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Abstract. We present Agglomerative Token Clustering (ATC), a novel
token merging method that consistently outperforms previous token merg-
ing and pruning methods across image classification, image synthesis,
and object detection & segmentation tasks. ATC merges clusters through
bottom-up hierarchical clustering, without the introduction of extra learn-
able parameters. We find that ATC achieves state-of-the-art performance
across all tasks, and can even perform on par with prior state-of-the-art
when applied off-the-shelf, i.e. without fine-tuning. ATC is particularly
effective when applied with low keep rates, where only a small fraction
of tokens are kept and retaining task performance is especially difficult.

1 Introduction

Since their introduction in 2020, Vision Transformers (ViTs) [14] have been uti-
lized for a wide variety of computer vision tasks such as image classification,
synthesis, segmentation and more with great success [10, 30, 48]. Unlike Con-
volutional Neural Networks (CNNs), which require a structured representation
throughout the network, ViTs can process variable length input sequences, even
allowing for the sequences to be modified throughout the network. This gives
ViTs stronger expressive powers than CNNs [45], but comes at a computational
cost due to the quadratic scaling of the self-attention computation. Therefore,
there has been increasing research interest in making ViTs more efficient while
retaining their task performance. Token reduction has shown to be a promis-
ing subfield which directly decreases model complexity by reducing the input
sequence through pruning or merging [18], thereby decreasing the computation
cost of the self-attention operation. Haurum et al . [18] conducted an in-depth
study of 13 different methods, and found that the baseline Top-K pruning-based
method, and its extension EViT [32], outperformed the vast majority of more
complex methods on four image classification tasks. However, token pruning has
the disadvantage that it typically requires the backbone to be fine-tuned in order
to maintain good performance even at high keep rates, which by design leads to
information loss as tokens are removed, and performs poorly on image synthesis
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Fig. 1: Illustration of the Agglomerative Clustering Method. Prior hard
merging-based methodologies have focused on using either partition-based approaches
(e.g . DPC-KNN [66] or K-Medoids [39]) or graph-based (i.e. ToMe). All of these meth-
ods globally cluster the input tokens through the use of cluster centers. In contrast,
our Agglomerative Token Clustering (ATC) method builds clusters locally, i.e.
by iteratively combining the most similar tokens, until the desired amount of tokens
remain. A step of this process is shown here, where a graph of nodes (in this case,
tokens) are connected with edges based on their similarity. The most similar pair of
nodes are combined, and the edges are updated using linkage function D, in this case
Dcomplete (Eq. 2).

tasks [2, 3]. Motivated by these observations, we focus on merging-based token
reduction methods as they show the most versatility.

We present a novel merging-based token reduction method, Agglomerative
Token Clustering (ATC), which outperforms all prior merging-based and pruning-
based token reduction methods on both classification tasks and dense computer
vision tasks such as image synthesis and object detection & segmentation, and
achieve comparable performance without any fine-tuning, i.e. off-the-shelf. This
is the most diverse set of experiments considered within token reduction, where
previous methods have been evaluated just on classification [2, 18, 32], image
synthesis [3], or detection and segmentation [36]. Through this suite of diverse
tasks we demonstrate the efficacy of the proposed ATC method.

ATC is motivated by the observation that prior merging-based methods such
as K-Medoids [39], DPC-KNN [66], and ToMe [2] all perform merging globally,
which may lead to redundant clusters. Our hypothesis is that hierarchically
merging similar, and thus redundant, observations results in more informative
groupings. A natural and robust methodology for including this notion into
token reduction is via agglomerative clustering [15], where tokens are iteratively
clustered in a bottom-up hierarchical way, see Figure 1.
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Our contributions are the following:

– We propose Agglomerative Token Clustering (ATC), a novel parameter-free
hierarchical merging-based token reduction method.

– Using ATC we achieve state-of-the-art performance on image classification,
image synthesis, and object detection & segmentation tasks, outperform-
ing all other token reduction methods, including both merging-based and
pruning-based token reduction methods.

