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Abstract. 3D inpainting is a challenging task in computer vision and
graphics that aims to remove objects and fill in missing regions with a
visually coherent and complete representation of the background. A few
methods have been proposed to address this problem, yielding notable
results in inpainting. However, these methods haven’t perfectly solved
the limitation of relying on masks for each view. Obtaining masks for
each view can be time-consuming and reduces quality, especially in sce-
narios with a large number of views or complex scenes. To address this
limitation, we propose an innovative approach that eliminates the need
for per-view masks and uses a single mask from a selected view. We focus
on improving the quality of forward-facing scene inpainting. By unpro-
jecting the single 2D mask into the NeRFs space, we define the regions
that require inpainting in three dimensions. We introduce a two-step op-
timization process. Firstly, we utilize 2D inpainters to generate color and
depth priors for the selected view. This provides a rough supervision for
the area to be inpainted. Secondly, we incorporate a 2D diffusion model
to enhance the quality of the inpainted regions, reducing distortions and
elevating the overall visual fidelity. Through extensive experiments, we
demonstrate the effectiveness of our single-mask inpainting framework.
The results show that our approach successfully inpaints complex geom-
etry and produces visually plausible and realistic outcomes.

1 Introduction

Neural radiance fields (NeRFs) [28] have emerged as an outstanding technique in
3D scene representation and novel view synthesis. By simply taking hundreds or
even tens of images from a scene as input, NeRFs are able to capture the intri-
cate detail and produce photorealistic renderings from new viewpoints. However,
unwanted objects may appear when capturing the scene, such as litters on the
floor and tourists in scenic spots. Thus, seamlessly removing objects and filling
in the background—a task known as 3D inpainting—is essential in scene editing.

Though inpainting has been well-researched in 2D image processing, the
study of 3D inpainting remains to be intractable. There are three challenges
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(a) Input views (b) Selected view & mask (c) Inpainted results (novel views)

Fig. 1: Results of 3D inpainting by our method. Given a set of photographs (a) with
a mask annotated on a selected view (b), our model is capable of removing objects,
seamlessly filling in the background and generating inpainted novel views (c), which
are visually plausible.

in 3D inpainting. Firstly, when no input view captures the area obstructed by
the object to be removed, it remains uncertain how that area might appear.
A reasonable geometry and appearance should be generated to ensure conti-
nuity and coherence with the surrounding scene. The inpainting result should
not only align with the adjacent areas in terms of texture and color, but also
adhere to the overall depth and lighting conditions to achieve a natural and
undistorted look. Secondly, it is complicated to manually annotate the precise
mask for each view. The complexity of the scene and the number of views can
significantly increase the difficulty of mask annotation. Moreover, the manual
effort can be time-consuming and impractical in real-world applications where
efficiency and automation are desired. Thirdly, directly adopting state-of-the-art
image inpainting methods to remove objects in rendered images from NeRFs will
generate inconsistent results across different views, as shown in Fig. 2 (b). On
the other hand, training a NeRF with inconsistent 2D inpainted images can lead
to blurry results, as shown in Fig. 2 (c).

To address the aforementioned challenges, a number of works [22, 30, 47]
have explored 3D inpainting for NeRFs. They identify and mask the object
targeted for removal in each input view, then employ pre-trained 2D inpainting
models to produce inpainted images. Following appropriate adjustments, the
refined images are integrated to NeRFs to re-model a scene without the removed
object. NeRF-In [22] uses a video object segmentation method to transfer the
user-drawn mask from single view to other input views. On this basis, SPIn-
NeRF [30] lifts the video segmentation masks into a coherent 3D segmentation
via fitting a semantic NeRF, which resolves inconsistency and improve the masks.
Remove-NeRF [47] generates a 3D point cloud representation of the scene and
specifies a 3D bounding box enclosing the object to be removed in the point
cloud. Afterwards the empty space of the 3D bounding box is trimmed and the
masks are derived by rendering this marked space from each viewpoint. However,
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Fig. 2: Samples of challenging scenes. (a) Input views and corresponding masks. (b)
Inconsistent results generated by 2D inpainting methods. (c) Blurry results when train-
ing a NeRFs model with inconsistent inpainted images.

the process of obtaining masks for all input views is cumbersome. Though users
are not burdened with annotating every mask, obtaining all masks limits the
scalability and efficiency of the inpainting process, making it less feasible for
real-time or interactive applications. Thus, we tend to utilize the user-drawn
single mask to directly remove the object and inpaint the scene.

