerable filters [2], we design the projection layer Pϕ

and inverse projection layer P−ϕ using linear matrices. It enables the synthesis
of arbitrarily rotated representations through a linear combination of directional
representations. As shown in Fig. S1-(a), the axial shape representations along
the canonical x and y-axes, which is induced by weight-shared 1D convolutions,
are fed to the projection layer Pϕ. With the linear operation, Pϕ projects them
and results in the axial shape representations of ϕ and ϕ⊥ directions (Fig. S1-
(b)). Conversely, the inverse projection layer P−ϕ projects the outputs of the
Manipulator ∆ϕ, ∆ϕ⊥ back to the canonical x and y-axes (Fig. S1-(c)).
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(a) Generic motion magnification 

0.0

1.0

0.8

0.6

0.4

0.2

Ours

No-mag

Phase-based [37]

0.04
0.0

1.0

0.8

0.6

0.4

0.2

0.5

Ours

No-mag

Phase-based [37]

Singh et al. [29]

STB-VMM [15]

DMM [22]

Pan et al. [24]

(SSIM)

1.0 (pixel)
0.0

0.025

0.020

0.015

0.010

0.005

(MSE)

0.04 0.5 1.0 (pixel) 0.04 0.5 1.0 (pixel)

(SSIM)

0.0

0.04

0.03

0.02

0.01

(MSE)

0.04 0.5 1.0 (pixel)

(b) Axial motion magnification 

Modified phase-based

No-mag

Ours

Ours

DMM
STB-VMM

Pan et al.

Singh et al.
Phase-based

No-mag

Fig. S2: Quantitative results in the practical magnification factors. (a) In this
generic subpixel test, Ours achieves higher performance compared to the phase-based
method [10], Singh et al . [8], and Pan et al . [7], and shows comparable performance
compared to DMM [6] and STB-VMM [3]. (b) In the axial subpixel test, Ours outper-
forms the modified phase-based method.
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Fig. S3: Quantitative results on a semi-realistic dataset. With Blender, we
generate the semi-realistic evaluation dataset and evaluate the generic motion magni-
fication performance. The results show the consistent tendency of the generic subpixel
test using synthetic datasets (Fig. 8 of the main paper). Ours achieves favorable third-
ranked performance. However, overall performance drops compared to the synthetic
dataset evaluations due to 3D motion and realistic effects.

B Additional Experiments

In this section, we provide two additional quantitative experiments: one assum-
ing the practical use of magnification factors (Sec. B.1) and the other using a
semi-realistic dataset rendered by Blender (Sec. B.2). We also assess the physi-
cal accuracy of generic motion magnification (Sec. B.3), the physical accuracy of
the proposed axial motion magnification (Sec. B.4), amplifiable motion magni-
tudes of magnification methods (Sec. B.5), motion separation effect of the MSM
(Sec. B.6), and the behavior of our method across varying degrees (Sec. B.7). We
also demonstrate the per-pixel motion magnification capability of our method
(Sec. B.8). Finally, we report the inference speed of our method and learning-
based motion magnification methods [3, 6–8] (Sec. B.9).

B.1 Quantitative Results Considering Practical Use

In the quantitative results in Fig. 8 of the main paper, we strictly follow the eval-
uation setting proposed by DMM [6]. This setting is designed to analyze model
performance up to its limit. However, such a large magnification factor (e.g., 250)
would rarely be used in many applications. Thus, we generate new generic and
axial subpixel evaluation datasets with magnification factors arbitrarily ranging
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Fig. S4: Physical accuracy on generic motion magnification. We compare the
physically calculated sinusoidal wave of pixel displacement (red line) to the y-t slice’s
waves of 10× magnified videos from motion magnification methods. We also provide
the y-t slice’s wave of the original video and sinusoidal wave before amplification for
reference. The y-t slice’s wave of Ours matches the actual pixel displacement. The
phase-based method [10] exhibits results consistent with the red wave of pixel displace-
ment, albeit suffering from ringing artifacts. Other learning-based methods, such as
DMM [6], STB-VMM [3], Pan et al . [7], and Singh et al . [8], also demonstrate corre-
spondences, with a marginal difference in amplification.

from 10 to 50, regardless of input motion. In these subpixel experiments, we use
the SSIM and mean squared error (MSE) as evaluation metrics. As shown in
Fig. S2, our method achieves favorable performance compared to the competing
methods with the practical magnification factors.