– We show ATC can reach comparable performance to the prior fine-tuned
state-of-the-art in image classification and object detection & segmentation
when applied off-the-shelf, i.e. without any fine-tuning.

2 Related Work

Efficient Transformers. As ViTs have become widely adapted by the com-
puter vision community, there have been several attempts at making ViTs more
efficient. These attempts range from model pruning [5, 8, 9, 40, 50, 64], quan-
tization [31, 35], structured downsampling [17, 23, 37, 43], sparsification of the
attention module [4, 58], part selection modules [20, 25, 26, 54, 55], and dynami-
cally adjusting the size of input patches [1,7,12,33,56,57,65,67]. Lastly, the field
of token reduction has emerged, which is the topic of this paper.
Token Reduction. The goal of token reduction is to sparsify the sequence
of patches, also referred to as tokens, processed by the ViT. This has been
achieved through either token pruning or token merging [18]. Token pruning
focuses on removing tokens either through keeping the tokens with the highest
attention from the class (CLS) token [16, 18, 32, 38, 59, 60, 62], introducing a
gating mechanism based on the Gumbel-Softmax trick [27,28,36,46,59], sampling
based approaches [16, 63] modifying the training loop [8, 29] or reinforcement
learning [42].

Token merging, on the other hand, combines tokens instead of explicitly
pruning them. This can be done either through hard or soft merging of tokens.
Hard merging includes techniques such as the partition-based K-Medoids [18,39]
and DPC-KNN [66], as well as the bipartite graph-based approach Token Merg-
ing (ToMe) [2, 3]. Hard merging-based approaches are characterized by having
the tokens assigned to clusters in a mutually exclusive manner. In contrast, soft
merging techniques let tokens be assigned to multiple clusters resulting in clus-
ter centers being a convex combination of tokens. This combination is either
based on similarity between the spatial tokens [39], or the similarity between the
spatial tokens and a set of explicit queries which are optimized [19,47,61,68].

The token reduction field has been moving at an immense speed, resulting
in little to no comparisons between methods. This was rectified by Haurum et
al . [18], who compared 13 different token reduction methods over four image clas-
sification datasets. The study provided insights into the token reduction process
through extensive experiments, showing that the Top-K and EViT pruning-
based methods consistently outperformed all other token reduction methods on
the considered classification datasets. However, Bolya and Hoffmann found that
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merging-based methods outperform pruning-based methods for image synthe-
sis [3], while Bolya et al . showed that the merging-based ToMe [2] can perform
well on several classification tasks without any fine-tuning.

Despite its impressive performance, a core component of ToMe is the bipartite
matching algorithm, where tokens are split into two exclusive sets between which
a bipartite graph is created. This inherently limits which tokens can be merged
as there is no within-set comparison and limits the keep rate, r, such that it must
be 50% or higher. Therefore, we make a single, but important, modification to
the ToMe method, replacing the bipartite matching algorithm with the classical
agglomerative clustering method [15].

3 Agglomerative Token Clustering

Similar to previous token merging methods, the objective of ATC is to merge
redundant tokens, while preserving or enhancing the performance of the ViT
model. We insert the token merging operation between the self-attention and
Multi Layer Perceptron (MLP) modules in a ViT block. This is consistent with
prior merging-based methods, such as ToMe [2].

We believe the agglomerative clustering algorithm is a more appropriate
choice as it builds the clusters in a bottom-up manner, such that redundant
features are clustered early on, while more diverse features are kept unmodified
for as long as possible. Prior partition-based (e.g . DPC-KNN and K-Medoids)
and graph-based (i.e. ToMe) merging methods are limited by having to create
clusters globally, necessitating the selection of cluster centers which may be re-
dundant. In contrast, ATC creates clusters in a sequential manner, resulting in
a local merging approach which leads to the most redundant feature to be clus-
tered at any step in the process. We revisit the ToMe method in Section 3.1 and
agglomerative clustering in Section 3.2.

