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Abstract. Neural Radiance Fields (NeRF) have achieved remarkable
progress on dynamic scenes with deformable objects. Nonetheless, most
previous works required multi-view inputs or long training time (several
hours), making it hard to apply them for real-world scenarios. Recent
works dedicated to addressing blurry artifacts may fail to predict stable
and accurate deformation while keeping high-frequency details when ren-
dering at various resolutions. To this end, we introduce a novel framework
DMiT (Deformable Mipmapped Tri-Plane) that adopts the mipmaps
to render dynamic scenes at various resolutions from novel views. With
the help of hierarchical mipmapped tri-planes, we incorporate an MLP
to effectively predict a mapping between the observation space and the
canonical space, enabling not only high-fidelity dynamic scene rendering
but also high-performance training and inference. Moreover, a training
scheme for joint geometry and deformation refinement is designed for
canonical regularization to reconstruct high-quality geometries. Exten-
sive experiments on both synthetic and real dynamic scenes demonstrate
the efficacy and efficiency of our method.

Keywords: Neural radiance fields · Mipmapping · Dynamic scene
reconstruction

1 Introduction

High-quality 3D reconstruction and novel view synthesis from 2D images play a
significant role in computer vision and computer graphics [11,46]. While a grow-
ing body of research works focuses on static scenes, dynamic scenes with objects
under different types of movements are also ubiquitous in practice. However, it
is extremely challenging to accurately reconstruct dynamic scenes from images,
since the observed complex dynamics can easily introduce uncertainty and ambi-
guity in motion. To overcome such difficulties, previous approaches often involve
capture systems equipped with multiple calibrated cameras [21] or depth sensors
[3] to provide more priors and regularizations.
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Fig. 1: We propose a novel framework DMiT that can generate high-fidelity results for
time interpolation (top row) and novel view synthesis (bottom row) tasks on dynamic
scenes from both synthetic and real-world datasets. We also show the restored canonical
geometry with faithful details on the left as well as the comparison with TiNeuVox [15]
to demonstrate the effectiveness of our work.

In recent years, the rapid development of 3D reconstruction has been wit-
nessed due to the advance of neural rendering, particularly Neural Radiance
Fields (NeRF) [38]. It has been proved that neural implicit representation can
largely benefit high-fidelity reconstruction of static scenes and 3D generation
with geometry and appearance details [6, 50, 54, 68]. For dynamic scenes, D-
NeRF [45] incorporates a deformation field to map dynamic points sampled
from an observation space to their static counterparts in the canonical space.
Another approach simply formulates dynamics using a NeRF conditioned on
time embedding [31,61]. Nevertheless, both approaches suffer from slow conver-
gence and loss of geometry/appearance details especially under varying viewing
distances. This can be attributed to either the deformation network being prone
to overfitting or the time-conditioned NeRF having limited correspondence be-
tween frames. Recently, 3D Gaussian Splatting [25] utilized explicit Gaussian
kernels in 3D space along with differentiable rasterization, achieving real-time
rendering speed while preserving high-quality rendering results. Based on this
prominent work, [23,33,58,63,64] excelled at common dynamic datasets in speed
against time-consuming queries of MLPs in NeRF-based methods. Nonetheless,
3DGS and other NeRF-based works combined with explicit architecture [8, 16]
also suffer from aliasing artifacts, which remain unsolved in the dynamic setting.

To address the above challenges, we introduce a novel NeRF-based frame-
work, called DMiT, to model dynamic scenes based on a Deformable Mipmapped
Tri-Plane (see Fig. 1) which exploits dynamic information across scales and
distances. First, we employ the ‘canonical+deformation’ paradigm to represent
dynamic scenes, benefiting from the ease of dynamics modeled with a formal
canonical geometry. Moreover, to achieve efficient anti-aliased rendering, we in-
troduce mipmaps [6] into compact tri-plane representation [9]. Specifically, we
build a hierarchy of tri-planes with different resolutions via pre-filtering oper-
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ations. Thanks to the compactness and efficiency of the Tri-Mip encoding, our
method achieves much faster speed in training and inference. Additionally, the
mipmap techniques and area sampling strategy play an important role in en-
hancing the details of rendered dynamic scenes. To demonstrate the efficiency
and effectiveness of our developed method, extensive experiments are conducted
on both synthetic and real-world datasets. The results have shown the compet-
itiveness of the proposed DMiT against previous SOTA methods quantitatively
and qualitatively. Apart from commonly used single-scale datasets, experiments
on multi-scale dynamic datasets also proved the effectiveness of our method.

