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In the supplementary material, we will first present some additional imple-
mentation details of our proposed method DMiT in Appendix A. More ren-
dering results from both synthetic and real-world datasets as well as the corre-
sponding per-scene evaluation metrics will be provided in Appendix B. More-
over, we will conduct a detailed analysis on our decomposed canonical space
in Appendix C. Finally, more ablation results (Appendix D) as well as further
discussion including failure cases (Appendix E) will be provided respectively.

A Implementation Details

A.1 Deformation Network

To construct the projection from each observation to a shared canonical space,
a deformation network is employed, which is built upon the tiny-cuda-nn frame-
work [16]. The deformation network is configured with a width parameter of
W = 128 and a depth parameter of D = 8. The input of the network consists
of the positions of the sample points obtained using the cone-casting approach
outlined in the main paper, together with their respective timestamps. To ad-
dress the issue of overfitting in the deformation network, we employ a frequency
annealing strategy in the context of positional encoding. This strategy is dis-
cussed in detail in Section 3.3 of the main paper. To provide more clarification,
the D-NeRF and multi-scale D-NeRF experiments have established a maximum
encoding dimension of 10 for space and 6 for time. In the HyperNeRF dataset,
spatial information is represented using a maximum dimension of 10, while time
is represented using a maximum dimension of 8. This annealing strategy is set to
terminate at iteration 10K for synthetic experiments and 80K for real-world ex-
periments. In D-NeRF experiments, an additional one-layer network is employed
for time encoding. This network transforms the time-embedded feature into a
time-aware feature with a dimension of 30. Subsequently, the featurized spatial
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and temporal information is fed into the Multi-Layer Perceptron (MLP) to fore-
cast the spatial displacement of each sampled point. As a result, the relationship
between the observation space and canonical space can be established.

A.2 Tiny MLP in Canonical Space

The shallow MLP responsible for predicting density σ and color c, is imple-
mented using the tiny-cuda-nn library [16] due to its efficient inference capabil-
ities, as mentioned in [7]. The MLP has a width W of 128 and a depth D of
6 layers. The initial two layers are specifically designed to estimate the density
value σ and a geometric feature vector fgeo with a dimension of 15. These lay-
ers take the Tri-Mip encoded feature f as input, as explained in Section 3.2 of
the main paper. The channel dimension of the mipmapped planes M is set to
16, resulting in a concatenated feature dimension of 48. Subsequently, the last
layers of the MLP will predict the associated color c based on the provided ge-
ometric feature fgeo and the encoded view direction d, represented by spherical
harmonics.

A.3 Optimization

The trainable parameters of the whole framework consist of the model weights
Θd derived from the deformation network Φd, the model weights Θc obtained
from the canonical MLP along with parameters of the time encoding network,
and the mipmapped tri-plane features M. The networks in this study are initial-
ized following the approach proposed by [6]. Additionally, the mipmap features
are uniformly initialized within the range from -0.01 to 0.01. To optimize the
static components of the canonical representation, we employ the AdamW op-
timizer [13] with a base learning rate of 1 × 10

−3. For the joint deformation
and geometry refinement (Sec. 3.3 of the main paper), the three mipmap feature
planes undergo bilinear upsampling. Additionally, a distinct AdamW optimizer
is employed to enable a more adaptable schedule. The initial learning rate of this
optimizer is 1×10

−2 (i.e., 10× the learning rate of the static optimizer) for faster
convergence and reconstruction. The scheduling of both optimizers is performed
by the MultiStepLR function from the PyTorch library [20]. To ensure a consis-
tent number of sampled spheres for cone casting, a dynamic batch-size method
is employed, as described in [17]. In our pipeline, the deformable components are
optimized using an AdamW optimizer, which incorporates a warmup step and a
cosine-decayed scheduler.

B Detailed Results

Apart from the results shown in the main paper, we additionally provide more
quantitative and qualitative results to further demonstrate the competitiveness
of our method against other state-of-the-art methods. Detailed per-scene metrics
and visual comparisons of rendering results on each dataset can be found in the
following pages.
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Table 1: Quantitative per-scene results on the test set of the original D-NeRF dataset.
Bold means the best performance and underline means the second best performance.