B.2 Quantitative Results on a Semi-realistic Dataset

Because the training dataset of DMM [6] is publicly available, most learning-
based motion magnification methods, such as DMM, STB-VMM [3], and Singh et
al . [8], follow the same training procedure. However, since the DMM evaluation
dataset has not been published, each method evaluates its performance using
its own criteria. To ensure fair comparisons with other methods trained on the
DMM training dataset, we strictly follow the DMM data generation pipeline and
propose our training and evaluation datasets. Although Pan et al . [7] evaluated
their method on DMM’s data, their model was trained using unlabeled video. For
a further fair comparison, we newly build a semi-realistic dataset for the generic
subpixel test using Blender, by randomly moving 3D objects within an input
motion range of 1.5 pixels and with random magnification factors between 10 and
30. The dataset contains 200 samples. As shown in Fig. S3, our method achieves
favorable third-ranked performance, consistent with the generic subpixel test
using synthetic datasets (Fig. 8 of the main paper). However, all methods show
relatively lower SSIMs compared to the subpixel test using synthetic datasets
due to 3D motion and realistic effects.
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Table S1: Hyperparameters for acquiring pixel displacement.

Hyperparameters Unit Value

Vibration frequency ω Hz 20
Peak amplitude of acceleration a m/s2 4.11
Camera-to-vibrator distance L m 2

Focal length f mm 100
Per-pixel sensor size v µm 5.86

B.3 Physical Accuracy of Generic Motion Magnification

To assess the physical accuracy of each method on the generic motion magni-
fication scenario, we examine whether the vibrations of the video, which are
magnified by each method, match those of actual vibrations. First, we generate
a 20Hz sinusoidal vibration using a vibration generator. Next, we obtain the
peak amplitude of acceleration (m/s2) from the attached accelerometer and con-
vert it into a sinusoidal wave of displacement (m), which is transformed into a
sinusoidal wave of pixel displacement (px) on the image plane through pinhole
camera geometry. We investigate whether this wave corresponds to the vibration
of the 10× magnified video using the static mode. The transformation from the
peak amplitude of acceleration a to the peak amplitude of displacement µ is as
follows:

µ = a/ω2, (2)

where ω denotes the frequency of sinusoidal vibration. Using µ, we obtain the
sinusoidal wave of real-world displacement s(t) over time t and transform it into
pixel displacement k(t), which corresponds to

k(t) =
f

Lv
s(t). (3)

The f , L, and v refer to the focal length, camera-to-vibrator distance, and per-
pixel sensor size.

As shown in Fig. S4, the sinusoidal wave of our method demonstrates a
correspondence with the red wave of pixel displacement that is 10× amplified.
The phase-based method [10] and other learning-based methods [3, 6–8] also
exhibit correspondences, albeit with slight differences in amplification. These
results validate the physical accuracy of our method, as well as that of other
motion amplification methods. We provide the hyperparameters for converting
acceleration (m/s2) to pixel displacement (px) in Table S1.

B.4 Physical Accuracy of Axial Motion Magnification

We assess the physical accuracy of axial motion magnification when amplify-
ing the motions, which move in various directions, into only the user-defined
direction. As shown in Fig. S5-(a), utilizing the Kanade-Lucas-Tomasi (KLT)
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Fig. S5: Physical accuracy of the proposed axial motion magnification. (a)
Using the Kanade-Lucas-Tomasi (KLT) Tracker [5], we obtain the displacement values
of the original video and the video that is 20× amplified along x-axis by our method.
(b) We multiply the x-axis’ displacement value of the original trajectory by 20 and
compare it with the x-axis’ displacement value of the video that is amplified along
x-axis by our method. (c) In the y-axis direction, we compare the y-axis’ displacement
of the original trajectory by 20 with the y-axis’ displacement value of the video which
is amplified along x-axis by our method.
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Fig. S6: Amplified motion magnitude with varying magnification factors.
The phase-based method, which is based on signal processing, reached its amplification
limit the quickest. Among the learning-based methods, both our method and DMM [6]
showed the most proportional results between magnification factor and displacement.
However, these methods also reach their amplification limit at large magnification
factors, specifically those above 60.

Tracker [5], we obtain the displacements of the original video and the video
obtained from our method which is magnified 20 times along the x-axis. We
evaluate both the physical accuracy and efficacy of axial motion magnification
by comparing the displacement values from the trajectory of the video amplified
20× using our method against the displacement values obtained by multiplying
the original video’s displacement values by 20. Figure. S5-(b) demonstrates the
alignment between the trajectories of the video obtained by our method and
the amplified original trajectory. For the y-axis displacement, the direction our
method does not aim to amplify, the trajectory of the video obtained by our
method aligns with the original trajectory. (Fig. S5-(c)). These results demon-
strate that the proposed axial motion magnification not only preserves physical
accuracy but also selectively amplifies motion along user-defined directions.
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Fig. S7: Motion separation experiment with MSM. Along the ϕ⊥ direction, we
apply the 10× axial motion magnification to the video of a vibrator oscillating only
in the ϕ direction, using both our method and the modified DMM. Contrary to the
ϕ⊥-t slice of the original, the modified DMM exhibits vibration in the ϕ⊥ direction
due to the unsuccessful motion separation. In comparison, our method, leveraging the
proposed Motion Separation Module (MSM), successfully distinguishes between the
two orthogonal motions, resulting in a ϕ⊥-t slice that closely resembles the original’s
and desired motion trajectory, demonstrating the effectiveness of the MSM.