To summarize, our main contributions are: 1) We propose a novel Deformable
Mipmapped Tri-Plane representation, called DMiT, to reduce the blurriness and
aliasing effects in dynamic scenes, which organizes the tri-planes with different
resolutions in a hierarchical fashion. 2) We propose a joint geometry and de-
formation refinement procedure to improve the fidelity of deformable canonical
space that incorporates our new representation, achieving a better decomposition
of geometry and motion. 3) Our method has achieved competitive reconstruc-
tion and rendering quality compared to SOTA methods both quantitatively and
qualitatively on extensive datasets of both synthetic and real-world scenes.

2 Related Work

Dynamic Neural Radiance Fields. NeRF and its variants [6, 52, 65] have
demonstrated the efficacy of modeling 3D static scenes from 2D photographs.
A number of studies [41, 42, 45, 51] have sought to extend NeRF for dynamic
scenes. The topic that has garnered the most interest is the monocular cap-
ture and reconstruction of dynamic scenes. This often encounters challenges in
capturing complete scene motion due to occlusion and limited capture time,
leading to inaccurate reconstruction and noticeable artifacts in novel view syn-
thesis. Consequently, this often results in inaccurate reconstruction and obvious
artifacts for the novel view synthesis task. To enhance the accuracy of dynamic
reconstruction with finer details, numerous studies have incorporated additional
prior knowledge like previous image-based 3D modeling techniques [67], includ-
ing depth information [34, 61], optical flow estimation [5, 14], and 2D convolu-
tional neural network (CNN) priors [26,44]. Two distinct formulations of dynam-
ics are proposed to accurately reconstruct dynamic scenes or non-rigid deforma-
tion scenes without requiring additional information. One is to decouple time
from the original (stationary) NeRF and incorporate dynamics by using a com-
mon canonical space across all frames, as initially introduced by D-NeRF [45].
Several recent works [41, 42, 51], have proposed extensions to address the is-
sue of deformation by introducing regulations and conditions, or by elevating
the dimensional space to capture topological changes. Other attempts modeled
dynamics through explicit representations, such as voxel [19,32] and space-time
tri-planes [48]. Nevertheless, deformation-based approaches typically employ two
separate networks for geometry and deformation, leading to overfitting artifacts
on dynamic scenes,e.g., high-frequency floaters or fused canonical geometry with
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deformed objects at different times (see Fig. 3). An alternative approach avoids
treating time as a distinct dimension and instead includes temporal informa-
tion directly into the vanilla NeRF. Some works [8, 15, 16] combined explicit
representation with implicit NeRF, while others focused on efficient sampling
strategy [4] or the decomposition of spatial-temporal fields [49]. The limitations
of time-conditioned NeRFs lie in their limited capacity to capture high-frequency
details, as they rely on a single neural network which often misses correlations
across consecutive frames.

Recently, 3D Gaussian Splatting [25] has gained attention for its real-time
rendering speed and high-fidelity rendering quality [60]. Several works have ex-
tended this technique to model dynamic scenes [23, 33, 58, 63, 64]. However, the
point sample rendering technique suffers from holes and aliasing artifacts in ren-
dering and fails to reconstruct high-quality geometry compared to NeRF-based
methods, due to discontinuities in its representation.

Our pipeline is inspired by the previous ‘canonical space + deformation’ for-
mulation. Unlike prior studies that employ MLPs for both canonical space and
deformation, our approach leverages mipmapped tri-planes to facilitate efficient
and impactful learning of the canonical space. To mitigate the presence of arti-
facts in the canonical space, we incorporate a joint refinement procedure.

