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This appendix is organized as follows.

– Appendix A justifies the combinatorial challenge and gives proof of the
implemented KL divergence.

– Appendix B presents the architectural design of the proposed diffusion module.
– Appendix C reports more quantitative results.
– Appendix D discusses technical highlights and limitations.
– Appendix E illustrates more qualitative comparisons.

A Experimental and Theoretical Justification

A.1 Justifying the Combinatorial Disagreement

During the training stage, existing OVD works [5,23] conduct the object-image and
object-text alignment in a combinatorial manner, which ignores the disagreement
between the image and text objectives. As illustrated in Fig. 1 Left, they reduce
the L1 distance between object embedding xobj and CLIP image embedding
x̂img, and maximize the cosine similarity between object embedding xobj and
associated CLIP text embedding x̂txt, a.k.a., minimizing the angle between xobj

and x̂txt. We can observe that there will be a significant disagreement between
the object-text and object-image objective if the angle θ between x̂img and x̂txt

is not equal to zero, indicating the non-ignorable inconsistency between x̂txt and
x̂img. Further, to study this phenomenon thoroughly, an experiment is conducted
to justify the inconsistency.

We first randomly sample N = 10, 000 region proposals, and then extract
corresponding CLIP image embedding x̂img ∈ RN×D (D = 512 [21]) by sending
them to the CLIP image encoder, and generate the CLIP text embedding (x̂txt ∈
RN×D) by sending the associated class labels into text encoder. After that, we
conduct statistic analysis in terms of the cosine similarity (∈ [-1,1]) between the
image and the associated text embedding cos(x̂img, x̂txt), and plot the distribution
in Fig. 1 Right. It can be observed that the average cosine similarity between
x̂img and x̂txt is only 0.26 (θ ≈ 75◦), indicating a significant inconsistency
between the image and text embedding. Hence, combinatorically optimizing the
object-image and object-text alignment will conflict with sub-optimal results.
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Fig. 1: Left: Illustration of the optimization disagreement between the object-image
and object-text alignment in existing combinatorial OVD works [5, 23]. This is caused
by the inconsistent embedding of x̂img and x̂txt. Right: The distribution of the cosine
similarity between the CLIP image embedding x̂img and the associated CLIP text
embedding x̂txt of region proposals, justifying the inconsistency between x̂img and x̂txt.

This critical observation can also explain why directly using CLIP in other fine-
grained tasks [3,4], e.g ., detection [4,17] and segmentation [3], has unsatisfactory
performance due to this inconsistency.

A.2 Proof of the Eq. 7 in the Main Paper

Based on the variational inference [9], we establish a probabilistic object space
pϕ(xT |xobj) = N (xT ;µ, σ

2I) with multivariate Gaussian assumption and encour-
age it to satisfy the normally distributed constraint N (0, I) for the following
diffusion process. The detailed proof of the KL divergence [9] is as follows,

KL (pϕ(xT |xobj)∥N (0, I))
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where µ and σ are the mean and s.d. of the object embedding space learned via
Eq. 6 of the main paper.
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Fig. 2: Illustration of the proposed Continual Diffusion Module (CDM). CDM contains
M = 2 basic blocks. Embed(t), xt, and c indicate the time embedding, latent embedding
corrupted by t-step noise, and the guided condition, respectively.

B The Design of the Diffusion Module

Different from the data-level [8] and latent-space [25] diffusion model diffusing
on the RGB image and image features, the proposed Continual Diffusion Module
(CDM) conducts latent diffusion among N high-level embedding ∈ RN×D (D =
512 [21]) with multi-modalities.

Hence, the continual diffusion module (CDM) is designed in an MLP-based
architecture, which contains some essential layers: Layer Norm [1], Swish activa-
tion [22], and linear projection. Specifically, CDM contains M = 2 basic blocks,
as shown in Fig. 2. Each block follows the philosophical designing idea of the
block in UNet-based [10, 26] diffusion model [8] with residual connections and
the fusion of the time embedding and condition knowledge. The optimal number
of used blocks is justified in Table 3.

