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Abstract. Long-term action anticipation has become an important task
for many applications such as autonomous driving and human-robot in-
teraction. Unlike short-term anticipation, predicting more actions into
the future imposes a real challenge with the increasing uncertainty in
longer horizons. While there has been a significant progress in predicting
more actions into the future, most of the proposed methods address the
task in a deterministic setup and ignore the underlying uncertainty. In
this paper, we propose a novel Gated Temporal Diffusion (GTD) net-
work that models the uncertainty of both the observation and the future
predictions. As generator, we introduce a Gated Anticipation Network
(GTAN) to model both observed and unobserved frames of a video in a
mutual representation. On the one hand, using a mutual representation
for past and future allows us to jointly model ambiguities in the obser-
vation and future, while on the other hand GTAN can by design treat
the observed and unobserved parts differently and steer the information
flow between them. Our model achieves state-of-the-art results on the
Breakfast, Assembly101 and 50Salads datasets in both stochastic and
deterministic settings.

1 Introduction
In this work, we address the task of long-term dense action anticipation. Given
a video as observation, the goal is to predict future actions and their durations
where the forecasting horizons can span from several seconds to several minutes
into the future, which makes it a challenging problem. Yet, solving it is crucial
for many real-world applications, such as autonomous driving or human-robot
interaction. Over the last few years, the task has gained increased attention and
there has been a steady progress [1,2,26,32,46,52], but most works address this
task deterministically, which means that only one prediction is made for a single
observation. The task of forecasting future actions, however, is highly uncertain
by nature, especially for longer anticipation horizons, since the same observa-
tion can have multiple plausible continuations. Despite its importance, dealing
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Fig. 1: The proposed Gated Temporal Diffusion (GTD) model generates multiple fu-
ture long-term predictions of actions from a single partially observed video. In contrast
to previous works, it models the uncertainty of both the observation and the future. In
this example, the light conditions make it difficult to distinguish if a bun or an orange
is cut. This ambiguity is reflected in the predicted samples where the uncertainty of
the past impacts the predicted future.

with uncertainty for long-term dense action anticipation has so far received little
attention. Farha et al. [23] proposed to address this task in a stochastic man-
ner. The approach generates multiple predictions in an autoregressive way by
predicting the probabilities of the next action and its duration, and then sam-
pling from the predicted probabilities. Alternatively, a GAN-based probabilistic
encoder-decoder network has been proposed to generate multiple predictions [72].
Both approaches, however, assume that the action labels of the observed frames
are already given, either pre-estimated [23] or taken from the ground-truth ac-
tions [23, 72]. In this way, the uncertainty of the observation is not taken into
account. The observation, however, can also be ambiguous due to occlusions or
difficult light conditions as shown in Fig. 1. We, therefore, argue that stochastic
action anticipation needs to consider not only the ambiguity of the future but
also of the observation.

In this work, we propose a diffusion-based model [14,28,49,53,55,56] - Gated
Temporal Diffusion (GTD) - that models the uncertainty of both the observation
and the future predictions. In particular, we make use of diffusion since it inher-
ently models uncertainty by generating multiple predictions. The key aspect of
our GTD, however, is that we explicitly model the uncertainty of observed and
future actions jointly by predicting them simultaneously with a single diffusion
process. To this end, we use a joint sequence representation illustrated in Fig. 1,
which we construct by extending the observed video frames with zero padding in
place of future frames. We then cast this sequence as the per-frame conditioning
of the past and future action variables, whose conditional joint probabilities will
be learned during training. While grouping both observed and unobserved ac-
tion variables allows us to model them using a single diffusion process, these two
parts are nevertheless intrinsically distinct. To take this difference into account,
we propose a novel generator - GaTed Anticipation Network (GTAN) - that
can differentiate between past and future frames in a distinct manner and steer
the information flow between them in a data-driven way.

We evaluate our proposed model on the Breakfast [35], Assembly101 [51]
and 50Salads [57] datasets. We show that our approach achieves state-of-the-art
results for stochastic long-term dense action anticipation. Additionally, despite
our focus on stochastic anticipation, we also demonstrate that our proposed
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GTAN network achieves state-of-the-art results in the deterministic setting. In
summary, we make the following contributions:
– We propose the first diffusion model - Gated Temporal Diffusion - for stochas-

tic long-term action anticipation that jointly models observed and future
actions.

– We propose a novel generator backbone - Gated Anticipation Network -
which steers the information flow between observed and future frames.

– We show that our model achieves state-of-the-art results in stochastic and
deterministic settings on three datasets: Breakfast, Assembly101 and 50Sal-
ads.