Anti-aliasing in Neural Rendering. Anti-aliasing has been a substantial re-
search subject in computer graphics, fundamental for various imaging and ren-
dering applications. Existing approaches fall into two categories: super-sampling
anti-aliasing and pre-filtering. One approach involves enhancing the sample rate
to accurately reconstruct signals with higher frequencies [1, 13, 18, 20, 35, 57].
On the other hand, the latter approach achieves anti-aliasing by employing a
filtering technique to attenuate high-frequency components. Consequently, the
filtered signals can be effectively reconstructed without altering the sampling rate
[2,24,27,29,40,59]. Pre-filtering techniques are commonly favored in the domain
of NeRF, mostly because of their relatively higher rendering speed in comparison
to the more computationally intensive super-sampling approach. The rendering
quality was greatly improved by the integrated positional encoding(IPE) method
introduced by MipNeRF [6]. Subsequently, Zip-NeRF [7] extended MipNeRF
with hash encoding and super-sampling technique to furthur mitigate aliasing
effects. However, these methods faces challenges in achieving real-time inference
speed. In order to enhance the efficiency of the anti-aliasing process without
compromising the fidelity of the reconstruction, the Tri-MipRF [22] was pro-
posed to optimize the rendering speed. The Tri-MipRF algorithm utilized the
nvdiffrast [28] to achieve fast mipmapping, leading to convergence within a few
minutes and enabling real-time rendering on consumer-level devices.

The above NeRF-based approaches mostly focused on static scenes but not
dynamic scenes, where anti-aliasing plays a crucial role due to the increased
visibility of aliasing artifacts during object motion. As the first method extending
pre-filtering to dynamic NeRF representation, our DMiT can efficiently achieve
anti-aliasing on dynamic scenes with reasonable training and rendering speed.
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Fig. 2: Overview of our framework. Given images from dynamic scene (monocular
or multi-view), we employ a deformed cone casting in observation space and sample
multiple spheres which are then transformed to a common canonical space modeled
with tri-miplanes. The interpolated tri-miplane features are fed into a tiny MLP for
volume rendering. For clarity, we only show limited mipmap feature planes, while the
full setup is provided in Sec. 4.1.

3 Methodology

Given a collection of images depicting dynamic scenes accompanied by precise
timestamps and calibrated camera parameters obtained from structure-from-
motion (SfM) [47] or Blender [12] generation, our work can render photorealistic
novel views and interpolate between input frames as in Fig. 2.

In the remaining section, the preliminaries directly associated with our re-
search will be introduced in Sec. 3.1. Next, the formulation of our deformable
mipmapped tri-plane representation will be presented in Sec. 3.2. Our innovative
joint deformation and geometry refinement will be detailed in Sec. 3.3. Finally,
the optimization and regularization objectives will be elaborated in Sec. 3.4.

3.1 Preliminaries

Tri-Mip Radiance Field aaa For each pixel in one of the captured images of a
static scene, there exists a ray denoted as a(t) = o + t(p − o) = o + td, where o,
p and d represent the camera optical center, the pixel center and the direction of
the ray respectively. In contrast to the vanilla NeRF approach, which simplifies
one pixel as a point, Mip-NeRF [6] introduces a novel cone-casting strategy. This
strategy involves emitting a cone, denoted as C, with its central axis defined as
r(t). As a result, Mip-NeRF is able to incorporate additional area information
when formulating an image pixel. Building upon the work of EG3D [9], the
Tri-MipRF [22] further relieves the burden of complex IPE of Mip-NeRF by
integrating tri-planes with pre-filtering techniques, resulting in efficient training
and superior rendering quality with reduced aliasing effects.

Specifically, a collection of inscribed spheres denoted as S is sampled within
the cast cone. Each sphere S undergoes orthogonal projection onto the tri-planes
M, which serve as the fundamental mipmap features for the purpose of efficient
pre-filtering. The computation of the adaptive mipmap level l is performed to
determine the appropriate mipmap features for interpolation, based on the sam-
ple distance t along the cone axis r(t). The features f concatenated with the
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view direction d that has undergone original positional encoding proposed by
NeRF [38], can be mapped to density and color using a tiny MLP parameterized
by Θc: Φc(f , γ(d)) = (σ, c).

Dynamic NeRFs As previously stated in Sec. 2, there exists a category of
studies that explicitly incorporate timestamps into NeRF, resulting in the formu-
lation f(x, d, t) = (σ, c). The approach employed by other researchers involves
utilizing a mix of a deformation field Ψt and a canonical 3D representation as
an extension of NeRF to the dynamic setting, which was initially introduced
by D-NeRF [45]. It proposed an extension of NeRF to the dynamic setting by
introducing a deformation network Ψt, which is responsible for mapping the
observation space at timestamp t to the unified canonical space.