In this work, we propose a novel 3D inpainting framework for forward-facing
scenes that only relies on a single mask throughout the entire process, which
not only simplifies the inpainting process but also avoids blurriness typically
encountered in inpainted regions, a common issue when using inconsistent results
from 2D inpainting models. The object targeted for removal is annotated on a
randomly selected input view to create a mask. Since we focus on inpainting
forward-facing scenes as previous works [22,30,47], single mask annotation does
not lead to a significant loss of information compared to accurately annotating
a mask for each view. An ordinary voxel-based NeRFs network is first trained
to reconstruct the original scene, which contains a density voxel space, a feature
voxel space and a shallow MLP mapping features to colors. Subsequently, as light
rays pass through the mask into the scene from the camera, they intersect with
the density and feature voxel space. This intersection enables us to unproject the
mask onto the density and feature voxel space. The voxels within the mask range
include both the object to be removed and the space requiring inpainting, thus
pinpointing the voxels that need to be changed. By aligning the mask with the
3D scene representation in this manner, we can accurately identify, at voxel level,
the areas that need inpainting. Having identified the voxels for modification, we
initially focus on inpainting of the selected view, and then fine-tune from other
views to enhance the realism and natural appearance of the entire inpainted
scene. Specifically, we adopt a pre-trained 2D image inpainter [44] to generate
reference inpainted color and depth images from the selected view, which are
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used for regularizing appearance and geometry respectively. After convergence,
the scene has been roughly inpainted from the perspective of the selected view.
To ensure that the scene looks natural from different views, we fine-tune the
inpainted area from other views. Given that large diffusion models, like Stable
Diffusion [37], are trained on vast datasets of hundreds of millions of images
and exhibit superior performance on open domain image generation tasks, we
explore their potential for removing distorted areas in images. We leverage the
optimized gradient from the denoising process of a pre-trained diffusion model
to update the scene for better visual coherence and realism. Finally, we obtain
a natural and undistorted inpainted scene without the removed object.

In summary, the main contribution of our work are as follows:

– We analyze the reasons for the blurriness in previous 3D inpainting meth-
ods and propose to address this issue by using a single reference to avoid
inconsistency of 2D inpainted images.

– We propose a novel single-mask 3D inpainting approach for removing ob-
jects from 3D forward-facing scenes consistently and use a pre-trained and
advanced large diffusion model to reduce distortions in inpainted regions,
which tackles blurriness and makes the process efficient.

– Extensive experiments on different datasets are conducted to demonstrate
the effectiveness of our method, demonstrating that our method surpasses
state-of-the-art approaches in visual coherence and realism.

2 Related Work

2.1 Image Inpainting

Inpainting is a long-standing research topic in computer vision. Early works in
this field focus on patch-based schemes [1, 40]. With the advent of deep learn-
ing, follow-up works turn to leverage neural networks. Pathak et al . [34] is a
pioneering work in proposing a deep encoder-decoder architecture for image
inpainting task. Since then, a series of subsequent works have been proposed
to achieve better performance in many aspect, such as efficiency [38, 39], qual-
ity [10,15,21,32,53,54], and diversity [19,23,57,58]. We adopt LaMa [44] as our
image inpainter, whichf introduces Fast Fourier Convolution to image inpainting
for obtaining a large and effective receptive field. Yet, these image-based methods
lack a mechanism for enforcing spatial consistency and do not inherently under-
stand 3D scene structure. Consequently, they fall short in consistently inpainting
multiple views of a scene, which is a critical requirement for our task.

2.2 NeRF Editing

In the past few years, rendering 3D scenes implicitly, especially NeRFs [28] has
achieved incredibly high-quality results in scene reconstruction and novel view
synthesis. Recent works have explored NeRFs for fast rendering [5, 12, 31, 42],
improved visual quality [2–4], and sparse inputs [6,11,16,18,33,43,49,52]. With
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the rapid development, there are attempts [7, 8, 24, 26, 45, 48, 50, 55] aiming at
editing on NeRFs, but they focus on non-inpainting tasks.