3.1 Token Merging

ToMe was designed for seamless integration into ViTs, allowing for minimal per-
formance loss without necessitating fine-tuning. Its key feature is a fast bipartite
merging operation, placed between the self-attention and MLP modules in the
ViT block. A bipartite graph is then constructed by setting the edge between
nodes in token subsets A and B equal to their similarity, where the t highest
valued edges are kept while allowing only a single edge for each node in sub-
set A. Bolya et al . investigated how to construct A and B, and found the best
performance was achieved by assigning tokens in an alternating manner. This in-
herently limits which tokens can be merged, which can lead to redundant clusters
as spatially co-located patches contain semantically similar information.

3.2 Agglomerative Clustering

Agglomerative Clustering is a classical method for bottom-up hierarchical clus-
tering, where each element is initially its own cluster [15]. The elements are com-
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bined by iteratively comparing the clusters according to some linkage function
with distance metric D(·), combining the two closest clusters in each iteration.
This is repeated until a certain stopping criteria is met, such as the number of
desired clusters, leading to a static reduction method, or a minimum distance
between clusters, leading to a dynamic reduction method. This is illustrated in
Figure 1. In this paper we consider the static reduction scenario. Similar to Bolya
et al ., we use the cosine distance as our distance metric D(·) and the keys from
the self-attention module as token features. The choice of linkage function can
have a large impact on how the elements are clustered. We consider the three
most common ones: single (Eq. 1), complete (Eq. 2), and average (Eq. 3) [41].

D(I, J)single = min
i∈I, j∈J

D(i, j) (1)

D(I, J)complete = max
i∈I, j∈J

D(i, j) (2)

D(I, J)average =
1

|I||J |
∑
i∈I

∑
j∈J

D(i, j) (3)

where I and J are clusters with elements i ∈ I and j ∈ J .
After the stopping criteria has been reached we average the tokens in each

cluster to get an updated cluster representation. However, as tokens are merged
they represent more than one input patch. In order to advantage tokens that
capture a larger spatial extent, we use the weighted average for the cluster rep-
resentation and proportional attention in the self-attention module as proposed
by Bolya et al .

4 Experiments

To evaluate the versatility and applicability of ATC, we conduct assessments
across a diverse set of tasks (image classification, image synthesis, and object
detection & segmentation) and datasets.

For the image classification task we follow the experimental protocol of Hau-
rum et al . [18], evaluating multi-class and multi-label classification performance
across four classification datasets using three DeiT models and token reduc-
tion performed at three discrete stages. We also follow the MAE experiments
of Bolya et al . [2], evaluating on the ImageNet-1K dataset with token reduc-
tion at all stages following a constant and linearly decreasing schedule. For the
image synthesis task, we follow the proposed protocol of Bolya & Hoffman [3],
incorporating the token reduction method into the Stable Diffusion image gen-
eration model [48]. Lastly, for the object detection and segmentation task we
follow the experimental protocol of Liu et al . [36], evaluating on the COCO-
2017 dataset [34]. Two versions of the ViT-Adapter model are used with the
token reduction method incorporated at three discrete stages.
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Fig. 2: Average Token Reduction
Rank (Lower is better). We com-
pare our proposed ATC method with
the hard-merging based token reduc-
tion methods investigated by Haurum
et al . [18]. We average across four keep
rates, three model capacities, and four
datasets, and plot with ±1 standard de-
viation similar to Haurum et al . We test
three versions of ATC, varying the link-
age function, and find that the three vari-
ants all outperform the prior merging-
based methods.
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Fig. 3: Percentage Point Difference
per Keep Rate. We compute the av-
erage difference between our proposed
ATC method and the best prior merging-
based methods investigated by Haurum
et al . [18] for each keep rate, measured in
percentage points. We average across the
three model capacities and four datasets.
We find that for high keep rates r =
{70, 90}% ATC is comparable to the
prior best merging method, while for r =
{25, 50}% our proposed ATC method
leads to significant performance gains.