3.2 Deformable Mipmapped Tri-Planes (DMiT)

Methods mentioned in Sec. 2 effectively enables anti-aliasing during rendering
with high-quality visual effects, which are also applied to neural rendering for
static scenes [6, 7, 22]. Despite their successful application to reconstruct high-
quality images, it is important to note that their applicability is limited to static
scenes. On the other hand, the standard D-NeRF framework encounters chal-
lenges in accurately capturing high-frequency details in dynamic scenes, not to
mention its long training time. In this work, we introduce a novel anti-aliasing
framework (DMiT) for dynamic NeRF by using mipmaps for tri-planes repre-
sentation to enhance the overall quality of dynamic scene rendering.

Inspired by [22,45], mipmapped tri-planes (Tri-Mip) are utilized as the repre-
sentation for the shared 3D static canonical space to learn effect and accurate de-
formation. However, it is non-trivial to directly incorporate the efficient Tri-Mip
encoding with MLP-based deformation, since these two modules bear different
convergence speeds. The straightforward pipeline is prone to causing severe vi-
sual artifacts, such as the blending of canonical space with high-frequency signals
from other frames (see Fig. 3c), as a result of the overfitting of tri-planes. More-
over, when the deformation gains faster convergence, the canonical space may
end up being compressed and stretched as shown in Fig. 3b, thus being unable
to restore a reasonable geometry. Both categories of artifacts have a significant
impact on the accuracy of reconstructing the canonical space which makes it al-
most impossible to separate shape from motion in dynamic scenes. To alleviate
these artifacts, a joint deformation and geometry refinement is well-designed and
will be thoroughly discussed in Sec. 3.3. Fig. 3a shows the artifact-free canonical
geometry decomposed from our proposed refinement.

Cone Casting in Observation Space Specifically, we adopt the cone-casting
strategy from [6], which emits a cone C with central axis a(t). Unlike the point
intersection approach used in NeRF [38], this cone-casting strategy results in a
planar (disk) intersection with the image plane. The intersection area is set to
be the same with the corresponding pixel of width ∆x and ∆y. Therefore, the
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(a) Ours (b) compression (c) fused

Fig. 3: Canonical geometry visualization comparison between our method and trivial
baselines with different artifacts. Please zoom in for more details.

radius of the intersection disk can be estimated as ṙ =
√

∆x·∆y
π . We proceed by

selecting numerous isotropic spheres S(x, r), that are inscribed within C with
their radius r calculated as [22].

Deformation Formulation Consequently, the sampled spheres are deformed
from observation space at time t to the unified canonical space through the
deformation network parameterized by Θd. The deformation network is capable
of making predictions regarding the spatial displacement from vector x to its
corresponding position xc = x + ∆x within the canonical space. In a manner
akin to the widely utilized ray casting method, the central axis a(t) of the emitted
cone undergoes bending, while the radius r of the sampled sphere S(x, r) remains
constant, even if the whole cone has been distorted. Then the formulation of
dynamics can be denoted as follows:

Φd(γ(x), γ(t)) = ∆x (1)

where γ(·) is the frequency encoding. In contrast to [45], where the initial frame
is designated as the canonical frame, our method does not explicitly specify a
canonical frame. This design promotes the integration of dynamic information
across all frames within a unified canonical space, which then serves as a tem-
plate for the optimization of deformation. The comparison of canonical geometry
against D-NeRF can be referred to Fig. 4b and a more detailed analysis of the
canonical space will be provided in the supplementary.

Mipmapped Tri-Plane in Canonical Space To make use of the mipmapped
tri-planes, which are known for the capacity to accurately record high-frequency
appearances and reconstruct geometry with high fidelity, the deformed spheres
Sc(xc, r) in the canonical space are further featured with an efficient Tri-Mip
encoding. Specifically, each sphere is orthogonally projected onto tri-planes M =
{MXY , MXZ , MY Z}, forming three discs D = {DXY , DXZ , DY Z} of radius r,
respectively. For pre-filtering, three compact feature planes serve as the base level
mipmap ML0 representing the decomposed 3D space, while the other mipmaps
at different levels Li are downscaled (by a factor of two) from the base mipmap.
To query the corresponding features from the hierarchical mipmapped tri-planes,
we can determine the mipmap level l that is suitable for the disk radius r. This
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Fig. 4: (a) The diagram of our proposed joint geometry and deformation refinement
procedure along with canonical geometry visualization results at each pre-set upsam-
pling step. (b) Qualitative comparison of canonical geometry visualization results be-
tween our method and D-NeRF [45]. In the highlighted areas, the canonical geometry
of D-NeRF exhibits obvious fusing artifacts, while our method does not.