The first NeRF inpainting work is NeRF-In [22], which develops a framework
to transfer a user-drawn mask to other views and model the scene with inpainted
color and depth images. Later, SPIn-NeRF [30] constructs a 3D segmentation
model to ensure the consistency of masks. To reduce the impact of supervising the
scene with inconsistent inpainted images, SPIn-NeRF employs a perceptual loss
instead of pixel loss in NeRF-In. Remove-NeRF [47] takes a different approach
by marking the object to be removed within a point cloud and projecting this
back to each view. It also introduces a view-selection mechanism to remove
inconsistent views for optimization, thereby alleviating blurriness. RefIn-NeRF
[29] uses a single inpainted 2D reference and provides controllability of inserting
novel objects to into 3D scenes. Despite valuable efforts, they all necessitate
extracting masks for all input views to perform inpainting, a requirement that
is time-consuming and reduces inpainting quality.

2.3 NeRFs with 2D Diffusion Models

2D diffusion models are first introduced by Sohl-Dickstein et al . [41] and have
emerged as new state-of-the-art deep generative models in image synthesis. The
Latent Diffusion Models (LDM) [37] carry out diffusion processes in the la-
tent space, effectively reducing computational costs. Leveraging the 2D diffusion
models’ ability to generate images of high visual quality, researches begin ex-
perimenting their application in supervising 3D generation. DreamFusion [36]
proposes a method to directly predicts the update direction using a 2D diffusion
model for optimizing NeRFs, which provides an efficient algorithm to bridge the
gap of 2D diffusion models and 3D representation NeRFs. Follow-up works [20,25]
focus on improving the quality of 3D generation. Some other works [46,59] utilize
2D diffusion models to edit the scene. However, instead of generating new ob-
jects, we aim to utilize the excellent performance of diffusion models to remove
distortions in the scene. To the best our knowledge, we are the first to use 2D
diffusion models to remove distortions in 3D scenes.

3 Proposed Method

We now illustrate our framework for inpainting a forward-facing 3D scene with a
single mask. Given a collection of images from a scene with corresponding camera
parameters, our goal is to remove objects from the scene according to the given
mask of a selected view and fill in the missing part of the scene in a visually
coherent and plausible manner. To achieve this, we propose a framework to
unproject the single mask to scene representation space and preliminarily inpaint
the scene through the supervision of inpainted reference RGB and depth provided
by 2D inpainters. Even though the scene has been roughly inpainted from the
selected view, novel views of the scene may appear distorted and unnatural.
Therefore, we propose to utilize the powerful capability of 2D diffusion models
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Fig. 3: An overview of our method. (a) We first use the input views to reconstruct the
scene, and then randomly select one from the input views to render its depth image
using the reconstructed model. (b) Then we annotate the removed object on the selected
view and use 2D inpainters to obtain inpainted reference color and depth image. (c)
We roughly inpaint the scene with LRGB and Ldepth. Later, we render novel views and
input them into a 2D diffusion model to mitigate distortions using ∇θvLSDS−mask.

to remove distortions and fine-tune the scene for generating visually plausible
and consistent results. In the next, we will first introduce some basic theories in
Sec. 3.1, and then discuss the inpainting area unprojection in Sec. 3.2. Finally,
we describe how the inpainting optimization process is carried out in Sec. 3.3.

3.1 Preliminary

Neural Radiance Fields. NeRFs [28] optimize a network to model a scene as
continuous radiance fields, which takes 3D position x and viewing direction d
as input and outputs volume density σ and color c. To accelerate the process of
training and testing, DVGO [42] uses a density voxel grid V density to obtain σ
and an intermediate feature voxel grid V feature and a shallow MLP to obtain
c. Specifically, the process is as follows:

σ = log(1 + exp(interp(x,V density) + b)),

c = MLP(interp(x,V feature),d),
(1)

where “interp” refers to trilinear interpolation in voxel grids, and the shift b is a
hyperparameter.