Methods Train. ↓
PSNR ↑

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 21.76 32.56 38.20 29.49 33.47 31.45 24.90 31.25 30.39
TiNeuVox [3] 28m 24.56 33.61 39.80 30.54 34.45 31.22 27.00 31.82 31.63

K-Planes-hybrid [4] 1h 25.21 31.06 39.31 27.85 32.60 30.15 23.97 32.38 30.32
K-Planes-explicit [4] 1h 25.25 29.63 37.53 27.33 31.66 29.71 23.82 32.08 29.63

Tensor4D [22] 10h 23.21 25.33 30.94 26.09 26.62 25.46 21.74 26.30 25.71
4DGS [27] 40m 24.82 33.50 38.72 31.23 35.60 32.23 26.37 35.96 32.30

D3DGS [30] 35m 24.90 37.42 41.24 37.31 44.25 37.84 41.30 42.56 38.35

SC-GS [8] 1h 25.00 38.11 43.48 36.69 40.28 38.87 32.40 39.43 36.78

RealTime4DGS† [29] - - - - - - - - - 34.09
V4D [5] 6h 25.19 34.04 41.87 29.93 35.14 33.34 26.12 33.32 32.37

HexPlane [2] 1h 24.79 30.95 39.57 27.64 32.87 30.21 23.50 32.05 30.20

Ours 30m 24.72 34.19 43.04 33.03 37.17 35.25 29.16 37.16 34.22

Methods Train. ↓
SSIM ↑

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 0.836 0.974 0.983 0.961 0.980 0.971 0.948 0.971 0.953
TiNeuVox [3] 28m 0.904 0.977 0.992 0.959 0.979 0.966 0.963 0.960 0.963

K-Planes-hybrid [4] 1h 0.947 0.970 0.993 0.947 0.978 0.972 0.947 0.971 0.966
K-Planes-explicit [4] 1h 0.946 0.963 0.989 0.940 0.973 0.970 0.944 0.969 0.962

Tensor4D [22] 10h 0.890 0.948 0.978 0.939 0.959 0.936 0.931 0.940 0.940
4DGS [27] 40m 0.931 0.981 0.993 0.970 0.986 0.980 0.964 0.986 0.974

D3DGS [30] 35m 0.942 0.989 0.995 0.986 0.995 0.993 0.986 0.995 0.985
SC-GS [8] 1h 0.941 0.992 0.996 0.990 0.996 0.993 0.985 0.995 0.986

RealTime4DGS† [29] - - - - - - - - - 0.980
V4D [5] 6h 0.945 0.980 0.996 0.961 0.985 0.980 0.961 0.972 0.973

HexPlane [2] 1h 0.935 0.972 0.993 0.949 0.979 0.970 0.948 0.967 0.964

Ours 30m 0.942 0.986 0.996 0.984 0.992 0.989 0.978 0.990 0.982

Methods Train. ↓
LPIPSv ↓

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 0.167 0.043 0.112 0.121 0.022 0.042 0.071 0.028 0.076
TiNeuVox [3] 28m 0.107 0.041 0.044 0.061 0.032 0.052 0.080 0.048 0.058

K-Planes-hybrid [4] 1h 0.047 0.051 0.035 0.070 0.033 0.036 0.090 0.037 0.050
K-Planes-explicit [4] 1h 0.049 0.062 0.044 0.075 0.042 0.039 0.094 0.040 0.056

Tensor4D [22] 10h 0.132 0.079 0.067 0.093 0.061 0.089 0.118 0.087 0.091
4DGS [27] 40m 0.064 0.028 0.031 0.034 0.020 0.029 0.056 0.021 0.036

D3DGS [30] 35m 0.049 0.018 0.020 0.019 0.010 0.013 0.034 0.007 0.021
SC-GS [8] 1h 0.051 0.012 0.022 0.013 0.007 0.015 0.027 0.008 0.019

RealTime4DGS† [29] - - - - - - - - - -
V4D [5] 6h 0.049 0.031 0.022 0.053 0.023 0.029 0.065 0.036 0.038

HexPlane [2] 1h 0.064 0.046 0.029 0.064 0.032 0.044 0.081 0.043 0.050

Ours 30m 0.049 0.022 0.023 0.019 0.013 0.018 0.038 0.012 0.024

Methods Train. ↓
LPIPSa ↓

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 0.060 0.029 0.027 0.027 0.013 0.024 0.041 0.016 0.030
TiNeuVox [3] 28m 0.068 0.031 0.014 0.042 0.021 0.041 0.059 0.039 0.039

K-Planes-hybrid [4] 1h 0.031 0.037 0.013 0.049 0.021 0.030 0.072 0.027 0.035
K-Planes-explicit [4] 1h 0.032 0.049 0.020 0.057 0.030 0.034 0.075 0.030 0.041

Tensor4D [22] 10h 0.114 0.093 0.046 0.101 0.063 0.101 0.149 0.090 0.095
4DGS [27] 40m 0.042 0.018 0.012 0.022 0.011 0.020 0.036 0.011 0.021

D3DGS [30] 35m 0.033 0.012 0.004 0.011 0.005 0.006 0.019 0.003 0.012
SC-GS [8] 1h 0.034 0.007 0.004 0.007 0.003 0.008 0.014 0.004 0.010