B.5 Analysis of Amplifiable Motion Magnitudes

The Wu et al . [11] and phase-based method [10], which are based on signal
processing techniques, showed that the amplifiable motion magnitude is theo-
retically limited. DMM [6], which is the learning-based method, discussed that
the magnification is bounded by the effective receptive field size of the decoder.
Our model is developed based on DMM, so it is also subject to this magnifi-
cation bound. To demonstrate this experimentally, we amplify the motion of
vibrator video using motion magnification methods [3,6–8,10] and measured the
amplitude of the vibrator using KLT. The vibrator used in this experiment is
the same as the one used in Sec. B.3, but in this experiment, we changed the
focal length of the camera lens to 50mm. As shown in Fig. S6, the phase-based
method reaches its amplification limit with smaller motion magnitudes. In the
learning-based methods, both DMM and our method show the most proportional
results between magnification factor and displacement. However, these methods
also reach their amplification limit at large magnification factors, specifically
those above 60.

B.6 Motion Separation Effect of the MSM

We assess the effectiveness of the Motion Separation Module (MSM) in distin-
guishing between two orthogonal directional motions. To explore this, we rotate
the video, where a vibrator oscillates solely along the y-axis, by the angle ϕ and
apply the 10× axial motion magnification to the video along the ϕ⊥ direction
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Fig. S8: Axial motion magnification results across various angles. We apply
axial motion magnification to amplify motion in the direction ϕ for vibrator videos
rotated at various angles ϕ. The time slices of axially amplified videos using our method
show the smooth transition at boundaries where the angle ϕ changes.

using both our method and the modified DMM with the static mode. Subse-
quently, we compare the time slices in the direction of ϕ⊥, i.e., the direction
with no motion. In this experiment, we set ϕ to 30 degrees. Figure S7 demon-
strates the results. Unlike the ϕ⊥-t slice of the original, where there is no motion
in the ϕ⊥ direction, modified DMM fails to separate the motion and exhibits
motion in the ϕ⊥ direction. In contrast, Ours with MSM effectively separates
the motions in two orthogonal directions, showing results similar to the original
in the ϕ⊥ direction.

B.7 Angular Analysis of Axial Motion Magnification

Our learning-based axial motion magnification can magnify the motion along the
user-defined direction. We examine whether the behavior of our learning-based
axial motion magnification remains consistent with changing angles. As shown
in Fig. S8, we rotate the vibrator video at various angles ϕ and apply 10× axial
motion magnification to amplify only the motion corresponding to ϕ. Time slices
are obtained from the lines that indicate identical positions across the various
angle-adjusted videos. Then, the slices are sequentially connected over time. The
connected time slices exhibit a smooth transition at boundaries where the angle
ϕ changes. This demonstrates the consistent behavior of our learning-based axial
motion magnification across various angles.

B.8 Per-pixel Motion Magnification

During inference, our model demonstrates the ability to perform per-pixel mo-
tion magnification, which enables us to vary magnification factors across different
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(a) air conditional sequence (b) No Targeting (c) TargetingOursOriginal Pan et al Ours Pan et al

Fig. S9: Qualitative results of targeted motion magnification. Our method is
capable of per-pixel motion magnification because of the new proposed training dataset.
To show this, Given a mask of the notebook, we selectively magnify the motion of the
notebook using Ours and Pan et al . [7]. When targeting the notebook for magnification,
we observe that the motion of the air conditioner remains unchanged from the original,
while only the motion of the notebook is amplified in Pan et al . and Ours.

Table S2: Comparison of inference speed. Using a 720p resolution video, we
measure the Frame Per Second (FPS) of learning-based motion magnification methods.
Singh et al . show differences in inference speed depending on the model. Pan et al .
find that as the magnification factor increased, speed differences occurred due to the
recursive magnification process. STB-VMM exhibited slow inference speed, while ours
showed slightly slower speed compared to DMM because of lacking parallel processing
of the shape branch and manipulator for each axis.

Method Singh et al . [8] Pan et al . [7] STB-VMM [3] DMM [6] Ours
D1-model D2-model 1-recursive 2-recursive

FPS 8.4 7.2 19.6 9.8 2.6 17.4 14.4

areas within an image. This capability is endowed by two main components: the
angle ϕ and object-wise magnification map Λ, which are the main parts of our
newly proposed training dataset. We show this spatially selective motion mag-
nification capability by presenting targeted results similar to those achieved by
Pan et al . [7], which magnify specific objects within an image. Figure S9 displays
the targeted motion magnification results of our method, alongside the targeted
results obtained by Pan et al . When focusing on magnifying the motion of a
notebook, we observe that the motion of the air conditioner remains unchanged
from the original footage, while only the motion of the notebook is magnified in
both Pan et al . and our method.