To render the color of a pixel Ĉ(r), a ray r(t) = o + td is cast from the
camera center o along the direction d through the pixel. The volume rendering
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process is integrating points on the ray:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t))dt,

where T (t) = exp(−
∫ t

tn

σ(r(s))ds),

(2)

where tn and tf represent the near and far bounds of the ray.
SDS Loss. In order to utilize 2D diffusion models ϕ to supervise 3D NeRFs
models, Score Distillation Sampling (SDS) loss is generally used [20,25,36,46,59].
At an arbitrary view of NeRFs model θ, an image z could be rendered. The 2D
diffusion model ϕ predicts the sampled noise as ϵϕ(zt; y, t) given text embedding
y and the noisy image zt by adding noise ϵ at time-step t. SDS loss is calculated as
a gradient, which is a probability density distillation loss and guides the update
direction of NeRFs:

∇θLSDS(ϕ, θ) = Et,ϵ

[
w(t)(ϵϕ(zt; y, t)− ϵ)

∂z

∂θ

]
, (3)

where θ denotes parameters of NeRFs model, ϕ denotes parameters of diffusion
model, w(t) is a weighted function from DDPM [14]. ∇θLSDS directly shows
the update direction, thus the backpropagation doesn’t go through the diffusion
model.

3.2 2D-Mask to 3D-Area Unprojection

Unprojecting a 2D mask to the 3D area, especially when the scene is represented
using voxel grids, requires understanding the spatial relationships between the
camera, the 2D image, and the 3D scene. For each pixel in the mask, there are
multiple points in the 3D space corresponding to it. As the exact depth of the
object to be removed is unknown, we take all these points into consideration,
that is the entire depth range. The unprojection involves determining the rays
that pass through the corresponding pixels in the 2D image and intersect the
voxel grid in the 3D space. By traversing these rays, the 2D mask M can be
mapped to the relevant voxels {vmask} in the scene, indicating the areas to be
masked or inpainted, as shown in Fig. 3(b).

An extra initialization is applied to voxels marked in the density voxel grid for
better convergence of the inpainted NeRFs network. Instead of optimizing on the
original NeRFs network, we take a different approach by initializing the marked
voxels as free space in scene. This initialization step allows us to explicitly regard
the inpainted area as an empty region and gradually learn to build plausible
structure. We first filter out the free space of the original NeRFs network and
randomly choose a voxel from it. The chosen voxel contains a density voxel
value vdensity and a corresponding hyperparameter b̃, which are both used as
the initial values of marked voxel in the density voxel grid. In this way, the
converged geometry can better fit the inpainted reference depth image.
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3.3 Scene Inpainting

Rough Inpainting on Reference View Direct training of a 3D inpainter
is difficult due to a lack of prior knowledge and data on the scene. Thus, we
leverage 2D single image inpainters to obtain image priors instead. Specifically,
we use LaMa [44] to help with image inpainting in our method. It should be
noted that LaMa is a representative image inpainting method, which may be
replaced by other advanced methods.

Given a selected input image Is and its corresponding annotated mask M ,
an inpainted reference color image Îs can be obtained: Îs = LaMa(Is,M). With
the inpainted color image, the NeRFs network can be optimized by minimizing
the L2 distance between the inpainted pixel Ĉ(r) and the rendered pixel C(r):

LRGB =
∑
r∈R

∥ C(r)− Ĉ(r) ∥2, (4)

where R is a ray batch from the inpainted region of Îs.
With only the inpainted reference color image, only the appearance of the

object is changed to fit Îs when an image is captured from the selected view. The
geometry may be corrupted in the marked region. Thus, we use an inpainted
depth image as an additional guidance for the NeRFs network. The original
depth image Ds for inpainting is rendered from the NeRFs network for scene
reconstruction under the selected view by substituting distance t for color c in
Eq. 2:

D(r) =

∫ tf

tn

T (t)σ(r(t))tdt. (5)

Similarly, we obtain an inpainted reference depth image D̂s: D̂s = LaMa(Ds,M).
The inpainted reference depth image is used to remove the object from depth
and plausibly inpaint the scene geometry. The NeRFs network is optimized via:

Ldepth =
∑
r∈R

∥ D(r)− D̂(r) ∥2, (6)

where R is a ray batch from the inpainted region of D̂s. Particularly, the gra-
dients of the density voxels are detached in LRGB to ensure that only Ldepth

interferes with the geometry.