RealTime4DGS† [29] - - - - - - - - - -
V4D [5] 6h 0.032 0.019 0.005 0.034 0.013 0.021 0.045 0.024 0.024

HexPlane [2] 1h 0.044 0.032 0.009 0.049 0.021 0.035 0.066 0.035 0.036

Ours 30m 0.032 0.015 0.004 0.012 0.007 0.013 0.027 0.006 0.014
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Single-scale D-NeRF Dataset We conducted an evaluation of several ap-
proaches using three metrics: Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM) [25], and Learned Perceptual Image Patch Similarity
(LPIPS) [32]. The results are presented in Tab. 1. All methods are trained with
full-resolution images (800 × 800) from the training set and rendered at full
resolution for both quantitative evaluation and qualitative comparisons. The
cost of training time is achieved from our experiments on one NVIDIA GeForce
RTX 3090 GPU. For method marked with “†” [29], we directly use the met-
rics from their paper. In the single-scale dataset, though anti-aliasing feature
is not a dominant factor of the final rendering results, our method consistently
surpasses all NeRF-based baseline methods [2–5,21,22] across all measured crite-
ria, thanks to its ability to reconstruct high-quality details. However, concurrent
works [8, 27, 29, 30] utilized 3DGS [9] along with its differentiable rasterizer,
achieving efficient dynamic scene representation. Our proposed method outper-
forms [27, 29], but not [8, 30]. Though these two works have greatly enhanced
the rendering quality on the monocular single-scale synthetic dataset, they suffer
from aliasing artifacts on the multi-scale dataset captured at various distances,
as mentioned in [9] . Please refer to the section below for comparisons on the
multi-scale D-NeRF dataset. Although TiNeuVox [3] requires slightly less train-
ing time compared to our method, our proposed method (DMiT) demonstrates a
significantly faster inference time, almost 7× faster than TiNeuVox. This speed
improvement is achieved while maintaining a higher rendering quality, which
may be attributed to the efficiency and compactness of our deformable and
mipmapped tri-plane representation. While achieving impressive efficiency as a
NeRF-based framework, the rendering speed is not in real-time like 3DGS-based
methods [8, 27,29,30].

Multi-scale D-NeRF Dataset To demonstrate the effectiveness of our method
for anti-aliasing, we list per-scene results in Tab. 2 by averaging over four reso-
lutions. In addition, we present the comparison of rendering results of both full-
resolution and low-resolution with baseline methods [3, 4, 21, 22, 27, 30]. These
comparisons are illustrated in Fig. 1 and Fig. 2, where K-Planes-H denotes the
hybrid architecture of K-Planes [4] and K-Planes-E denotes the explicit archi-
tecture. We also provide a low-resolution rendering comparison labeled with
the corresponding PSNR/SSIM metrics in Fig. 3. The proposed methodology
accurately depicts dynamic scenes with enhanced level of details at varying dis-
tances, closely approximating the ground truth (GT). Other baseline methods
either lose fine-grained details or suffer from noticeable artifacts. 3DGS-based
methods [27, 30] generate blurry images when rendering high-resolution images
(corresponding to small capture distances) and dilated objects when rendering
low-resolution images (corresponding to large capture distances) as shown in
Fig. 1 and Fig. 2. These artifacts have been thoroughly discussed in [31]. Our
supplementary video provides a more comprehensive observation of the improved
visual quality achieved by the utilization of anti-aliasing techniques in dynamic
scene rendering.
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Table 2: Quantitative per-scene results on the test set of the multi-scale D-NeRF
dataset. Bold means the best performance and underline means the second best per-
formance.

Methods Train. ↓
PSNR ↑

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 23.46 30.18 28.75 29.69 33.36 28.39 23.79 31.99 28.70
TiNeuVox [3] 28m 25.14 33.27 36.74 30.94 34.11 32.12 27.77 32.74 31.60

K-Planes-hybrid [4] 1h 24.95 26.47 31.32 27.02 29.24 29.22 21.90 30.69 27.60
K-Planes-explicit [4] 1h 25.04 25.90 30.53 26.52 28.98 28.69 21.60 30.54 27.23

Tensor4D [22] 10h 23.21 25.38 29.32 25.78 26.14 26.34 21.81 25.95 25.49
4DGS [27] 40m 25.11 32.73 36.16 29.14 32.27 30.43 26.82 31.29 30.49

D3DGS [30] 35m 25.67 34.91 38.54 31.34 34.57 34.28 29.14 32.96 32.68
HexPlane [2] 1h 25.04 27.58 33.72 27.11 30.85 29.76 22.84 31.54 28.56

V4D [5] 6h 25.20 33.13 36.36 29.87 34.19 32.88 26.59 33.45 31.46
SC-GS [8] 1h 23.16 35.41 38.47 31.79 34.46 25.94 29.26 32.83 31.42