2 Related Work
Action Anticipation in Videos. The task of action anticipation in videos is
to forecast future actions given video observations from the current and past
moments of time. Following the introduction of anticipation benchmarks on the
recent [18,27,51] and less recent [35,36] datasets, this task has been gaining in-
creasing attention [74]. In general, existing literature distinguishes between short-
term and long-term anticipation approaches, based on the length of the anticipa-
tion horizon. Short-term anticipation methods [24,25,40,43,52,63,68–70,73,75]
forecast only a single action that takes place in the near future. Long-term action
anticipation methods, which are the focus of our work, have a longer forecast-
ing horizon and predict multiple future actions several minutes into the future.
Among long-term anticipation approaches, one can further pin down several es-
tablished task formulations. In the first line of work [2], Farha et al . proposed to
anticipate action classes densely for a subset of frames from the predefined fu-
ture time interval. This formulation, addressed in [1,2,26,32,46,52] and referred
to here as deterministic long-term dense anticipation, implies the necessity to
predict not only classes of future actions but also their duration. In their work,
Farha et al . [2] introduced two models with different modes of predictions based
on CNN and RNN networks. Ke et al . [32] proposed a TCN-based model with
time conditioning to enable direct action prediction at a predefined moment of
time. In the later works, several encoder-decoder architectures were proposed
by Farha et al . [1], Sener et al . [52], Gong et al . [26] and Nawhal et al . [46]
based on GRUs [6], Non-Local blocks [62] and Transformer layers [60]. In the
second line of work [23], Farha et al . extended the previous formulation into
the probabilistic domain, so that the uncertainty of future anticipation could be
taken into account. In this formulation, called here stochastic long-term dense
anticipation, actions still need to be anticipated densely, however, several future
sequences are allowed to be predicted for a single observation. In their work [23],
the authors proposed a probabilistic RNN network that made autoregressive
predictions based on the samples drawn from the predicted action class distribu-
tions. Zhao et al . [72] later proposed a GAN-based probabilistic encoder-decoder
network. Lastly, in the anticipation frameworks from [27, 45], which we refer to
as transcript long-term anticipation, the estimation of duration for future actions
is discarded. This setting has been addressed in [3, 19,27,42,45,46].



4 O. Zatsarynna et al.

Diffusion. Diffusion models [28, 49, 53, 55, 56] are a class of deep probabilis-
tic generative models that recover the data sample from Gaussian noise via
a gradual denoising process. In a following work, denoising diffusion implicit
models (DDIMs) [54] were introduced to speed up the diffusion model sampling.
Later, [12,17] extended the continuous diffusion models to generate discrete data.
Diffusion models have shown outstanding results in various generation tasks such
as image synthesis [21,50], video generation [10,29], speech processing [48,58,65],
natural language processing [5,30] and motion generation [59,71]. Furthermore,
diffusion models have achieved great success in computer vision perception tasks
such as segmentation [8,11,16], object detection [15], temporal action segmenta-
tion [38] and detection [44]. The stochastic nature of diffusion models has been
leveraged for motion anticipation [9, 59,64] and procedure planning [61].

3 Stochastic Long-Term Dense Anticipation

Previously proposed stochastic long-term anticipation approaches [23,72] assume
that the observed video segments share the same format as the future predic-
tions, namely action labels. This assumption, however, overlooks the ambiguity
inherent in certain video observations, such as insufficient context due to lim-
ited observation duration, challenging lighting conditions, occlusions, and other
factors (see Fig. 1 and Fig. 4). In such cases, the estimated or pre-defined action
labels fail to convey the uncertainty associated with observed frames.

To overcome this limitation, we aim to jointly model the uncertainty of both
future and observed actions. To this end, we propose an approach based on diffu-
sion, known for its suitability for modelling uncertainty [14]. Standard diffusion
models, however, cannot be directly applied to the task of long-term action antic-
ipation. Thus, we introduce a novel model for stochastic long-term anticipation,
termed Gated Temporal Diffusion for Anticipation (GTD), which we describe in
detail in Sec. 4. Although we focus on stochastic anticipation, we also show how
our method can be used in the deterministic case in Sec. 4.4. Before discussing
our proposed approach, we formally define the task of stochastic long-term an-
ticipation.

Following the popular protocol introduced by [2], the observed part and the
duration of the future prediction are defined by percentages α and β of the entire
video. More precisely, given α|V | observed frames of a video with |V | frames, the
goal is to predict action labels for the future β|V | frames. Accordingly, No = α|V |
is the number of observed frames, Na = β|V | is the number of frames whose
action classes we want to anticipate, and N = No + Na is the total number of
frames that are considered. Since β can go up to 0.5, the prediction duration
can be very long. While deterministic approaches make only a single most likely
future prediction, stochastic approaches consider the uncertainty of the future
modelling and generate multiple (M > 1) future samples.

Formally, the task of stochastic long-term anticipation can be formulated
as learning to draw samples from the underlying joint probability of per-frame
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future actions conditioned on the observed video frames:

Ŷ No+1:N ∼ pθ(Y
No+1, . . . , Y N |F ) (1)

F = (ϕ(x1), . . . , ϕ(xNo)) ∈ RNo×D, (2)

where xk is the kth input frame, ϕ is the feature extractor network, Y i is the ac-
tion variable corresponding to ith frame and Y i:j denotes a sequence of variables
for frame i to j.