B.9 Comparison of Inference Speed

We report the inference speed of our method and other learning-based motion
magnification methods, including DMM, STB-VMM, Singh et al ., and Pan et
al . We measure the inference speed at a 720p resolution video using a single
NVIDIA RTX A6000 GPU, which is different from the two NVIDIA TITAN
RTX GPUs used during training. Table S2 summarizes the results. Singh et al .
proposed the D1 and D2 models, which exhibited inference speeds of 8.4 FPS
and 7.2 FPS, respectively. Pan et al . perform motion magnification recursively
if the magnification factor exceeds a certain threshold. In the publicly available
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implementation,recursive magnification is applied twice when the magnification
factor is 16 or higher, which cuts the inference speed in half. STB-VMM adopts
the transformer architecture and shows slow inference speed, as described in the
limitations of its own paper. DMM shows 17.4 FPS, while our method achieves
14.4 FPS. This difference is due to the fact that our implementation is currently
serial, lacking parallel processing of the shape branch and manipulator for each
axis, which causes computational bottlenecks. Implementing parallel processing
for these modules could enhance the inference speed of our method.

C Additional Results on Diverse Scenarios

In this section, to demonstrate the efficacy of our approach, we present results
from diverse scenarios. Our method is capable of both generic and axial motion
magnification. Additionally, we observe that the learned shape representations
are compatible with the temporal filter, similar to DMM [6]. Therefore, our pro-
posed method provides four configurations based on the motion magnification
approach and the application of temporal filters. The following figures demon-
strate results on four distinct configurations: axial motion magnification without
a temporal filter (Fig. S10), generic motion magnification without a temporal
filter (Fig. S11), axial motion magnification with a temporal filter (Fig. S12),
and generic motion magnification with a temporal filter (Fig. S13).
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Fig. S10: Qualitative results of axial magnification. (a) Original: non-magnified.
(b) DMM: magnified results with generic method [6]. We magnify x-axis motions in
air conditioner and y-axis motions in gun, and water with (c) phase-based and (d) our
methods respectively, plotting x-t and y-t slices for each of two different points. In cyan
scenarios, where magnification aligns with the slice’s axis, ours presents fewer artifacts
and clearer axial vibrations than phase-based, which suffers from severe artifacts and
unclear vibrations. In magenta scenarios, when magnification is orthogonal to the slice’s
axis, our method isolates motion effectively, preserving time slices similar to (a) with-
out undesired magnification or artifacts. Conversely, DMM and phase-based struggle,
causing time slices to deviate from the original and resulting in notable artifacts.
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Fig. S11: Qualitative results of generic motion magnification. We compare our
method to the phase-based [10] method, Singh et al . [8], STB-VMM [3], Pan et al . [7],
and DMM [6] in general motion magnification across various scenarios. Our method
demonstrates clear magnified frames and the x-t slices.
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filterTemporal Band FPSMagnification factorSequence Name

Butterworth0.04~0.4Hz12040rotor imbalance
FIR20~30 Hz12015air conditioner

Fig. S12: Axial motion magnification with temporal filter. With the temporal
filters, we magnify the rotor imbalance and air conditioner sequences along the x-axis,
i.e., the axial direction, using (d) Ours and (c) phase-based method [10]. We also show
the result of (b) DMM [6] with the temporal filter as one reference result of generic
motion magnification methods. In cyan scenarios, where magnification aligns with the
slice’s axis, ours shows fewer artifacts and legible axial vibrations. On the other hand,
DMM and phase-based methods suffer from severe artifacts. In addition, DMM shows
unclear vibration in the x-t slice, even with the temporal filter. In magenta scenarios,
when magnification is orthogonal to the slice’s axis, our method effectively isolates the
motions that are not aligned with the magnified direction, preserving time slices similar
to (a) Original without undesired magnification or artifacts. Conversely, DMM in rotor
imbalance sequence and phase-based in air conditioner sequence struggle to disentangle
the unwanted motions, which leads to time slices deviating from the original and the
magnified frames with artifacts and unclear axial vibrations.
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Fig. S13: Generic motion magnification with temporal filter. With temporal
filters, we applied generic motion magnification to the baby, drum, air conditioner,
and wheel sequence using the phase-based method, DMM [6], Jerk-aware [9] and our
methods. Ours and DMM preserve the boundaries of the moving objects while depicting
the motion well. The phase-based method exhibits slight ringing artifacts, and the Jerk-
aware method shows the unstable separation of the motion signals.
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