RealTime4DGS [29] - 24.34 30.95 33.84 27.98 32.20 29.31 23.84 31.80 29.28

Ours 30m 25.92 35.30 42.63 34.29 38.17 37.47 30.04 38.37 35.27

Methods Train. ↓
SSIM ↑

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 0.867 0.961 0.958 0.946 0.972 0.953 0.935 0.962 0.944
TiNeuVox [3] 28m 0.920 0.981 0.970 0.972 0.985 0.975 0.967 0.977 0.968

K-Planes-hybrid [4] 1h 0.935 0.947 0.959 0.949 0.970 0.962 0.918 0.974 0.952
K-Planes-explicit [4] 1h 0.934 0.937 0.955 0.942 0.966 0.959 0.912 0.973 0.947

Tensor4D [22] 10h 0.876 0.935 0.947 0.939 0.954 0.932 0.924 0.942 0.931
4DGS [27] 40m 0.915 0.980 0.976 0.964 0.981 0.971 0.963 0.974 0.966

D3DGS [30] 35m 0.935 0.988 0.988 0.978 0.989 0.987 0.975 0.984 0.978
HexPlane [2] 1h 0.931 0.951 0.963 0.951 0.978 0.966 0.935 0.976 0.957

V4D [5] 6h 0.936 0.982 0.969 0.970 0.988 0.979 0.963 0.983 0.971
SC-GS [8] 1h 0.915 0.989 0.988 0.980 0.989 0.943 0.976 0.984 0.970

RealTime4DGS [29] - 0.896 0.972 0.977 0.958 0.982 0.966 0.939 0.978 0.958

Ours 30m 0.948 0.988 0.995 0.988 0.993 0.992 0.979 0.993 0.985

Methods Train. ↓
LPIPSv ↓

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 0.095 0.060 0.066 0.063 0.033 0.049 0.085 0.041 0.062
TiNeuVox [3] 28m 0.077 0.030 0.054 0.044 0.024 0.044 0.063 0.033 0.046

K-Planes-hybrid [4] 1h 0.056 0.059 0.057 0.069 0.031 0.049 0.119 0.031 0.059
K-Planes-explicit [4] 1h 0.058 0.086 0.062 0.076 0.040 0.056 0.123 0.033 0.067

Tensor4D [22] 10h 0.105 0.076 0.078 0.076 0.050 0.077 0.102 0.069 0.079
4DGS [27] 40m 0.078 0.030 0.045 0.042 0.024 0.037 0.051 0.034 0.042

D3DGS [30] 35m 0.051 0.019 0.029 0.028 0.015 0.020 0.038 0.022 0.028
HexPlane [2] 1h 0.059 0.048 0.052 0.057 0.025 0.043 0.081 0.033 0.050

V4D [5] 6h 0.054 0.025 0.049 0.042 0.019 0.032 0.056 0.027 0.038
SC-GS [8] 1h 0.082 0.018 0.028 0.027 0.015 0.068 0.037 0.024 0.037

RealTime4DGS [29] - 0.102 0.042 0.045 0.053 0.022 0.041 0.080 0.028 0.052

Ours 30m 0.036 0.019 0.016 0.016 0.010 0.010 0.034 0.008 0.019

Methods Train. ↓
LPIPSv ↓

lego jumpingjacks bouncingballs hook standup trex hellwarrior mutant Average

D-NeRF [21] 1d 0.065 0.044 0.047 0.050 0.031 0.042 0.058 0.035 0.047
TiNeuVox [3] 28m 0.048 0.020 0.022 0.023 0.014 0.031 0.035 0.021 0.027

K-Planes-hybrid [4] 1h 0.043 0.047 0.034 0.038 0.021 0.039 0.076 0.020 0.040
K-Planes-explicit [4] 1h 0.044 0.068 0.037 0.043 0.027 0.044 0.080 0.021 0.045

Tensor4D [22] 10h 0.087 0.082 0.051 0.069 0.052 0.080 0.111 0.063 0.074
4DGS [27] 40m 0.057 0.033 0.026 0.047 0.028 0.037 0.056 0.036 0.040

D3DGS [30] 35m 0.036 0.021 0.015 0.029 0.017 0.017 0.038 0.022 0.024
HexPlane [2] 1h 0.043 0.036 0.023 0.033 0.017 0.034 0.053 0.021 0.033

V4D [5] 6h 0.039 0.016 0.022 0.023 0.011 0.025 0.030 0.014 0.023
SC-GS [8] 1h 0.070 0.019 0.014 0.028 0.018 0.073 0.041 0.024 0.036

RealTime4DGS [29] - 0.088 0.046 0.030 0.059 0.025 0.039 0.083 0.026 0.049

Ours 30m 0.025 0.013 0.004 0.009 0.005 0.007 0.020 0.004 0.011
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Fig. 1: Qualitative comparison of reconstruction results between our method and base-
line methods on the multi-scale D-NeRF dataset.
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Fig. 2: Qualitative comparison of low-resolution rendering results between our method
and baseline methods on the multi-scale D-NeRF dataset for visualization of the anti-
aliasing effects.