can be achieved by utilizing the Axis Aligned Bounding Box, which is defined
by two corners Bmin and Bmax, of the specific 3D space of interest. Additionally,
the mipmap resolution (H, W ) is also required.

r̈ =

√

(Bmax − Bmin)X · (Bmax − Bmin)Y

HW · π
, l = log

2
(
r

r̈
) (2)

The query coordinate of the pre-defined mipmap stack comprises the mipmap
level l and the three disk centers (e.g., xXY ) and is then used to perform trilin-
ear interpolation on the encoded feature (e.g., fXY ). The concatenated Tri-Mip
feature f = {fXY , fXZ , fY Z} and the encoded ray direction γ(d) are regressed to
density σ and color c by a tiny MLP. Volume rendering [36, 38] is employed to
generate the final color value for each pixel along the axis a(t) of cone C.

3.3 Joint Geometry and Deformation Refinement

The canonical tri-planes of high resolution from Tri-MipRF [22] show a tendency
of modeling high-frequency signals with a relatively fast learning speed, which
has advantages in the case of static scenes. However, when reconstructing dy-
namic scenes, we rely on a deformation MLP to predict the motion. The fast
convergence speed of the canonical Tri-MipRF branch may cause overfitting,
producing fused canonical space of different time frames with discontinuous ge-
ometry or compressed shape as in Fig. 3. For instance, different parts from the
moving shovel of the Lego truck at different times may be mixed. Hence the
deformation network has difficulty in converging, leading to unsatisfactory ren-
dering results.

To alleviate this issue, we incorporate two techniques to introduce a balance
between the canonical Tri-MipRF and the deformation MLP. First, we apply a
warm-up strategy on the resolution of the tri-planes with implicit regulation on
high-frequency signals. We start with a low-resolution tri-plane, and gradually
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upsample it during training. The evolution of the canonical geometry and tri-
plane resolution over training is shown in Fig. 4a, demonstrating the regulation
ability for floaters as well as the preservation of fine-grained geometry. Secondly,
We also introduce a warm-up phase for more effective and stable motion de-
composition, starting with a low learning rate for the deformation network that
progressively increases until the tri-plane upsampling process is complete. Af-
ter the warm-up phase for both motion and geometry, an annealing training
strategy [64] is applied for efficient convergence.

Meanwhile, the original frequency encoding is no longer suitable for the re-
finement, as the encoded high-frequency signals conflict with the coarse canonical
space initialization. Thus we introduce the annealing frequency encoding [41],
which progressively increases the encoding dimension from zero to maximum:

γα(x) =
(

wk(α) sin(2kπx), wk(α) cos(2kπx)
)L−1

k=0
, (3)

where wk(α) = 1

2
(1 − cos(πclamp(α − k, 0, 1))) is the corresponding weight,

α(t) = Lt
N is the annealing coefficient with t denoting the training step and N

representing the end step of the frequency annealing.

3.4 Optimization

Following previous works, we train our model using the photometric loss between
rendered images and the ground truth. Let R represent the set of all rays and
Ĉ(r) denotes the target pixel color of ray r, the photometric loss is:

Lpho =
1

|R|

∑

r

∥

∥

∥
C(r) − Ĉ(r)

∥

∥

∥

2

2

(4)

To encourage the sparsity and compactness of the feature planes, we adopt spa-
tial total variation loss as in [8, 10,16,17,48],:

LT V =
∑

h,w

(

∥

∥

∥
ML0

h,w − ML0

h−1,w

∥

∥

∥

2

2

+
∥

∥

∥
ML0

h,w − ML0

h,w−1

∥

∥

∥

2

2

)

(5)

To summarize, the final optimization objective is L = Lpho +λT V LT V , where
λT V is a hyperparameter.

4 Experiment

In this section, we qualitatively and quantitatively compare our work with several
SOTA methods for validation. The datasets cover synthetic scenes as well as
real-world scenes (including both monocular and multi-view setting). Due to the
page limitation of the main paper, please refer to the supplementary material for
per-scene metrics and additional qualitative comparisons. We highly recommend
readers to watch the supplemental video to better evaluate the anti-aliased high-
fidelity rendering results of our proposed method. All experiments are done with
a single NVIDIA GeForce RTX 3090 GPU with 24GB memory.
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Table 1: Quantitative comparison between
our method and SOTA methods on the orig-
inal D-NeRF dataset.