Since in our work, we aim to additionally model the uncertainty present in the
video observations, we instead learn to sample Ŷ = Ŷ 1:N from the conditional
joint distribution of both future and observed actions.

4 Gated Temporal Diffusion for Anticipation
To model uncertainty and perform stochastic action anticipation, we formulate
our network as a diffusion model as illustrated in Fig. 1. While the standard
diffusion model, which we describe in Sec. 4.1, serves as a foundation, it cannot
be directly applied to the task of long-term action anticipation. Hence, we in-
troduce a novel model, called Gated Temporal Diffusion (GTD), which jointly
models the uncertainty of both observed and unobserved events while preserving
the inherent difference between the two. We discuss our proposed approach in
Sec. 4.2.

4.1 Diffusion Model
Diffusion models learn to map noise samples YT ∼ N (0, I) to the samples from
the data distribution Y0 ∼ q(Y ) in an iterative manner using a reverse Markov
chain process pθ(Y0:T ) with learnable transition parameters θ:

pθ(Y0:T ) = pθ(YT )

T∏
t=1

pθ(Yt−1|Yt), pθ(Yt−1|Yt) = N (Yt−1;µθ(Yt, t),Σ(t)). (3)

To learn these parameters, a forward Markov process is defined. It specifies
the transitions in the inverse direction by adding Gaussian noise to the data
according to a fixed variance schedule β1, . . . , βT :

q(Y1:T |Y0) =

T∏
t=1

q(Yt|Yt−1), q(Yt|Yt−1) = N (Yt;
√

1− βtYt−1, βtI). (4)

Training. Optimization of diffusion models is performed using the variational
lower bound on the negative log-likelihood of the data samples where some prop-
erties of the forward process are harnessed. Given the Gaussian nature of the
forward transition probabilities, one can use the reparametrization trick [33] to
draw samples directly from Y0 by corrupting it following the schedule γt:

Yt =
√
γtY0 +

√
(1− γt)ϵt, (5)

where ϵt ∼ N (0, I), γt =
∏t

k=1(1 − βk). For training, Yt is obtained using
the forward process (5) at step t ∼ U(1, T ) and a denoising generator network
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Fig. 2: We formulate stochastic action anticipation as a diffusion process where the
initial input consists of Gaussian noise, YT , and zero-padded features, F̃ . Given the
inputs, the GTAN generator predicts the denoised action labels, Ŷ0,T . From step T-1 to
0, the GTAN generator uses self-conditioning by taking the previous denoised action
labels as additional input. The noise ϵ̂t and mean µ̂t terms for steps T-1 to 0 are
computed using equations (7) and (8). ⊕ indicates channel-wise concatenation.

Gθ(Yt, t) = Ŷ0,t is trained to reverse the noise and predict the reconstruction
Ŷ0,t of Y0 by minimizing the l2 reconstruction error between them:

Ldiff = Et∼U(1,T ),ϵt∼N (0,I)∥Gθ(Yt, t)− Y0∥2. (6)

The key contribution of a diffusion model is the design of the generator network
Gθ(Yt, t).

Inference. Once trained, sampling from the diffusion model requires following
a sequence of denoising steps. In the DDPM [28] sampling procedure, inference
follows T denoising steps. Starting at step t = T , a random sample is drawn from
YT ∼ N (0, I) and fed to the generator Gθ that predicts Ŷ0,T . Assuming that we
have already sampled Yt and reconstructed Ŷ0,t at step t, we can generate the
next sample Yt−1 by first approximating ϵt by:

ϵ̂t =
1√

1− γt
(Yt −

√
γtŶ0,t). (7)

Since the reverse transition probabilities q(Yt−1|Yt, Y0) become tractable when
conditioned on Y0 and can be expressed as Gaussians N (Yt−1; µ̃t, β̃tI), we can
estimate the parameters of this Gaussian by:

µ̂t =
√
γt−1Ŷ0,t +

√
1− γt−1 − β̃tϵ̂t, β̃t =

1− γt−1

1− γt
βt (8)

and sample Yt−1 ∼ N (Yt−1; µ̂t, β̃tI). The steps continue until t = 1, after which
Ŷ0,1 is taken as the final generated sample. For an alternative DDIM [54] sam-
pling, variances of the transition probabilities are set to zero during inference,
i.e., β̃t = 0, making the denoising process deterministic for a particular noise
sample YT . This way, Yt−1 is equal to the mean value Yt−1 = µ̂t. The DDIM
sampling scheme performs better than DDPM if less denoising steps are used
during inference compared to training [54].

4.2 Gated Temporal Diffusion for Anticipation
In contrast to previous works, we aim to model uncertainty both in the past
observation and the future. We thus extend the formulation described in Sec. 3
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and generate multiple samples not only for the future, but also multiple inter-
pretations of the past as shown in Fig. 4. Since the uncertainty of the future
depends on the uncertainty in the observation, we treat them as a unified se-
quence Ŷ = Ŷ 1:N and model them with a shared diffusion model.