All experiments are conducted using ATC with the single, complete, and
average linkage functions, respectively. The different linkage functions are indi-
cated using a superscript, such as ATCsingle for the single linkage function. For
the image classification and object detection & segmentation tasks we report
both off-the-shelf results, where ATC is inserted into the pre-trained model and
evaluated without any fine-tuning, and results after fine-tuning. For the image
synthesis task we report off-the-shelf results, similarly to Bolya & Hoffman [3].4

4.1 Cross-Dataset Classification Performance

Following the experimental protocol proposed by Haurum et al . [18], we evaluate
the performance of ATC across four classification datasets covering multi-class
and multi-label classification: ImageNet-1K [13], NABirds, [53] COCO 2014 [34],
and NUS-WIDE [11] datasets. ImageNet-1K and NABirds are evaluated with the
accuracy metric, while COCO and NUS-WIDE are evaluated with the mean Av-
erage Precision (mAP) metric. Token reduction is applied at the 4th, 7th, and
10th ViT block, where at each stage only r ∈ {25, 50, 70, 90}% of the available
tokens are kept. The backbone model is a DeiT [52] model trained without dis-
tillation, across three model capacities: DeiT-Tiny, DeiT-Small, and DeiT-Base.

4 Code and models will be released after manuscript acceptance.



Agglomerative Token Clustering 7

60

70

De
iT-

T
ImageNet

(Top-1 Acc %)

ToMe
ATCsingle

DPC-KNN
ATCaverage

K-Medoids
ATCcomplete

50

60

70

NABirds
(Top-1 Acc %)

60

70

COCO
(mAP %)

50

60

NUS-WIDE
(mAP %)

70

80

De
iT-

S

70

80

70
60

25% 50% 70% 90%
Keep Rate

70

80

De
iT-

B

25% 50% 70% 90%
Keep Rate

60

70

80

25% 50% 70% 90%
Keep Rate

70

80

25% 50% 70% 90%
Keep Rate

60

Fig. 4: Hard Token Merging Method Comparison with the DeiT Backbone.
We compare the hard-merging token reduction methods considered by Haurum et
al . [18] with the proposed ATC method. All methods have been fine-tuned. Model
performance is measured across keep rates, r, denoted in percentage of tokens kept
at each reduction stage, and with the DeiT-{Tiny, Small, Base} models. Comparison
with all 13 token reduction methods considered by Haurum et al . can be found in the
supplementary materials. ImageNet and NABirds performance is measured with top-1
accuracy, whereas COCO and NUS-WIDE is measured with mAP. The baseline DeiT
performance is noted with a dashed black line. Note that ToMe is limited to r ≥ 50%,
and that ATCaverage and ATCcomplete often overlap.

The models are denoted DeiT-T, DeiT-S, and DeiT-B, respectively. We consider
both the off-the-shelf scenario, where ATC is inserted into the pre-trained DeiT
models with no further training, as well as the fine-tuning scenario, where the
model is fine-tuned for 30 epochs [18]. We conduct a hyperparameter sweep fol-
lowing the setup used by Haurum et al . [18]. The final hyperparameters can be
found in the supplementary materials.

We find that across all three backbone capacities, the fine-tuned ATC meth-
ods consistently outperform or match the performance of the previously proposed
merging-based methods using all three proposed linkage functions, see Figure 2
and Figure 4 for details. We also investigate the average improvement in perfor-
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Fig. 5: Token Merging Visualization with r = 25%. We visualize the three token
merging steps for DPC-KNN [66], K-Medoids [39] and our ATCaverage on two examples
from NABirds [53] with a DeiT-B backbone. The first row is the input image, and each
subsequent row is the constructed clusters after the first, second, and third reduction
stage. In subfigure (a) we find that there is a major difference in the final clustering of
the data, where our ATC method creates separate clusters for the bird, wood pole, and
background. In contrast, DPC-KNN and K-Medoids create mostly arbitrary clusters.
Similarly in subfigure (b) we see that the DPC-KNN method creates very arbitrary
clusters, while K-Medoids and ATC create more meaningful clusters. However, the
ATC clusters still better contain the bird in the image, while the K-Medoids clusters
have background patches in all clusters. We find this to be a repeating occurrence and
believe this is the reason for the large improvement by ATC on NABirds at r = 25%.

mance between ATC and the prior best merging-based methods, see Figure 3.
We find that at keep rates of 70% and 90%, all three linkage functions achieve
comparable results, while at lower keep rates the single linkage function drops
in performance. We believe this is due to the chaining phenomenon where two
distinct clusters are merged due to outliers within the clusters [15].