Methods PSNR ↑ SSIM ↑ LPIPSv ↓ LPIPSa ↓

D-NeRF [45] 30.39 0.953 0.076 0.030
TiNeuVox [15] 31.63 0.963 0.058 0.039
HexPlane [8] 30.20 0.964 0.050 0.036

V4D [19] 32.37 0.973 0.038 0.024
K-Planes-H [16] 30.32 0.967 0.050 0.035
K-Planes-E [16] 29.63 0.962 0.056 0.041
Tensor4D [48] 25.71 0.940 0.091 0.095

4DGS [58] 32.30 0.974 0.036 0.021

Ours 34.22 0.982 0.024 0.014

Table 2: Quantitative comparison be-
tween our method and SOTA methods
on the PlenopticVideo dataset.

Methods PSNR ↑ MS-SSIM ↑ LPIPSa ↓

K-Planes [16] 31.30 0.963 -
LLFF [37] 23.24 0.848 0.235

DyNeRF [30] 29.58 0.961 0.083

MixVoxels-L [53] 31.09 0.963 0.099
HexPlane [8] 31.57 0.969 0.090

NeRFPlayer [49] 30.53 0.927* 0.116
HyperReel [4] 31.54 0.965 0.107

4DGS [58] 29.71 0.957 0.117

Ours 31.73 0.974 0.086

4.1 Implementation Details

Our implementation is based on Pytorch [43] with acceleration provided by tiny-
cuda-nn [39]. Following [22], the Tri-Mip encoding takes advantage of mature
mipmapping techniques included in the nvdiffrast library [28] for efficiency. For
coarse tri-planes, We set the shape of the base mipmap ML0 to Hc = 64, Wc

= 64, C = 16 with maximum mipmap level Lc = 7. For the fine tri-planes after
refinement, the shape of the base mipmap ML0 is Hf = 512, Wf = 512, C = 16
with maximum mipmap level Lf = 10. The deformation network is implemented
using an MLP with D = 8, W = 128. We train our model for 40K iterations for
synthetic scenes and 100K iterations for real-world scenes in total with separated
optimizers for static components and deformation network. More details can be
referred to Sec. A in the supplementary material.

4.2 Evaluation on Synthetic Datasets

D-NeRF Dataset Firstly introduced in [45] by synthesizing through Blender [12]
in a monocular setting, this dataset contains eight scenes in total by recording
various objects in complex motion. The number of training images ranges from
50 to 200 while the test set of each scene has 20 images. For fair comparison,
we train baselines from scratch using the released codes and their default con-
figurations. The quantitative results are listed in Tab. 1 and canonical geometry
visualization comparison with D-NeRF [45] is shown in Fig. 4b. Following previ-
ous works, three metrics are selected for quantitative evaluation, including peak
signal-to-noise ratio (PSNR), structural similarity (SSIM) [55], and learned per-
ceptual image patch similarity (LPIPS) [66]. Our method achieves high-fidelity
rendering results, outperforming across all metrics..

Multi-scale D-NeRF Dataset Following [6,22], we downsample images from
the original D-NeRF dataset with a factor of 2, 4, and 8 respectively to provide
observations across different scales. In the meantime, the focal lengths of down-
sampled images are downscaled according to the perspective camera projection.
In this setting, metrics at different scales are calculated for better anti-aliasing
evaluation, as listed in Tab. 3, where K-Planes-H and K-Planes-E denote hybrid
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Table 3: Quantitative comparison of our method against several SOTA methods on
the multi-scale D-NeRF dataset.

Methods Train. ↓
PSNR ↑ SSIM ↑ LPIPSv ↓

Full Res.1/2 Res.1/4 Res.1/8 Res. Avg. Full Res.1/2 Res.1/4 Res.1/8 Res. Avg. Full Res.1/2 Res.1/4 Res.1/8 Res Avg.