While the diffusion model described in Sec. 4.1, generates multiple data sam-
ples by sampling YT ∼ N (0, I) repeatedly, it is not directly applicable to our
problem for several reasons. Specifically, it operates in the continuous domain
and it does not incorporate any conditioning information during the generation
process. Moreover, the generator network Gθ treats all variables uniformly, dis-
regarding the distinction between observed and future action variables in the
input sequence. To address these limitations, we propose a Gated Temporal Dif-
fusion model (GTD). As our key contribution, we introduce a GTAN generator
network, described in Sec. 4.3. This network employs gated temporal convolu-
tions and, on one hand, models observed and unobserved data jointly, while, on
the other hand, steers the information flow between past and future entries with
the learnable gates, thereby controlling their fusion. Apart from that, we also
propose discretization and conditioning schemes, elaborated below.

To model discrete action categories using continuous state diffusion, we rep-
resent action labels as one-hot encoded vectors Y0 ∈ RN×C and regard them
as “analog bits” [17] that can be directly modelled by continuous state diffusion
models. In this way, training remains unchanged and the inference process also
remains the same, except that we map generated samples back to the discrete
domain by applying the argmax operation over the class dimension.

To condition the generation on the observed frames, we make use of frame-
wise feature vectors F (2) and adapt them to act as the per-frame condition for
both observed and future action variables. More specifically, we expand it by
incorporating zero-padding to compensate for the absent features of the future
unobserved frames:

Ŷ ∼ pθ(Y |F̃ ), F̃ = (ϕ(x1), . . . , ϕ(xNo),0, . . . ,0) ∈ RN×D. (9)

In this way, the resulting vector F̃ can be used to condition the per-frame dif-
fusion generation process. To this end, we channel-wise concatenate the padded
observed frame features F̃ ∈ RN×D to the current sample Yt ∈ RN×C at each
step t. Furthermore, we employ self-conditioning [17] by using the previous esti-
mate Ŷ0,t+1 ∈ RN×C as additional input for the generator Gθ:

Gθ(Yt, Ŷ0,t+1, F̃ , t) = Ŷ0,t ∈ RN×C , (10)

where during training Ŷ0,t+1 is randomly set to zero with probability p, which is
then equivalent to training Gθ without self-conditioning. While Yt, Ŷ0,t+1, and
F̃ are concatenated and used as input to the generator Gθ, shown in Fig. 2, at
each diffusion step t, we encode the step t as sinusoidal positional embedding. In
the next section, we describe our proposed GTAN generator network in detail.

4.3 Gated Anticipation Generator
To model temporal dependencies in the input, we use temporal convolutional
layers for the generator network Gθ. As the input sequence to our network con-
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Fig. 3: The GTAN takes as input a joint representation sequence for observed and
future frames. Each stage consists of GTA blocks. The dilated gated convolutions de-
activate features at certain frames.

sists of two distinct parts (observed and unobserved), directly applying the net-
work with classical temporal convolution layers as in other tasks [7, 22, 66] is
sub-optimal. This is because the distinction between observed and future parts
would not be possible, leading to all values being treated equally. While gated
convolutions [4, 20, 47, 67] have been proposed for different purposes, we adopt
this concept such that the generator network adaptively decides how much mix-
ing between the past and future occurs at different levels of the network.

Motivated by this, we propose a Gated Temporal Anticipation Network
(GTAN). It comprises S stages that produce output vectors of action proba-
bilities over C classes. Each stage consists of L residual GTA blocks as shown in
Fig. 3. Each GTA block includes two dilated temporal convolutional layers: one
for feature processing (feature convolution) and another for gating the features
(gate convolution). Formally, given a feature vector as input, both layers are
applied to it separately with the same dilation rate, kernel size, and number of
channels. The layers are then combined by the element-wise product between
the output of the feature convolution and the sigmoid-activated output of the
gate convolution. Given the input feature H̃s,l−1, the output H̄s,l of the gated
convolution at layer l and stage s is computed as follows:

H̄s,l = σ(Wg ∗ H̃s,l−1 + bg)⊙ (Wf ∗ H̃s,l−1 + bf ), (11)

where σ is the sigmoid function, ∗ denotes the convolution operator, and ⊙
denotes the element-wise product. Wg and Wf are weights of the convolutional
filters and bg and bf are biases for gate and feature convolutions, respectively.
The output H̄s,l is then passed through a dropout layer and then to a 1 × 1
convolutional layer followed by the ReLU non-linearity. Finally, the output of
the layer l is computed by applying a residual connection after the ReLU. At
each layer l, the dilation factor for the gate and feature convolution is set to 2l,
i.e., it increases by a factor of two with each layer.