Refinement on All Input Views With the prior knowledge from a 2D image
inpainting model, we performed initial 3D inpainting from the selected view
for the scene. However, we found that overfitting of appearance on a single
view often resulted in visually unreasonable effects, e.g ., artifacts or distortions,
from other views. In order to mitigate the distortions, we leverage the powerful
capability of 2D diffusion models. Trained on hundreds of millions of data, they
have learned about the distribution of realistic images, including structure and
detailed textures. Unlike [20,25,36] that utilize 2D diffusion models to synthesis
3D objects and simple scenes, we take advantage of 2D diffusion models to



Single-Mask Inpainting for Voxel-based Neural Radiance Fields 9

Original
Scene

Original
Scene

Inpainted
Scene

Inpainted
Scene

Fig. 4: Visualization of our inpainting results. Upper rows per inset show NeRFs ren-
derings of the original scene from novel views, with left lower corner of the first image
displaying the annotated mask. Lower rows show the corresponding inpainted view.

refine distorted areas in the mask regions of the scene. We use the open-source
Stable Diffusion model [37] in our work, which requires a text prompt as input.
To ensure that the optimization results of the diffusion model from multiple
views is semantically consistent, we use the inpainted reference image Îs as a
condition to assist in refining the distorted areas. To reduce the burden of getting
additional text prompt input by obtaining the exact text embedding matching
Îs, we follow [9] to optimize the text embedding et in each timestamp t:

min
et

∥ z̄0 − ẑ0(z̄t, et) ∥22, (7)

where z̄0 is the encoded latent of Îs, and ẑ0(z̄t, et) refers to the estimated latent
ẑ0 given z̄t and et. For every t, the optimization starts from the endpoint of the
previous step t+ 1 optimization till the optimization ends at timestep 0.

From each input view, we render an image Ir and propose a mask-aware SDS
loss ∇θvLSDS−mask that restricts the loss to voxels in the mask area {vmask}
and utilizies ∇θLSDS in Eq. 3 by replacing the text embedding y with e:

∇θvLSDS−mask =

{
Et,ϵ

[
w(t)(ϵϕ(zt; e, t)− ϵ) ∂z

∂θv

]
, v ∈ {vmask};

STOP GRADIENT, v /∈ {vmask};
(8)

where zt refers to the result of adding noise ϵ at time-step t to the encoded latent
of Ir. With ∇θvLSDS−mask, we refine the roughly inpainted scene from all input
views and eliminate the distortions in the mask areas of the scene.
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4 Experiment

4.1 Implementation Details

Our voxel-based NeRFs network is built upon DVGO [42]. We only optimize
the density voxel space and feature voxel space, and keep the shallow MLP
frozen. Following [42], we use the Adam optimizer with a learning rate of 0.1 for
voxels marked by inpainted area unprojection. We carry out rough inpainting
on reference view for 500 epochs and refine the scene for 100 more epochs.
All experiments are performed on a single NVIDIA RTX A6000 (48G) GPU.
Specially, the annotated mask is slightly dilated using two iterations with a 5 ×
5 kernel to ensure the complete coverage of the removed object.

Datasets. Following SPIn-NeRF [30], we focus on forward-facing scenes.
We utilize scenes provided by LLFF [27] and SPIn-NeRF [30]. All of them are
captured using handheld cameras in real-scenes.

Baselines. We compare our approach with four models:

– Object-NeRF [51]: a NeRFs-based method for object manipulation that di-
rectly removes points masked in 3D without background filling with in-
painters.

– Masked NeRFs: a NeRFs model trained exclusively on unmasked pixels, while
masked pixels are disregarded, relying on the NeRFs model itself to interpo-
late plausible reconstructions for the masked regions.

– LaMa [44] + NeRFs: a NeRFs model trained on images inpainted by LaMa.
– SPIn-NeRF [30]: a state-of-the-art method designed especially for 3D in-

painting tasks, which implements both multi-view consistent segmentation
for the object to be removed and multi-view consistent inpainting. We use
their results by running their open-source code in default setting.

4.2 Quantitative Results

We conduct quantitative comparisons on SPIn-NeRF dataset [30], which contains
ground-truth captures of scenes without the removed object. Considering the
complex and ambiguous nature of the task, we follow both 2D [44] and 3D [30]
inpainting researches to assess the perceptual quality and realism of our inpainted
scenes.