D-NeRF [45] 1 d 28.01 28.37 29.49 28.94 28.70 0.935 0.947 0.951 0.947 0.944 0.065 0.052 0.063 0.064 0.062
TiNeuVox [15] 28 m 31.24 32.12 32.55 30.50 31.60 0.962 0.969 0.975 0.966 0.968 0.059 0.045 0.035 0.046 0.046

K-Planes-H [16] 1 h 27.26 27.67 27.97 27.92 27.61 0.955 0.954 0.953 0.949 0.952 0.062 0.056 0.054 0.063 0.059
K-Planes-E [16] 1 h 26.80 27.18 27.58 27.34 27.23 0.951 0.949 0.948 0.941 0.947 0.069 0.065 0.064 0.068 0.067
Tensor4D [48] 10 h 25.25 25.67 26.04 25.15 25.49 0.932 0.934 0.938 0.921 0.931 0.101 0.093 0.071 0.050 0.079

4DGS [58] 40 m 30.13 30.36 30.84 30.63 30.49 0.963 0.966 0.968 0.967 0.966 0.048 0.042 0.042 0.038 0.042
D3DGS [64] 35 m 32.40 32.60 32.96 32.76 32.68 0.976 0.978 0.979 0.979 0.978 0.032 0.027 0.027 0.025 0.028

Ours 30 m 34.15 35.04 35.81 36.09 35.27 0.980 0.984 0.987 0.988 0.985 0.029 0.020 0.014 0.0100.019
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Fig. 5: Qualitative comparison of reconstruction results between our method and base-
line methods on the multi-scale D-NeRF dataset.

and explicit architecture of [16] respectively. Our method outperforms others in
all three metrics across various resolutions while achieving efficient training in
30 minutes. Besides, we show examples of the rendering results of full-resolution
with close-up views in Fig. 5 for qualitative comparison. Our results are the clos-
est to the ground truth with details restored such as the thin skeleton of T-Rex

and facial features of Standup, while other SOTA methods only achieve blurry
results. See supplementary for more anti-aliasing results.

4.3 Evaluation on Real-world Datasets

HyperNeRF Dataset To validate the applicability of our method in practice,
we adopt the dataset from [42]. It contains dynamic scenes captured by one or
two cameras with varying topology. Following [42], every 4th frame is selected
for training, while the midlle frame is used as a test frame for the interpolation
task. For the novel view synthesis task, frame IDs for validation have been pro-
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Table 4: Quantitative comparison between our method and SOTA methods on the
HyperNeRF dataset and NeRF-DS dataset.

Methods
HyperNeRF dataset NeRF-DS dataset

PSNR ↑ MS-SSIM ↑ LPIPSa ↓ PSNR ↑ SSIM ↑ LPIPSa ↓

HyperNeRF [42] 27.35 0.927 0.144 23.45 0.849 0.181
TiNeuVox [15] 26.78 0.882 0.374 21.80 0.825 0.213
NeRF-DS [62] - - - 23.61 0.853 0.128

4DGS [58] 27.05 0.900 0.266 22.10 0.789 0.207
D3DGS [64] 25.57 0.859 0.224 23.74 0.844 0.127

Ours 27.80 0.926 0.153 24.48 0.866 0.115
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Fig. 6: Qualitative comparison of reconstruction results between our method and base-
line methods on the HyperNeRF dataset. For a clearer view of the high-frequency and
glossy details, refer to the highlighted area.

vided beforehand. We conduct the same experiments as [42]. For interpolation,
we test on three scenes, i.e., torchocolate, hand and cut-lemon. For novel view
synthesis, 3d printer and chicken are tested. For the evaluation benchmark, we
use multi-scale structural similarity (MS-SSIM) [56] instead of SSIM following
[42]. We use reported metrics of [42] while other results are based on their official
implementation. Tab. 4 and Fig. 6 show quantitative and qualitative compar-
isons with SOTA methods, respectively. Though our method does not always
outperform HyperNeRF (e.g., MS-SSIM and LPIPS), intricate details such as
tiny text patterns and glossy appearance can be restored while others generate
blurry results. Meanwhile, [58] cannot represent complex clothing textures and
[64] fails to recover fine-frained details as opposed to the proposed method.