10 J. Yang et al.

GT Ours TiNeuVox Tensor4D D-NeRF

Ju
m
p
in
g
ja
ck
s

B
o
u
n
ci
n
g
b
al
ls 36.64/0.992

41.97/0.994 32.81/0.925 27.76/0.894 29.75/0.965

30.98/0.96725.12/0.92032.65/0.983

Kplanes-H 4DGS D3DGS

26.98/0.941 33.67/0.985 34.46/0. 984

30.13/0.916 35.87/0.974 32.65/0.985

Fig. 3: Qualitative comparison of low-resolution rendering results between our method
and baseline methods on the multi-scale D-NeRF dataset with PSNR/SSIM metrics
shown at the bottom.

HyperNeRF Dataset Per-scene evaluation metrics under PSNR, LPIPS [32]
and MS-SSIM [26] are provided in Tab. 3 with additional results of several highly
related methods on this dataset for detailed comparisons. Metrics marked with
“†” are adopted from the corresponding paper. The quantitative experiments
were conducted following the procedures in [3,19], with training and rendering
performed at a resolution of 960x540 pixels, which is half of the standard 1080p
resolution. In addition, it should be noted that the images used for qualitative
comparisons undergo training and rendering processes at the same resolution as
those used in quantitative tests. This is due to limitation of our experimental
device, which has a memory capacity of 24GB, preventing the successful loading
of full-resolution images for testing.

Despite requiring 32× less training time compared to HyperNeRF [19], our
method produces comparable high-quality rendering results with fine details
and glossy appearance well represented, as shown in Fig. 6 of the main paper.
In contrast, TiNeuvox [3] tends to provide blurry results and have limitations
in accurately restoring intricate textual patterns with high-frequency compo-
nents, despite its somewhat faster convergence rate. When compared to synthetic
scenes like the D-NeRF dataset, inaccuracies in camera parameters provided by
the HyperNeRF dataset may negatively impact reconstruction quality. However,
the experiments also demonstrate the effectiveness of our method in handling
scenes with inaccurate camera registration. Furthermore, previous works [3, 19]
have shown that metrics such as PSNR and MS-SSIM may not accurately re-
flect the perceptual quality of images. Conversely, LPIPS has been found to
align closely with human perception. Our approach demonstrates superior per-
formance in terms of average PSNR while being comparable to HyperNeRF [19]
and Nerfies [18] using the LPIPS metric with ‘ALEX’ as the underlying back-
bone. Additionally, our DMiT requires much less training time and enables
faster inference.

NeRF-DS Dataset We further evaluate our method on monocular real-world
dataset NeRF-DS [28] , which consists of common dynamic specular scenes.
The detailed per-scene metrics PSNR, LPIPS [32] and SSIM [25] against several
SOTA baselines [3, 8, 27, 28, 30] are provided in Tab. 4. More qualitative ren-
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Fig. 4: Qualitative comparison of time interpolation and novel view synthesis results
between our method and baseline methods on three scenes from the HyperNeRF
dataset.
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Table 3: Quantitative per-scene results on the test set of 5 scenes from the HyperN-
eRF dataset. Bold means the best performance and underline means the second best
performance.

Methods Train. ↓
PSNR ↑

torchocolate hand cut-lemon 3dprinter chicken Average

HyperNeRF† [19] ∼32h 28.00 30.07 31.80 20.00 26.90 27.35

Neural Volumes† [12] hours 24.60 29.30 28.80 16.20 17.60 23.30

NSFF† [11] hours 22.30 24.90 28.00 27.70 26.90 25.96

Nerfies† [18] hours 27.80 29.90 30.80 20.60 26.70 27.16
4DGS [27] 3h 27.61 27.72 29.69 21.85 28.36 27.05

D3DGS [30] 2.5h 27.52 29.09 28.10 20.35 22.78 25.57
TiNeuVox [3] 40m 26.85 27.41 28.49 22.77 28.37 26.78