In our ablations studies, we show the benefit of gating and demonstrate the
importance of learning temporal gates in a data-driven way, as opposed to using
manual masks [39] or using channel-wise gating [31], i.e. without the temporal
component. We also show that our proposed gated generator is superior to the
previously proposed gated temporal convolutional network [4].
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4.4 Training and Inference
For training our proposed Gated Temporal Diffusion model, we sample step
t ∼ U(1, T ) and Yt (5) for a given observation F̃ (9) with ground-truth Y0. We
then apply our proposed GTAN generator Gθ(Yt, ŶS,0,t+1, F̃ , t) that produces a
set of stage-wise predictions {Ŷs,0,t}Ss=1. The self-conditioning with prediction
ŶS,0,t+1 at step t+1 is only included if t < T . We train our network with the l2
reconstruction loss accumulated over all S stages:

Lstoch = Et∼U(1,T ),ϵt∼N (0,I)

S∑
s=1

∥Ŷs,0,t − Y0∥2. (12)

During inference, we apply the DDIM [54] sampling scheme and use a subset
of D denoising steps to get our final predictions. As the final output of our
model, we take the reconstruction made at the denoising step t = 1 of the
last GTAN stage S, i.e., Ŷ = ŶS,0,1. To generate multiple action sequences
for a given observation, we run the denoising process starting from M different
noise samples {YT,m}Mm=1, which are then reconstructed into distinct predictions
{Ŷm}Mm=1, where {Ŷ No+1:N

m }Mm=1 are the future action predictions.

Deterministic Anticipation. Although we focus on stochastic long-term an-
ticipation, we also report results for the deterministic anticipation. In this case,
we use the proposed GTAN without the diffusion process. Given F̃ as the input
sequence, our model produces intermediate {Ŷs}S−1

s=1 and final Ŷ = ŶS predic-
tions. Using these predictions, we train our network using the standard cross-
entropy loss applied to all stages and frames:

Ldeterm = −
S∑

s=1

N∑
n=1

Y n log Ŷ n
s , (13)

where Y n ∈ RC is the one-hot encoded ground-truth action at frame n. During
inference, we only consider predictions for the future frames.

5 Experiments

5.1 Datasets and Evaluation Metrics
We evaluate our proposed network on three challenging datasets: Breakfast,
Assembly101 and 50Salads.

Breakfast [35] contains breakfast preparation videos. It contains 1712 videos
of actors preparing 10 breakfast-related dishes. Each video is densely annotated
with actions from 48 classes. On average, videos are 2.3 minutes long and contain
6 action segments. The longest video is 10.8 minutes long, so the duration of
anticipation is up to 5.4 minutes. For evaluation, we use the standard 4 splits
for cross-validation and report the average result.

Assembly101 [51] is a large-scale dataset of toy vehicle assembly and disas-
sembly. It contains 4321 videos, which are densely annotated with 100K coarse
action segments from 202 coarse action classes. The duration of anticipation is
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Table 1: Comparison to the state of the art for stochastic anticipation on Breakfast,
Assembly101 and 50Salads. * Indicates that we trained UAAA on Assembly101.

Dataset Metric Method β (α = 0.2) β (α = 0.3)
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Breakfast
Mean MoC Tri-gram [23] 15.4 13.7 12.9 11.9 19.3 16.6 15.8 13.9

UAAA [23] 15.7 14.0 13.3 13.0 19.1 17.2 17.4 15.0
Ours 24.0 22.0 21.4 20.6 29.1 26.8 25.3 24.2

Top-1 MoC UAAA [23] 28.9 28.4 27.6 28.0 32.4 31.6 32.8 30.8
Ours 51.2 47.3 45.6 45.0 54.0 50.4 49.6 47.8

Assembly101
Mean MoC

Tri-gram 2.8 2.2 1.9 1.5 3.5 2.7 2.3 1.8
UAAA* [23] 2.7 2.1 1.9 1.7 2.4 2.1 1.9 1.7
Ours 6.4 4.4 3.5 2.8 5.9 4.2 3.5 2.9

Top-1 MoC UAAA* [23] 6.9 5.9 5.6 5.1 5.9 5.5 5.2 4.9
Ours 18.0 12.8 9.9 7.7 16.0 11.9 10.2 7.7

50Salads
Mean MoC

Tri-gram [23] 21.4 16.4 13.3 9.4 24.6 15.6 11.7 8.6
UAAA [23] 23.6 19.5 18.0 12.8 28.0 18.0 14.8 12.1
Ours 28.3 22.1 17.8 11.7 29.9 18.5 14.2 10.6

Top-1 MoC UAAA [23] 53.5 43.0 40.5 33.7 56.4 42.8 35.8 30.2
Ours 69.6 55.8 45.2 28.1 66.2 44.9 39.2 31.0

up to 12.5 minutes in videos lasting 25 minutes. The dataset is divided into train,
validation, and test splits. Since the test split is not publicly available, we train
our model on the train split and report our results on the validation set.

50Salads [57] contains videos of salad preparations. It comprises 50 videos
annotated with dense segments from 17 fine-grained actions. The mean length of
videos is 6.4 minutes, while the longest video is 10.1 minutes long, so the duration
of anticipation is up to 5.1 minutes. For evaluation, we use the predefined 5 splits
for cross-validation and report the average result.