However, at keep rates of 25% and 50% we find that both the average and
complete lead to large performance improvements compared to the prior best
merging methods (up to 2.5 percentage points as per Figure 3). In some cases
we even find that at keep rates of 25% we can improve performance significantly,
such as with the DeiT-S and DeiT-B backbones on NABirds, where ATC with
the average linkage function results in a 5.7 and 9.6 percentage point increase in
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accuracy over the prior state-of-the-art, respectively. Through qualitative eval-
uation, as seen in Figure 5, we can provide intuition for why ATC outperforms
prior merging-based methods. We find that DPC-KNN and K-Medoids create
arbitrary clusters whereas ATC creates more meaningful clusters even at the
third reduction stage with r = 25%.

Lastly, we find that applying ATC off-the-shelf on the DeiT backbone leads to
good performance at high keep rates, matching or even outperforming the prior
best performing merging methods. However, when the keep rate is lowered the
performance drops dramatically, which can be rectified through fine-tuning. For
full details on the off-the-shelf results, we refer to the supplementary materials.

4.2 Classification with Self-Supervised Pretraining

We follow the protocol of Bolya et al . [2] and compare the performance on
ImageNet-1K when applying token reduction on pretrained ViT models, specif-
ically the MAE models trained initially with masked image modelling [21] and
fine-tuned on ImageNet [13]. We consider the off-the-shelf performance using
the publicly available checkpoints, as well as fine-tuning using the original fine-
tuning protocol by He et al . [21]. We consider the ViT-Base, ViT-Large, and
ViT-Huge models, where token reduction is applied at every block, following the
constant and linear decreasing schedules proposed by Bolya et al .:

tl = t (4)

tl =

⌊
2t− 2tl

L− 1

⌋
, (5)

where L is the total number of ViT blocks, tl is the number of tokens to be
removed at ViT block l = {0, 1, . . . , L−1}, and t is a hyperparameter controlling
the aggressiveness of the reduction. Both schedules result in tL tokens being
removed in total, with the linear schedule removing more tokens at early layers.

We fine-tune the ViT block models using both schedules in the most ag-
gressive settings considered by Bolya et al .: ViT-B with t = 16, ViT-L with
t = 8, and ViT-H with t = 7. Note that we also fine-tune ToMe, leading to a
second set of values that are a small improvement compared to the original pa-
per. We also replicate the larger sweep over t values on off-the-shelf ViT models
with weights from different training protocols [21, 49, 51], originally performed
by Bolya et al . These are found in the supplementary materials. We find that
ATC consistently outperforms ToMe across both token reduction schedules and
when using off-the-shelf and fine-tuned models, see Table 1. We find that ATC
drastically outperforms ToMe when using the linear token scheduler, and when
using models with lower backbone capacity. This is especially observable on the
ViT-Base backbone where using a linear schedule off-the-shelf leads to a 10.5
percentage point improvement when using ATC instead of ToMe. When fine-
tuning the backbone using the same token scheduler this gap is reduced to 1.6
percentage points when fine-tuning, with ATC still outperforming ToMe. This
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Table 1: MAE Pretrained Backbone Comparison. We compare ToMe and ATC
with a self-supervised MAE backbone on ImageNet-1K. We consider three backbones:
ViT-Base, ViT-Large, and ViT-Huge. Tokens are removed at each ViT block, following
the constant (Eq. 4) or linear (Eq. 5) token schedules. The best performing method
per column is denoted in bold. A blue background indicates that the token reduction
method was applied off-the-shelf on the ViT backbone, whereas all other models have
have been fine-tuned. For each ATC method we write the performance improvement
over ToMe in parenthesis after the model accuracy.