V4D [5] 8h 26.26 27.60 29.41 23.34 28.48 27.02

NeRFPlayer† [23] - - - - 22.90 26.30 24.60

Ours 1.5h 26.34 29.62 30.94 22.21 29.88 27.80

Methods Train. ↓
SSIM ↑

torchocolate hand cut-lemon 3dprinter chicken Average

HyperNeRF† [19] ∼32h 0.962 0.950 0.956 0.821 0.948 0.927

Neural Volumes† [12] hours 0.917 0.912 0.951 0.665 0.615 0.812

NSFF† [11] hours 0.883 0.797 0.904 0.947 0.944 0.895

Nerfies† [18] hours 0.959 0.940 0.946 0.830 0.943 0.924
4DGS [27] 3h 0.957 0.877 0.927 0.808 0.929 0.900

D3DGS [30] 2.5h 0.959 0.935 0.917 0.759 0.727 0.859
TiNeuVox [3] 40m 0.933 0.856 0.887 0.820 0.916 0.882

V4D [5] 8h 0.933 0.875 0.911 0.840 0.930 0.898

NeRFPlayer† [23] - - - - 0.810 0.905 0.858

Ours 1.5h 0.953 0.943 0.958 0.823 0.954 0.926

Methods Train. ↓
LPIPSa ↓

torchocolate hand cut-lemon 3dprinter chicken Average

HyperNeRF† [19] ∼32h 0.172 0.150 0.210 0.111 0.079 0.144

Neural Volumes† [12] hours 0.189 0.213 0.190 0.330 0.336 0.252

NSFF† [11] hours 0.253 0.329 0.238 0.125 0.106 0.210

Nerfies† [18] hours 0.169 0.171 0.223 0.108 0.078 0.150
4DGS [27] 3h 0.199 0.299 0.337 0.271 0.226 0.266

D3DGS [30] 2.5h 0.162 0.163 0.310 0.290 0.194 0.224
TiNeuVox [3] 40m 0.306 0.417 0.463 0.338 0.347 0.374

V4D [5] 8h 0.291 0.334 0.378 0.312 0.247 0.312

NeRFPlayer† [23] - - - - - - -

Ours 1.5h 0.186 0.139 0.146 0.177 0.115 0.153

GT Ours NeRF-DS 4DGS TiNeuVox

as
b
el
l

p
la
te

p
re
ss

D3DGS

Fig. 5: Qualitative comparison of reconstruction results between our method and base-
line methods on the NeRF-DS dataset.
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Table 4: Quantitative per-scene results on the test set of all scenes from NeRF-DS
dataset. Bold means the best performance and underline means the second best per-
formance.

Methods Train. ↓
PSNR ↑

as basic bell cup plate press sieve Average

TiNeuVox [3] 40m 21.97 20.79 22.60 20.31 20.46 24.88 21.62 21.80
NeRF-DS [28] 8h 25.03 19.82 23.31 25.04 20.68 25.61 25.78 23.61

4DGS [27] 3h 25.27 19.26 22.78 20.29 17.90 23.92 25.27 22.10
D3DGS [30] 2h 25.98 19.61 25.35 24.47 20.16 25.21 25.39 23.74
SC-GS [8] 3h 26.20 19.60 25.10 24.50 20.20 26.60 26.00 24.03

Ours 1h 26.47 20.58 25.49 25.35 20.76 26.56 26.13 24.48

Methods Train. ↓
SSIM ↑

as basic bell cup plate press sieve Average

TiNeuVox [3] 40m 0.835 0.818 0.814 0.825 0.798 0.862 0.826 0.825
NeRF-DS [28] 8h 0.883 0.817 0.817 0.875 0.813 0.875 0.888 0.853

4DGS [27] 3h 0.853 0.763 0.808 0.709 0.733 0.803 0.854 0.789
D3DGS [30] 2h 0.874 0.782 0.844 0.880 0.802 0.857 0.869 0.844
SC-GS [8] 3h - - - - - - - -

Ours 1h 0.897 0.814 0.857 0.885 0.821 0.898 0.889 0.866

Methods Train. ↓
LPIPSa ↓

as basic bell cup plate press sieve Average

TiNeuVox [3] 40m 0.293 0.138 0.167 0.250 0.221 0.178 0.241 0.213
NeRF-DS [28] 8h 0.128 0.126 0.134 0.118 0.149 0.143 0.099 0.128

4DGS [27] 3h 0.153 0.155 0.142 0.402 0.299 0.182 0.144 0.207
D3DGS [30] 2h 0.127 0.131 0.109 0.112 0.181 0.130 0.100 0.127
SC-GS [8] 3h - - - - - - - -

Ours 1h 0.104 0.127 0.101 0.106 0.152 0.118 0.100 0.115

dering results are shown in Fig. 5. All methods are trained using full-resolution
RGB images with their released official implementation. Metrics of SC-GS [8]
are sourced from their paper, where SSIM/LPIPS(ALEX) metrics are not pro-
vided. Note that NeRF-DS [28] also utilized GT front masks as additional inputs.
Our proposed method restores more intricate details of specular appearance and
renders with fewer artifacts while maintaining more stable deformation across
frames.