C Quantitative Analysis

All experiments about object detection are conducted on the COCO benchmark
with a 2× schedule for a fair comparison.

C.1 Extension to Generic Classification

Considering that the proposed object-to-text diffusion process can be used as a
generic classification head with a probabilistic nature, we further extend it on the
ResNet-18 [7] backbone and compare the classification performance with Bayesian
neural networks (BNNs). For the implementation, we only use the Generative
objective (the first term) in Eq. 12 of the main paper since the NMS is not needed
in classification. For the performance comparison, we borrow the benchmark from
the state-of-the-art diffusion-based classification method, CARD [6] (NeurIPS-22),
as shown in Table 1. Our CLIFF outperforms all existing BNN-based classifiers
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Table 1: Comparison of classification accuracy (%) with other Bayesian Neural Networks
(BNNs). The benchmark is from CARD [6]

Model CMV-MF-VI CV-MF-VI MF-VI MC Dropout MAP CARD CLIFF (ours)

Accuracy 86.25± 0.06 79.78± 0.30 77.08± 1.14 83.64± 0.28 84.69± 0.35 90.93± 0.02 95.02± 0.02

by a large margin and surpasses the latest CARD with 4.09% accuracy, pushing
the performance of probabilistic classifiers to a new level. Moreover, our method
is trained end-to-end, different from [6] relying on multi-stage training. Hence,
our method has great potential to be a new learning paradigm parallel to existing
probabilistic calssifier [16].

Table 2: Analysis of the loss weight in the overall optimization objective, including α,
β1, and β2 controlling the loss term of LKL, Lo2i and Lo2t, respectively.

α 0.01 0.1 1.0 2.0 5.0
mAPn 39.1 40.6 41.2 41.3 41.3

β1 1.0 5.0 10.0 15.0 20.0
mAPn 40.5 40.7 40.9 41.3 41.2

β2 0.1 0.5 1.0 2.0 5.0
mAPn 38.2 40.1 41.3 41.0 39.2

C.2 Analysis on the Loss Weight

As shown in Table 2, we analyze each loss weight in the overall loss function (Eq.
7 in the main paper): LCLIFF = Lrpn + Lreg + αLKL + β1Lo2i + β2Lo2t. Lrpn

and Lreg are consistent with the base detector without reweighing in CLIFF
for a fair comparison. The observation and analysis are shown below in three
aspects. First, for the α controlling the probabilistic space, we observe a significant
performance drop when the intensity is insufficient, e.g ., 39.1% with α = 0.01,
and notice a relatively stable performance with a large enough value. Hence, the
Gaussian constraint is critical in generating effective object-centric noise for the
diffusion process, without which the module may suffer from failure with limited
performance gains. Second, for the β1 controlling the object-to-image diffusion, the
performance is relatively stable, favoring the more significant intensity, revealing
our effective design. Third, for the β2 controlling the object-to-text diffusion,
setting a too large (β1 = 5.0 with 40.0%) and small (β1 = 0.1 with 38.2%) value
both give negative effect. The reason may lie in the disharmony relation with the
other optimization objectives in the same role, e.g ., the regression loss.
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Table 3: Analysis of the number of basic blocks in CDM.

M 1 2 3 4 5

mAPn 38.2 41.3 40.2 39.0 38.2

Table 4: Model efficiency comparison among Para: model parameter (M); Inf: inference
time (s/img); TrTime: training time (h); FPS: frame per second; Acc: novel-class
performance (mAPn) with state-of-the-art methods.