ViT-B (t = 16) ViT-L (t = 8) ViT-H (t = 7)

Schedule Constant Linear Constant Linear Constant Linear

No Reduction 83.6 85.9 86.9

ToMe 78.5 56.6 84.2 80.1 86.0 85.0
ATCsingle (ours) 79.7 (+1.2) 65.8 (+9.2) 84.8 (+0.6) 82.5 (+2.4) 86.4 (+0.4) 85.6 (+0.6)
ATCaverage (ours) 80.1 (+1.6) 67.1 (+10.5) 84.8 (+0.6) 82.6 (+2.5) 86.4 (+0.4) 85.6 (+0.6)
ATCcomplete (ours) 80.2 (+1.7) 67.1 (+10.5) 84.9 (+0.7) 82.6 (+2.5) 86.4 (+0.4) 85.8 (+0.8)

ToMe 81.9 78.6 85.1 83.8 86.4 86.1
ATCsingle (ours) 82.2 (+0.3) 80.0 (+1.4) 85.3 (+0.2) 84.5 (+0.7) 86.6 (+0.2) 86.3 (+0.2)
ATCaverage (ours) 82.3 (+0.4) 80.2 (+1.6) 85.3 (+0.2) 84.5 (+0.7) 86.7 (+0.3) 86.3 (+0.2)
ATCcomplete (ours) 82.5 (+0.6) 80.1 (+1.5) 85.4 (+0.3) 84.3 (+0.5) 86.7 (+0.3) 86.4 (+0.3)

illustrates the clear general benefit of using ATC for adapting already trained
ViT backbones, even when using the more aggressive linear token scheduler and
without applying any fine-tuning.

4.3 Image Synthesis with Stable Diffusion

Bolya & Hoffman [3] demonstrated how a modified ToMe algorithm can be
incorporated into an image generation model, specifically Stable Diffusion [48],
without any fine-tuning, resulting in improved quality of the generated images as
well as generation speed. We follow the experimental setup of Bolya & Hoffman,
inserting the token reduction method only over the self-attention block. We
generate two images with a resolution of 512 × 512 pixels for each class in the
ImageNet-1K dataset, following the exact setting from Bolya & Hoffman [3].

We implement the setup using the HuggingFace Diffusers framework [44], use
the stable-diffusion-v1-5 model, and use the exact same seed for each model.
We investigate the effect when using keep rates of r ∈ {40, 50, 60, 70, 80, 90}%.
In order to evaluate the quality of the generated images, we measure the Fréchet
Inception Distance (FID) score [24] between the generated images and a refer-
ence dataset consisting of 5000 images, created by taking the first five validation
images per ImageNet-1K class.

We compare the FID scores of the ToMe and ATC models in Table 2. The
ToMe results are computed using the same setup as the ATC models, and there-
fore differ from the original paper. Even though our generated images lead to
a generally higher (thus worse) FID for ToMe, we find that the general trends
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Table 2: Stable Diffusion FID Comparison. We apply ToMe and ATC over the
self-attention blocks to an off-the-shelf (i.e. frozen) Stable Diffusion model, denoted
with a blue background. We compare the FID score across different keep rates (Note
that a lower FID score is better). The best FID score per column is denoted in bold,
and the best per row is underlined.

r (%) 100 90 80 70 60 50 40

ToMe 33.80 33.77 33.61 33.59 33.57 33.63 33.67
ATCsingle (ours) 33.80 33.63 33.48 33.53 33.43 34.01 36.95
ATCaverage (ours) 33.80 33.51 33.45 33.33 33.40 33.36 33.22
ATCcomplete (ours) 33.80 33.67 33.71 33.70 33.74 33.56 33.65

Table 3: Object Detection & Segmentation Results. We compare the perfor-
mance of ATC and ToMe on the dense object detection & segmentation task using the
COCO 2017 dataset, following Liu et al . [36]. The ViT-Adapter method is used, with
DeiT-T and DeiT-S backbones. The best performing method per column is denoted in
bold. A blue background indicates that ATC and ToMe were applied off-the-shelf on
the frozen ViT-Adapter backbone, whereas all other models have been fine-tuned.