We report the average learned perceptual image patch similarity (LPIPS) [56]
and the average Frechet inception distance (FID) [13] as evaluation metrics be-
tween the distribution of the ground-truth test views and the model outputs.
Given our specific focus on inpainting, we calculate the LPIPS and FID met-
rics only within the bounding box of the object mask. We expand each side of
the bounding box containing the mask in every direction by 10% following [30].
LPIPS provides a quantitative assessment of the visual similarity between the
ground-truth test views and the inpainted regions, and FID captures the sim-
ilarity between two distributions of images based on features extracted from a
pretrained Inception network. The second and third column of Tab. 1 show that
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Method LPIPS ↓ FID ↓ MUSIQ ↑ Sharpness ↑
Object-NeRF 0.326 304.21 22.72 233.47
Masked NeRF 0.278 321.97 25.31 257.83
LaMa + NeRF 0.221 253.25 30.09 316.28

SPIn-NeRF 0.187 204.26 56.95 294.92
Ours 0.186 168.70 64.20 585.05

Table 1: Quantitative comparisons on LPIPS and FID with ground truth images
provided and MUSIQ and sharpness on the visual quality. The reported results are
average values on SPIn-NeRF dataset. Best and second best results are marked.

methods designed especially for 3D inpainting tasks (i.e., SPIn-NeRF and ours)
outperforms others. These specialized methods are tailored to address the unique
challenges and requirements of inpainting unknown content in 3D scenes, lead-
ing to superior performance and results. While SPIn-NeRF trains an additional
3D segmentation model to obtain view-consistent masks for all input views, our
method directly uses the single mask for inpainting, yet still achieves comparable
results. Our method provides a more efficient and streamlined approach to 3D
inpainting compared to SPIn-NeRF. Please refer to supplementary material for
details on computational complexity.

In addition, to further assess the quality of inpainted scenes, we adopt two
additional quantitative metrics, MUSIQ [17] and sharpness to evaluate the ren-
dered image from a video computed by using a camera in a spiraling pattern.
A classical measure of sharpness is the variance of the image Laplacian [35].
MUSIQ is meant to reproduce human perceptual judgments. As shown in the
forth and fifth column of Tab. 1, our method is superior in both sharpness and
MUSIQ, demonstrating our results are more realistic.

4.3 Qualitative Results

In Fig. 4, we show our inpainting results on different scenes. It can be seen that
the annotated object is seamlessly removed and the background is plausibly filled
in. The inpainted regions align well with the scene’s geometry and maintain the
overall visual appearance of the scene. It is demonstrated that our method can
achieve scene inpainting that is visually coherent and contextually consistent,
showcasing the effectiveness of our approach.

In addition, we compare our inpainting results with state-of-the-art 3D in-
painting method SPIn-NeRF [30] in Fig. 5. SPIn-NeRF obtains masks for each
input view and uses 2D image inpainter to generate the inpainted results. To
eliminate the blurriness brought by training with inconsistent 2D inpainted im-
ages, SPIn-NeRF proposes to use a perceptual loss rather than mean square error
to optimize the masked area. However, the effect is limited. From the zoom-in
part in Fig. 5, we observe that the inpainted regions still exhibit some blurriness
and lack fine details. The limited effectiveness of the perceptual loss in address-
ing blurriness and lack of fine details is primarily due to the inherent challenges



12 J. Chen et al.

Selected View & Mask SPIn-NeRF Ours

Fig. 5: Qualitative comparisons with state-of-the-art baseline SPIn-NeRF. SPIn-NeRF
struggles to capture fine details due to optimizing based on inconsistent inpainted
images, while our method use a single reference inpainted image.

in reconstructing high-frequency information from incomplete or inpainted re-
gions. The perceptual loss, which leverages pre-trained deep neural networks to
capture high-level visual features, can help maintain global structure and texture
consistency, but it may struggle to capture fine details at a pixel level.

In comparison, our method uses a single mask and roughly inpaints the
masked region from single view, which avoids blurriness caused by using in-
consistent 2D inpainted images from different views. As our method focuses on
capturing the visual appearance and context specific to a particular viewpoint,
we can generally maintain the sharpness of the reference inpainted image. Fur-
thermore, with the help of 2D diffusion model, we can not only remove distorted
area in other views, but also add more reasonable details to the scene. Meanwhile,
the use of a single mask also provides a simplified and more efficient inpainting
process. Instead of obtaining and dealing with multiple masks and integrating
inpainted regions from different viewpoints, our method streamlines the work-
flow by inpainting the masked region at once. This reduces the complexity that
arises when combining inpainted regions from different views.