For a fair comparison with existing methods on these datasets, we used previ-
ously extracted visual features. On the Breakfast and 50Salads datasets, we use
the I3D [13] features provided by [2], while for Assembly101 we utilized TSM [37]
features provided by [51]. Further implementation details of our model for these
datasets are provided in the supp. material.

Evaluation Protocol and Metrics. We evaluate our method using the α
and β from the protocol defined in [2]. Specifically, we test our network for α ∈
{0.2, 0.3} and β ∈ {0.1, 0.2, 0.3, 0.5}, where α and β denote the percentages of
frames of a video that are used as observation and future prediction, respectively.
We evaluate our approach in the stochastic and deterministic settings. For the
deterministic setting, we report mean over classes (MoC) accuracy as in [2,26,32].
In the stochastic setting, we generate multiple predictions for the same observed
frames. As proposed in [23], we report two metrics: mean and top-1 MoC across
M = 25 predictions, called Mean MoC and Top-1 MoC, respectively.

5.2 Stochastic Anticipation
Comparison with State of the Art. We first compare our proposed stochas-
tic approach with the state of the art for stochastic anticipation on the Break-
fast, Assembly101 and 50Salads datasets. In Sec. 5.4, we compare our approach
to deterministic approaches. The comparison of our diffusion-based model with
UAAA [23] and tri-gram baseline [23] is presented in Tab. 1. UAAA [23] and
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the tri-gram baseline are the only available probabilistic models with a compa-
rable evaluation protocol since [72] only uses ground-truth action labels as their
observations. [23] is a two-step approach that first predicts action labels for the
observed frames and then forecasts the future actions. To compare our method
to [23] on the Assembly101 dataset, we used MS-TCN [22] for the first step. We
trained a MS-TCN network for each value of α using full supervision, but only
the observed frames as training data, i.e., the first 20% or 30%, respectively. We
then trained UAAA [23]. Note that two-step approaches [23, 72] do not model
any uncertainty in the observation. As shown in Tab. 1, our method outper-
forms [23] with a large margin on Breakfast and Assembly101 at both Mean and
Top-1 MoC accuracy with improvements across all observation and anticipation
ratios. On the 50Salads dataset, our approach outperforms [23] at Top-1 MoC,
while the Mean MoC accuracy is on par.

In Fig. 4, we present predicted samples from our model. In the first example,
the action sequence involves the high-level activity ‘Scrambled Eggs’. However,
the observed part of the sequence contains only the action ‘Butter Pan’, shared
with another high-level class, ‘Fry Eggs’. Thus, based solely on this segment,
distinguishing the underlying activity is challenging. Our network predicts se-
quences belonging to either ‘Scrambled Eggs’ or ‘Fry Eggs’, demonstrating am-
biguity in order, length, and presence/absence of actions within categories. In
the second example, the ground-truth activity is ‘Cereals’. Poor lighting condi-
tions make recognizing actions in the observed segment difficult and ambiguous.
Consequently, our model classifies observed actions differently across samples,
leading to consistent yet different predictions. By addressing uncertainty in ob-
servations, our model produces correct predictions despite the poor quality of
the observed segment. We provide more qualitative results in the supp. material.

5.3 Ablation Study
Number of Inference Steps and Stages. In Tab. 2, we explored the impact
of varying the number of denoising steps D in our diffusion model while keeping
the number of GTAN stages fixed. Increasing the number of steps from 10 to 50
led to improved accuracy, but further increasing it to 100 did not yield additional
benefits. Fig. 6 illustrates how predictions evolve with different denoising steps:
noise decreases significantly after 10 steps, with further refinement observed

Table 2: Ablation on the num. of
diffusion inference steps and stages in
GTAN on Breakfast. Numbers show
Mean MoC accuracy.

Num. Num. β (α = 0.2) β (α = 0.3)
stages steps 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

5 1 19.6 17.7 17.3 15.9 24.9 22.6 22.5 20.0
5 10 23.0 20.7 20.3 19.5 28.0 25.7 24.7 23.8
5 50 24.0 22.0 21.4 20.6 29.1 26.8 25.3 24.2
5 100 24.2 21.8 21.3 20.5 29.1 26.7 25.0 24.0

1 50 23.7 21.9 21.1 20.2 29.2 26.7 25.3 23.9
3 50 23.4 21.6 21.0 20.4 29.6 26.8 25.2 24.4
5 50 24.0 22.0 21.4 20.6 29.1 26.8 25.5 24.2

5 50 24.0 22.0 21.4 20.6 29.1 26.8 25.3 24.2
1 250 23.9 21.8 21.0 20.0 29.6 27.0 25.5 23.9

Table 3: Ablation on GTAN architecture
on Breakfast. Numbers show Mean MoC ac-
curacy.