PlenopticVideo Dataset The PlenopticVideo dataset [10] is a multi-view
dataset captured using 21 cameras simultaneously. The central camera is used
for testing, while 18 selected cameras are used for training. Following [10], we
evaluate our methods using the first 300 frames downscaled by a factor of 2.
PSNR, MS-SSIM [26] and LPIPS [32] are chosen as evaluation criteria. Please
refer to Tab. 5 for per-scene metrics of all scenes excluding coffee martini. Due
to our machine’s limited CPU memory, we did not evaluate all baseline methods
ourselves except for HyperReel [1], 4DGS [27] and RealTime4DGS [29](marked
with “*”). Note that NeRFPlayer [23] only reported metrics on SSIM [25] instead
of MS-SSIM [26]. Our proposed method is trained every 60 frames due to insuffi-
cient CPU memory for loading all training data simultaneously. As demonstrated
in [1], the reported SSIM may be higher than expected due to inconsistent eval-
uation libraries or inappropriate parameter settings. Despite SSIM metrics being
less reliable, our proposed method still outperforms other baselines in PSNR and
MS-SSIM. Though [10] has a lower LPIPS score than our method, it requires
approximately 1344 GPU hours to train one full model, while our methods only
need 1.5 hours for each training on 60 frames. In addition, more rendering results
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Table 5: Quantitative per-scene results on the test set of the PlenopticVideo dataset.
Bold means the best performance and underline means the second best performance.

Methods
PSNR ↑

cook spinach cut roasted beef flame salmon flame steak sear steak Average

K-Planes-E [4] 32.19 31.93 28.71 31.80 31.89 31.30
LLFF [15] - - 23.24 - - 23.24

DyNeRF [10] - - 29.58 - - 29.58
MixVoxels-L [24] 31.61 31.30 29.92 31.21 31.43 31.09

HexPlane [2] 31.86 32.71 29.26 31.92 32.09 31.57
NeRFPlayer [23] 30.58 29.35 31.65 31.93 29.13 30.53
HyperReel* [1] 31.98 32.88 28.37 32.12 32.34 31.54

4DGS* [27] 31.42 32.04 26.03 30.24 28.85 29.71
RealTime4DGS* [29] 32.58 32.69 29.38 32.02 31.99 31.73

Ours 32.24 32.52 30.05 31.82 32.02 31.73

Methods
SSIM ↑

cook spinach cut roasted beef flame salmon flame steak sear steak Average

K-Planes-E [4] 0.968 0.965 0.942 0.970 0.971 0.963
LLFF [15] - - 0.848 - - 0.848

DyNeRF [10] - - 0.961 - - 0.961
MixVoxels-L [24] 0.965 0.965 0.945 0.970 0.971 0.963

HexPlane [2] 0.966 0.970 0.960 0.976 0.972 0.969
NeRFPlayer [23] 0.929 0.908 0.940 0.950 0.908 0.927
HyperReel* [1] 0.965 0.964 0.945 0.974 0.976 0.965

4DGS* [27] 0.967 0.968 0.919 0.971 0.962 0.957
RealTime4DGS* [29] 0.972 0.975 0.961 0.970 0.970 0.969

Ours 0.975 0.975 0.966 0.977 0.978 0.974

Methods
LPIPSa ↓

cook spinach cut roasted beef flame salmon flame steak sear steak Average

K-Planes-E [4] - - - - - -
LLFF [15] - - 0.235 - - 0.235

DyNeRF [10] - - 0.083 - - 0.083

MixVoxels-L [24] 0.122 0.088 0.116 0.088 0.080 0.099
HexPlane [2] 0.097 0.094 0.097 0.081 0.079 0.090

NeRFPlayer [23] 0.113 0.144 0.098 0.088 0.138 0.116
HyperReel* [1] 0.104 0.098 0.151 0.093 0.089 0.107

4DGS* [27] 0.110 0.111 0.160 0.097 0.109 0.117
RealTime4DGS* [29] 0.099 0.097 0.084 0.110 0.115 0.101

Ours 0.090 0.089 0.094 0.080 0.078 0.086
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Fig. 6: Qualitative comparison of reconstruction results between our method and base-
line methods on the PlenopticVideo dataset.
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(a) canonical geometry (b) mixing of all time steps (c) comparison

Fig. 7: Comparisons between the learned canonical geometry and mixing of renderings
across all training time steps of T-Rex scene from D-NeRF.

(a) cup (b) cook spinach

Fig. 8: Canonical geometry visualization of one real-world scene cup from
NeRF-DS [28](Fig. 8a) and one real-world scene cook spinach from Plenop-
ticVideo [10](Fig. 8b).

and comparisons are provided in Fig. 6. Our proposed method can recover more
fine-grained details and generate rendering results closest to the ground truth.