4.4 Ablation Study

The impact of Ldepth. As discussed in Sec. 3.3, we introduce a depth loss
Ldepth to remove the object geometrically and fill in plausible geometry. In Fig.
6, we show inpainting results of our method with and without Ldepth. We find
that our full model exhibits a more accurate estimation of the underlying scene
geometry, successfully removing the object’s geometry and generating a smooth
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Fig. 6: Ablation study on the impact of Ldepth. Using depth priors helps align the
inpainted area seamlessly with the surrounding scene in geometry.

Scene & Mask (a) (b) (c)

LPIPS↓ / FID↓: 0.289 / 376.48 0.214 / 302.55 0.205 / 219.77

Fig. 7: Ablations study on the impact of depth initialization and ∇θvLSDS−mask.
(a) Using the original scene as initialization. The results may optimize to a subop-
timal scene’s geometry. (b) The results w/o ∇θvLSDS−mask. The FID score slightly
drops. (c) Our full model with both initializing the marked regions as empty space and
∇θvLSDS−mask.

transition between the inpainted area and the surrounding scene. This results in
visually plausible and coherent inpainting outcomes that blend seamlessly with
the rest of the scene. Conversely, the absence of Ldepth prevents the model from
predicting convincing geometry within the masked region, since it is difficult to
learn geometry from the single reference inpainted color image.
The impact of depth initialization. The initialization of depth has a sig-
nificant impact on the inpainting process. Here we verify the effectiveness of
initializing the marked geometry as free space before optimization rather than
optimizing based on the original geometry. As shown in Fig. 7 (a), we can observe
that optimizing based on the original geometry struggles to convergence and can
result in suboptimal inpainting results. However, by considering the marked re-
gions as empty space, the NeRFs model is not constrained by the limitations of
the initial geometry and can adaptively convergence to the reference geometry
provided by inpainted depth image. It is important to note that the effectiveness
of treating the marked geometry as free space may depend on the specific char-
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acteristics of the scene and the complexity of the masked regions. In some cases,
optimizing based on the original geometry may still yield satisfactory results,
especially when the masked regions have relatively simple or regular geometry.
The impact of ∇θvLSDS−mask. To mitigate distortions of the scene that
roughly inpainted with the supervision of the selected view, we incorporate the
capability of 2D diffusion model, which helps refine the inpainting results by con-
sidering the plausibility of the rendered image. In Fig. 7 (b) and (c), we present a
comparison of the inpainting results obtained with and without ∇θvLSDS−mask.
We also present the quantitative scores, which validates that ∇θvLSDS−mask

helps to improve visual quality of inpainted scenes and results in visually pleas-
ing and more natural-looking inpainted scenes.

5 Limitation

Due to the lack of depth supervision during scene reconstruction, the accuracy
of the rendered depth image may be compromised. Therefore, using this depth
image as input for the image inpainting model and then using the output as
depth guidance for 3D inpainting could lead to errors. The inaccurate depth in-
formation may lead to unsatisfactory inpainting results in the following process.
Also, if the randomly selected view contains only a part of the object to be re-
moved, that is, the object is not fully captured within the selected perspective’s
range, annotating a mask on this view would evidently lead to an incomplete
removal of the object.

Currently, our method can only use in forward-facing scenes. We will explore
to expand our work to 360◦ scene in the future. As LaMa output deterministic
image inpainting results, we are not able to achieve controllable scene inpainting.

6 Conclusion

In this work, we present an efficient and streamlined framework for 3D inpainting
using merely a single mask. Our framework unprojects the 2D mask to voxel-
based NeRFs space and only carry out inpainting within the masked regions.
We leverage both image and geometry priors to roughly inpaint scenes from the
selected view. Refinement is achieved by using 2D diffusion models to implic-
itly remove the unnatural and distorted areas when observed from other views.
Extensive experimental results demonstrate the effectiveness of our method on
forward-facing scenes and shows the strength of our approach against state-of-
the-art in terms of visual quality and sharpness.
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