Method β (α = 0.2) β (α = 0.3)
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Ours 24.0 22.0 21.4 20.6 29.1 26.8 25.3 24.2

Ours w/o GC 23.0 21.1 20.6 19.8 27.6 25.7 24.3 23.5
Ours w/o Dil. GC 22.9 21.1 20.6 20.2 28.6 26.0 24.7 23.9
Aslan et al . [4] 18.8 17.3 16.7 15.7 20.7 18.9 18.8 16.7

Part. Conv. [39] 23.2 21.5 20.9 20.1 27.9 25.6 24.4 23.6
SE [31] 22.4 21.0 20.4 19.9 28.0 25.7 24.5 23.6
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Fig. 4: Qualitative results of our proposed GTD
for stochastic long-term action anticipation on
Breakfast. Best viewed zoomed in.

Fig. 5: Mean MoC of GTD for se-
quences sorted by MFSS diversity
for the obs. part on Breakfast.

with 50 steps. Next, with D fixed at 50, we evaluated the influence of different
numbers of stages. Smaller networks (1 and 3 stages) exhibited lower accuracy
with 50 denoising steps, but with 250 steps, the single-stage GTAN’s performance
approached that of 5 stages. For all other experiments, we use 5 stages and 50
denoising steps.

Gated Convolution. In Tab. 3, we assess the impact of gated convolution
on our GTAN generator. Removing the gate convolution branch (see Fig. 3)
from the GTA block and leaving only the feature convolution (Ours w/o GC)
leads to lower performance, highlighting the necessity of the gating mechanism.
Similarly, removing the dilation factor from the gate convolution branch (Ours
w/o Dil. GC) also decreases performance, as expected. Substituting our GTAN
architecture with the gated temporal convolutional network proposed by Aslan et
al . [4] results in a significant decline in performance, indicating its unsuitability
for dense anticipation.

We also explore alternatives to gated convolutions, including manual mask
adaptation and channel-wise feature reweighing, by replacing gated convolu-
tions with partial convolution [39] and squeeze-and-excitation [31] blocks, re-
spectively. Although manual mask adaptation outperforms the model without
gating, it falls short compared to our proposed approach, highlighting the ad-
vantage of learning to perform gating in a data-driven manner. Employing the
squeeze-and-excitation block instead of gated convolutions yields better perfor-
mance compared to previous alternatives, but it remains inferior to our proposed
method. This emphasizes the importance of the temporal component of gated
convolutions. We provide further ablations of the GTAN design and a qualitative
example of learned gates in the supp. material.

Modelling Observation Uncertainty. We conduct an experiment to in-
vestigate the impact of modelling observation ambiguity on the performance of

Fig. 6: Qualitative results of our proposed GTD with different numbers of inference
diffusion steps. Best viewed zoomed in.



Gated Temporal Diffusion for Stochastic Long-Term Dense Anticipation 13

Table 4: Ablation on modelling observa-
tion uncertainty (o.u.) on Breakfast.

β (α = 0.2) β (α = 0.3)
Metric Method 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Mean MoC Ours 24.0 22.0 21.4 20.6 29.1 26.8 25.3 24.2
Ours w/o o.u. 23.7 21.4 20.5 19.9 29.8 27.1 25.3 24.1

Top-1 MoC Ours 51.2 47.3 45.6 45.0 54.0 50.4 49.6 47.8
Ours w/o o.u. 42.8 40.7 38.8 38.4 48.4 44.2 44.9 43.5

MFSS Ours 41.5 44.3 45.6 48.4 33.7 36.6 38.0 41.6
Ours w/o o.u. 31.2 34.7 36.3 39.4 26.1 29.4 30.8 34.3

Table 5: Ablation on the diffusion loss
type on Breakfast.

β (α = 0.2) β (α = 0.3)
Metric Loss 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Mean MoC
MSE 24.0 22.0 21.4 20.6 29.1 26.8 25.3 24.2
CE 26.2 23.3 23.9 22.6 32.1 29.2 27.5 26.3

Top-1 MoC
MSE 51.2 47.3 45.6 45.0 54.0 50.4 49.6 47.8
CE 46.9 42.2 41.7 40.7 48.8 46.5 45.3 44.0

MFSS
MSE 41.5 44.3 45.6 48.4 33.7 36.6 38.0 41.6
CE 29.0 31.8 33.5 35.0 24.0 26.9 28.2 30.0

our model. To this end, we utilize an MS-TCN [22] to predict labels of the ob-
served part, which serves as the condition vector for GTD instead of the frame
features F . Also, we compute the loss function Lstoch only for the future frames.
The results of this experiment are shown in Tab. 4. While the Mean MoC of
both methods remains comparable, the Top-1 MoC of the model without un-
certainty modelling drops significantly, indicating its limited ability to generate
diverse predictions. To directly measure the prediction diversity, we additionally
introduce a new metric - Mean Framewise Sample Similarity (MFSS). MFSS
calculates diversity as the mean normalized pairwise sample distance averaged
over the videos in the split:

MFSS =
1

Z

Z∑
z=1

 2

M(M − 1)