(a) ViT-Adapter-T Backbone

mAPbox mAPmask

ViT-Adapter-T 45.8 40.9

r (%) 25 50 70 90 25 50 70 90

ToMe - 39.9 45.3 45.8 - 36.2 40.5 40.8
ATCsingle (ours) 13.9 38.5 44.8 45.7 12.6 34.6 39.9 40.8
ATCaverage (ours) 33.8 43.7 45.5 45.8 31.5 39.2 40.7 40.8
ATCcomplete (ours) 34.9 43.9 45.6 45.8 32.3 39.3 40.6 40.8

ToMe - 43.7 45.7 46.0 - 39.3 40.9 41.0
ATCsingle (ours) 36.9 43.5 45.5 45.9 33.6 39.1 40.7 40.9
ATCaverage (ours) 42.4 45.2 45.8 45.9 38.5 40.5 40.8 41.1
ATCcomplete (ours) 42.6 45.3 45.9 46.0 38.7 40.5 41.0 41.1

(b) ViT-Adapter-S Backbone

mAPbox mAPmask

ViT-Adapter-S 48.5 42.8

r (%) 25 50 70 90 25 50 70 90

ToMe - 42.4 47.8 48.4 - 38.2 42.3 42.7
ATCsingle (ours) 16.9 41.9 47.4 48.4 14.4 36.8 41.8 42.7
ATCaverage (ours) 37.2 46.5 48.0 48.4 33.7 41.2 42.4 42.7
ATCcomplete (ours) 38.3 46.6 48.0 48.4 34.7 41.3 42.4 42.7

ToMe - 46.4 48.2 48.3 - 41.4 42.6 42.7
ATCsingle (ours) 40.3 46.4 47.9 48.3 36.2 41.1 42.3 42.6
ATCaverage (ours) 45.1 47.8 48.3 48.5 40.2 42.4 42.6 42.9
ATCcomplete (ours) 45.3 47.8 48.2 48.6 40.5 42.3 42.6 42.7

observed in the original paper still hold. We find that across all linkage functions
the ATC model outperforms or matches the ToMe model. While ToMe achieves
a minimum FID of 33.57, this is outperformed by both the single and average
linkage functions with FID scores of 33.43 and 33.22, respectively. The complete
linkage function in general performs worse than both the single and average link-
age functions, but we also find that the results with single linkage diverges when
r ≤ 50%. We observe that the average linkage function leads to better results as
the keep rate is reduced, achieving the best performance when r = 40%, whereas
the other methods peak at r = 50% and r = 60%. By looking at the generated
images, see Figure 6, we find that the average linkage function manages to keep
a lot more of the distinctive patterns and contextual background. In compari-
son, the single linkage function loses the head pattern, and all methods except
ATCaverage convert the tree branch to a tree pole resulting in a change in pose
of the generated magpie.
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ToMe ATCsingle ATCaverage ATCcomplete

Fig. 6: Image Synthesis Visualization. We visualize image synthesis results for the
“magpie” ImageNet class. The first row is the standard Stable Diffusion result, with
each subsequent row having token merging applied with r ∈ {80, 60, 40}%. Examples
for all considered keep rates and more classes can be found in the supplementary
materials. We find that as the keep rate is lowered the ATCsingle method drastically
changes the image, specifically the head and patterns of the magpie, as well as having
a more monochrome background. We see that even at r = 40% ATCaverage manages to
keep most of the details such as the branch the magpie is sitting on, whereas ToMe and
ATCcomplete keep the general patterns but switches from a branch to a wooden pole
(highlighted with a red arrow), leading to a change in pose of the generated magpie.
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4.4 Object Detection and Segmentation