C Canonical Space Analysis

As shown in Fig. 4(b) in the main paper, the learned canonical geometry of our
proposed method outperforms baseline methods for two main reasons. Firstly,
the powerful encoding scheme from Tri-MipRF [7] effectively generates intricate
and highly detailed geometry, as demonstrated in Fig. 4 of their main paper.
Secondly, our effective joint refinement strategy enables the separation of mo-
tion and geometry, resulting in a valid and detailed canonical space and better
deformation results. In contrast, D-NeRF [21] produces poor canonical results
even with an explicitly defined canonical frame. Since this frame only constitutes
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(a)Ours (b)Ours w/o joint-refinement

Fig. 9: Ablation of joint refinement. Zoom in for details.

a small portion of the training set, D-NeRF struggles to represent canonical ge-
ometry aligned with the chosen canonical frame. Please refer to Fig. 4(b) in the
main paper for the comparison of canonical spaces between the two methods.

To gain a deeper comprehension of the learned canonical space, we fused it
with the novel-view-synthesis results of the T-Rex scene from D-NeRF at all
training timestamps, while maintaining a consistent camera position. Please re-
fer to Fig. 7 for visualizations comparing the canonical geometry to the mixed
renderings across all time steps. The learned canonical space does not repre-
sent a specific time step in the training set but rather serves as an “average”
of all time steps. This averaged canonical space enables effective deformation
convergence and the decoupling of motion and geometry. Additionally, we pro-
vide more canonical geometry visualization results of real-world scenes in Fig. 8.
Note that the geometry results from PlenopticVideo seem squashed due to the
application of NDC contraction, as done in previous works [1, 2, 4]. The quality
of geometry reconstruction is not the main contribution of our work, as it is not
built upon SDF. The primary purpose of the canonical geometry visualizations
is to verify the efficacy of the suggested method in separating dynamics from
static geometry. As shown in Fig. 8, floaters or specular appearance severely
affect the quality of canonical geometry. We leaver this for the future work to
achieve higher-quality canonical geometry reconstruction of dynamic scenes with
specular objects or objects undergoing complex non-rigid motions.

D Additional Ablation results

We further provide visualized ablation results to evaluate the warm-up stage and
the joint-refinement strategy introduced in Sec. 3.3 of the main paper. We present
reconstruction results of T-Rex from D-NeRF in Fig. 9 demonstrate the impact of
the proposed joint-refinement strategy. Results without joint refinement exhibit
noticeable fuzzy artifacts and deformation inaccuracies, as highlighted in red
boxes. Note that the warm-up stage of deformation does not aim to resolve the
convergence gap between deformation and geometry. The progressive resolution
growth of tri-miplanes has already applied implicit regularization to address the
fast convergence of canonical space. The warm-up stage is designed to prevent
instability in deformation during the upsampling of tri-miplanes, which may
otherwise lead to inferior renderings, as shown in Fig. 10.
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(a) Ours w/o deformation warm-up (b) Ours w/ deformation warm-up (c) GT close-up

Fig. 10: Comparisons between hellwarrior scene from D-NeRF using the proposed
methods without deformation warm-up stage(a), with deformation warm-up stage(b)
and zoom-in of GT(c).

Ours GT

Fig. 11: Qualitative comparison between our rendering result and GT of scene flame

steak from the PlenopticVideo dataset [10] with zoom-in comparison of the wall. Our
proposed method generate a darker wall color compared to the GT.

E Discussions

Overfitting issues compared to multiplane methods. Methods like Hex-
plane [2] and K-Planes [4] also suffer from overfitting but for different rea-
sons. These methods are based on time-conditioned representations rather than
deformation-based approaches utilizing a canonical space, thus avoiding the cou-
pling issue between deformation networks and canonical space geometry. How-
ever, the time-conditioned multi-plane features and functions can still overfit
the input viewpoints and timesteps. Despite employing Total Variational loss
regularization and a coarse-to-fine strategy to mitigate this, overfitting artifacts
persist, as shown in Appendix B and the failure cases of Hexplane in their sup-
plementary material.

Failure cases. As discussed in Sec. 5 of the main paper, our proposed method
may produce false color when using unconstrained input. Please refer to Fig. 11
for a comparison between our rendering results and the GT images of the flame

steak scene from the PlenopticVideo dataset [10]. The color of the white wall in
our renderings appears slightly darker than in the GT images. This discrepancy is
primarily due to non-uniform lighting conditions across different camera views
in this dataset, leading to inconsistent wall colors in the training images. To
address issues caused by unconstrained training data, it might be beneficial to
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assign an appearance latent code as in [14] or introduce an explicit illumination
model.
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