∑
1≤i<j≤M

100

(
1− 1

N

N∑
n=1

1(Ŷ n
z,i = Ŷ n

z,j)

), (14)

where Z is the total number of videos. As evident from the results, omitting the
observation uncertainty modelling leads to a reduction in the diversity of predic-
tions. In Fig. 5, we demonstrate the correlation between Mean MoC anticipation
accuracy and uncertainty of the GTD model for the observation. To this end, we
sorted the videos into four groups based on the MFSS of the predictions on the
observed parts of the videos and calculated the average Mean MoC for anticipa-
tion for each group. For sequences with high MFSS, GTD is uncertain about the
observed actions. The plot reveals an inverse correlation between future Mean
MoC and observed MFSS since future actions are harder to predict for videos
with higher observation uncertainty. This analysis underscores the significance
of modelling ambiguity in observed frames for future action prediction.

Diffusion Loss Type. We employ Mean Squared Error (MSE) as the loss
function for our diffusion approach, following prior work [17, 28]. Additionally,
we evaluate the impact of using the Cross Entropy (CE) loss and present the
results in Tab. 5. Notably, the model trained with MSE loss achieves the highest
Top-1 MoC accuracy and MFSS, while the model trained with CE loss attains
the best Mean MoC. These results of the CE-trained network can be attributed
to additional Softmax normalization required by this loss. The Softmax restricts
the handling of uncertainty in early diffusion steps, emphasizing the most likely
action class prematurely. Directly measuring diversity using the MFSS metric
confirms these observations, with the MSE-trained model exhibiting higher di-
versity than the CE-trained model. We used the MSE loss in our experiments.
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Table 6: Comparison with state-of-the-art methods for deterministic anticipation on
the Breakfast dataset. * Indicates retrained results.

Dataset Method β (α = 0.2) β (α = 0.3)
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Breakfast

RNN [2] 18.1 17.2 15.9 15.8 21.6 20.0 19.7 19.2
CNN [2] 17.9 16.3 15.4 14.5 22.4 20.1 19.7 18.8
UAAA (mode) [23] 16.7 15.4 14.5 14.2 20.7 18.3 18.4 16.9
Time Cond. [32] 18.4 17.2 16.4 15.8 22.8 20.4 19.6 19.8
TempAgg [52] 24.2 21.1 20.0 18.1 30.4 26.3 23.8 21.2
Cycle Cons. [1] 25.9 23.4 22.4 21.5 29.7 27.4 25.6 25.2
FUTR [26] 27.7 24.6 22.8 22.1 32.3 29.9 27.5 25.9
Ours 28.8 26.3 25.8 26.0 35.5 32.9 30.5 29.6

Assembly101
UAAA (mode)* [23] 2.7 2.1 1.8 1.6 2.4 2.1 1.9 1.7
FUTR* [26] 7.5 5.5 4.7 4.1 7.8 6.0 5.2 4.0
Ours 9.0 6.8 6.6 5.5 8.4 6.8 6.0 5.0

5.4 Deterministic Anticipation

Comparison with State of the Art. The majority of dense long-term antic-
ipation methods [1,2,26,32,52] has been trained and evaluated in the determin-
istic setting and we compare with these methods in Tab. 6. We do not compare
with Anticipatr [46] since it uses a different protocol [74]. We also compare with
UAAA [23] in the deterministic setting (mode). On Assembly 101, we compare
with UAAA (mode) and FUTR [26] using the publicly available code for training
and evaluation. We provide results for the 50Salads dataset, qualitative compar-
isons and ablation studies for the deterministic GTAN in the supp. material.
On both Breakfast and Assembly101, our method outperforms all methods that
use the same evaluation protocols. Compared to the previously best-performing
method FUTR [26], our method shows a substantial improvement in particular
on Breakfast for long-term prediction (β = 0.5) where MoC is increased by +3.9
and +3.7 for α = 0.2 and α = 0.3, respectively.

6 Conclusion

We have proposed a Gated Temporal Diffusion network to address the task of
stochastic long-term dense action anticipation. As the backbone for our diffusion
model, we introduced a Gated Anticipation Network (GTAN) that allows for
mutual modelling of the actions in the observed and future frames. In this way,
the uncertainty is not only modelled for the future but also for the observed
part. We demonstrated that the approach generates different predictions for the
observed frames in case of ambiguities due to poor light conditions and that
these ambiguities impact the future predictions. Furthermore, we demonstrated
that GTAN can be applied to deterministic long-term dense action anticipation
as well. In our experiments, we showed that our model achieves state-of-the-art
results on three datasets in deterministic and stochastic settings. A limitation
of our proposed model is its current efficiency. For example, the average time of
generating a single prediction on the Breakfast dataset, which has an average
anticipation horizon of 1.15 minutes, is 3.8 seconds. While this is sufficient for
mid-term action planning, i.e. range of minutes, a further reduction of inference
time is needed. This can be achieved by using techniques to accelerate inference
of diffusion models like distillation [34] or DeepCache [41].
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