NeRF-DS Dataset NeRF-DS [62] proposed a dataset consisting of 8 forward-
facing scenes with deforming and moving objects in the real world, registered
with more accurate camera poses compared to HyperNeRF dataset [42]. Similar
to vrig datasets from [42], images for training are captured from one camera
to prevent teleporting issues, while images for validating the novel view synthe-
sis task are from another camera. Detailed quantitative results and qualitative
comparisons can be found in Tab. 4 and Fig. 7. All baseline results are obtained
through our experiments using their official implementation except for [42]. [62]
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Fig. 7: Qualitative comparison of reconstruction results between our method and base-
line methods on the NeRF-DS dataset.
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Fig. 8: Qualitative comparison of reconstruction results between our method and base-
line methods on the PlenopticVideo dataset.

fails to model rapid translation of the moving object in bell scene. GS-based
methods [58, 64] suffer from under-reconstruction artifacts in heavily obscured
areas, while [15] produces foggy geometry and cannot model motion correctly
as in [58]. Our method can better reconstruct complex specular and reflective
appearances, as well as achieve more stable deformation, compared to other
baselines.

PlenopticVideo Dataset This is a multi-view real-world scene dataset pro-
posed by [30]. It includes 6 complex forward-facing scenes captured with 21 cam-
eras. The central view is reserved for testing and other 18 synchronized views are
chosen for training. Each view contains a 10-second video (300 frames) in resolu-
tion 2028 × 2704 (2.7K). Please refer to Tab. 2 for quantitative results and Fig. 8
for qualitative comparison. We directly use reported metrics from baselines that
adopted PSNR, MS-SSIM, LPIPS (AlexNet) as benchmarks, except [49] that
only reported SSIM metrics (marked as * in Tab. 2) and [4,58]. We train [4,58]
from scratch using the official implementation. Besides, [30, 37] only reported
metrics of flame salmon scene. We conduct all experiments on half resolution
(1014 × 1352) of all scenes except an unsynchronized scene coffee-martini. Our
method has achieved competitive results compared to SOTA methods across all
three metrics, and it excels in restoring fine-grained details, as illustrated in the
zoom-in view in Fig. 8.
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Table 5: Ablation results on the multi-scale D-NeRF dataset.

Methods PSNR ↑ SSIM ↑ LPIPSv ↓ LPIPSa ↓

Ours w/o JR 32.22 0.977 0.030 0.018
Ours w/o M 32.54 0.973 0.038 0.027
Ours 35.27 0.985 0.019 0.011

4.4 Ablation Study

To verify the effectiveness of our Tri-Mip encoding and joint geometry and de-
formation refinement scheme, we conducted two ablation experiments on the
multi-scale D-NeRF dataset. For the former, we design a variant of our method
without mipmapping, namely “Ours w/o M", following Tri-MipRF [22]. We re-
place the three pre-defined mipmap features with three plane features of the
same size, thus the total trained parameters remain the same except that the
mipmap and pre-filtering techniques are removed. For the latter, we derive an-
other variant “Ours w/o JR", in which the resolution of the tri-miplane features
is set to match the final resolution after the refinement stage. The quantita-
tive results are listed in Tab. 5. More ablation results can be referred to the
supplementary.

5 Conclusion & Future Work

In this work, we propose a novel NeRF-based framework called DMiT, which
is the first to introduce anti-aliasing into dynamic scene representation. Our
framework incorporates a deformation network for the mapping between the
observation space and the hierarchical mipmapped tri-planes of the canonical
geometry, as well as a joint refinement procedure that enables the decoupling
of motion and geometry. Owing to the compactness and efficiency of tri-planes
along with the well-designed mipmapping module, our method has achieved
impressive training speed and high-fidelity rendering quality at various distances,
while the blurry and aliasing artifacts in previous work are largely reduced. The
qualitative and quantitative results on synthetic and real-world datasets have
demonstrated the effectiveness and applicability of DMiT.

Since NeRF-based methods heavily rely on the accuracy of camera regis-
tration, imprecise camera parameters would inevitably affect our results. Also,
because the tri-plane representation is based on orthogonal projection factor-
ization, our methods may struggle to represent large-scale or unbounded scenes
where spatial information cannot be fully encoded in a resolution-limited archi-
tecture. As our proposed method is a general dynamic framework, predicting
accurate appearance without decomposition in more complex specular, reflec-
tive, or refractive scenes remains challenging due to multi-view inconsistencies
across captured images, especially when using only monocular RGB images as
input. Furthermore, our proposed method may restore false colors when using
unconstrained input. Please see the supplementary materials for further discus-
sion. We leave the limitations listed above for future work.
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