Method Para↓ Inf↓ TrTime↓ FPS↑ Acc↑
OCD [23] 42.9 0.1169 26.2 8.5 36.6

BARON [27] 104.8 0.1310 32.7 7.6 41.0
CLIFF (ours) 48.5 0.1289 29.6 7.8 43.2

C.3 Analysis on the Diffusion Module Design

Table 3 illustrates the analysis of the number of the basic blocks (refer to
Fig. 2) used in the proposed CDM. We observe that using a single block gives
significantly bad performance (38.2% mAPn), caused by the limited module
capacity in learning an optimal diffusion process. Moreover, we find that using
too many blocks (M > 3) gives consistent performance decline, which is a similar
phenomenon in extending the stage in Cascade RCNN [2]. The reason may be the
overfitting of the diffusion feature, which memorizes the noise schedule instead of
learning the denoising effect.

C.4 Model Efficiency

We further conduct experiments to compare with the two latest works, BARON [27]
and OCD [23], on the model parameters (Para), inference speed (Inf), and frame
per second (FPS), and show the novel-class performance (Acc), as illustrated
in Table 4. All experiments are conducted with the COCO benchmark setting
(Faster RCNN C4 backbone) for a fair comparison. Compared with the latest
work BARON, CLIFF demonstrates significantly better performance in param-
eter efficiency (48.5 M over 104.8 M), inference efficiency (7.8 FPS over 7.6
FPS), and also gives better model performance (43.2 mAPn over 41.0 mAPn).
While BARON relies on a heavy CLIP text encoder for inference, our CLIFF
only requires an efficient diffusion head with a few diffusion steps (10+3 steps),
resulting in better model efficiency. Compared to OCD, our MLP-based diffusion
module achieves comparable inference speed while yielding significant accuracy
gains, providing clear evidence of the effectiveness and efficiency of CLIFF.



6 Li et al.

Fig. 3: Comparison of the design with diffusion-based image-to-image translation [19,20].

D Discussion

D.1 Comparison with Diffusion-based Image-to-image Translation

This work models a distribution transfer [11–15] among the object, CLIP im-
age, and text embedding with diffusion. Hence, we compare with the existing
diffusion-based image-to-image translation paradigm [19, 20], which also mod-
els a distribution transfer among different sub-spaces, as illustrated in Fig. 3.
Compared with the image translation shown in Fig. 3 (a), the proposed CLIFF
has three technical highlights. First, instead of conducting a diffusion inversion,
we propose a simple but effective mechanism with reparameterization (VLS) to
obtain object-centric noise, which does not need the heavy diffusion model with
good efficiency. Second, unlike the single diffusion process, CLIFF formulates
a continual diffusion among three multi-modal sub-spaces in CDM. Third, in-
stead of diffusing in the data space [8] and feature space [25], CLIFF models a
latent diffusion in the region-based embedding space, enabling the computation
efficiency and effectiveness [25].

D.2 Potential Limitations

The proposed CLIFF framework formulates a novel continual distribution transfer
among the object, CLIP image, and CLIP text embeddings via a latent diffusion
model. While achieving satisfactory performance, it may be limited in two aspects.
First, due to the involved frozen CLIP model, the proposed method is bounded by
the quality of the latent embedding provided by the CLIP model while training
the diffusion process. Second, we replace the discriminative classification head
with a probabilistic diffusion head but preserve the conventional regression head.
Due to the feature-sharing property between the classification and regression, we
assume that the diffusion feature may not be optimal for the vanilla regression
head [24]. Hence, our future work will explore regression-based diffusion to
maintain consistent probabilistic feature usage with classification.
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E Qualitative Comparison

As shown in Fig. 4, we present more qualitative comparisons among (a) the
baseline model [23] trained via extra MAVL proposals [18], (b) the proposed
CLIFF, and (c) the ground-truth labels. For a better and clearer view, only the
novel-class prediction is shown to evaluate the open-vocabulary capacity. It can
be observed that the proposed method gives more accurate novel-class predictions,
especially for the occlusion situations, e.g., the cup, snowboard, elephant, and
the keyboard in the first row. This verifies the effectiveness and great potential
of the proposed new probabilistic paradigm.
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Fig. 4: Qualitative comparison among (a) the baseline [23], (b) our CLIFF, and (c)
ground-truth. We only visualize the novel-class predictions for a clear evaluation of
open-vocabulary generalization.
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