Liu et al . [36] conducted a systematic comparison of several token pruning meth-
ods for object detection and segmentation on the COCO 2017 dataset [34]. The
Mask-RCNN model [22] is used for predicting bounding boxes and segmentation
masks with a ViT-Adapter backbone model [10], building upon an ImageNet
pretrained DeiT model [52]. Instead of the typical windowed self-attention used
in ViT-Adapter, Liu et al . use global self-attention and train using the original
ViT-Adapter settings for 36 epochs. Tokens are reduced at the 4th, 7th, and 10th
ViT block, and a DeiT-Tiny and DeiT-Small backbone are used. When apply-
ing the token reduction method, the ViT-Adapter-Tiny and ViT-Adapter-Small
models are fine-tuned for 6 and 4 epochs, respectively, using the MMDetection
framework [6] and following the training protocol of Liu et al . Unlike the original
protocol by Liu et al . which only considered a keep rate of r = 70%, we extend
the considered keep rates to r ∈ {25, 50, 70, 90}%, similar to the protocol used
by Haurum et al . [18]. We evaluate both ToMe and ATC in the off-the-shelf and
fine-tuned scenarios. As the Injector and Extractor modules in the ViT-Adapter
expect the original number of tokens, we back-project through the clustering
when relevant, leading to the original number of patches.

As is apparent in Table 3, we find that both ToMe and ATC are very strong
token reduction methods for detection and segmentation. When applying ToMe
and ATC off-the-shelf (i.e. without fine-tuning the ViT-Adapter backbone) with
keep rates r ∈ {70, 90}%, both methods can match the detection and segmen-
tation performance of the baseline ViT-Adapter backbones. When the keep rate
is lowered to r = 50% we find that our ATC method with the average and com-
plete linkage function outperforms ToMe by 4 percentage points in detection
mAP and 3 percentage points in segmentation mAP.

When fine-tuning the Tiny and Small backbones we see major improvements
at keep rates of 25% and 50%, such as a 26 and 22 percentage points improve-
ment in bounding box mAP for ATCsingle with the Tiny and Small backbones
and r = 25%, respectively. In comparison, fine-tuning has less of an effect on
ATCaverage and ATCcomplete as the off-the-shelf performance is already high. We
also observe that after fine-tuning, our ATC method still outperforms ToMe,
though with a smaller margin, and in several cases outperforms the baseline
ViT-Adapter performance. Lastly, we see that by fine-tuning, we can get com-
parable performance to the baseline method at keep rates of 50%, whereas ToMe
is several percentage points worse than the baseline ViT-Adapter.

5 Discussion

Through our experiments we have demonstrated how our proposed ATC method
consistently outperforms prior merging-based token reduction methods across a
diverse set of tasks. This includes the prior best merging-based method ToMe,
which we confidently outperform across all considered tasks. While our analy-
sis have been focused on comparing ATC with prior merging-based approaches,
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we also find that ATC outperforms pruning-based methods on the image clas-
sification task (Following the setup from Sec. 4.1) and object detection and
segmentation, where ATC outperforms the prior state-of-the-art pruning-based
SViT method from Liu et al . [36]. Detailed experimental results including the
pruning-based methods are available in the supplementary materials, and estab-
lishes that our ATC method is the current best token reduction method.

6 Limitations

We show that ATC is a very adaptable method, achieving state-of-the-art per-
formance across the different classification, image synthesis, and object detection
& segmentation tasks considered. However, ATC is not without its limitations.
Firstly, ATC requires the selection of a linkage function, adding an extra hy-
perparameter. While there is not a specific linkage function that is the best
at all tasks, we find that the average or complete linkage functions are good
general choices, whereas the single linkage function often underperforms when
working with more aggressive keep rates, matching prior linkage function recom-
mendations [15]. Secondly, we find that the inference throughput of the current
implementation of ATC is hampered by the available implementations of the
agglomerative clustering functions, which are all non-batched and often CPU-
bounded. This is discussed and analyzed at lengths in the supplementary ma-
terials. However, there are also clear indications that these limitations can be
lifted if the current frameworks are slightly modified.

7 Conclusion

In this work, we introduce Agglomerative Token Clustering (ATC), a novel hard-
merging token reduction approach grounded in the principles of classical bottom-
up hierarchical clustering. ATC distinguishes itself by efficiently merging redun-
dant observations early on, thus preserving the semantic richness of more diverse
observations. We evaluate our method across the most diverse sets of tasks con-
sidered in the literature, covering both classification, synthesis, detection, and
segmentation tasks. In image classification, image synthesis, and object detection
& segmentation, ATC sets a new state-of-the-art, highlighting its significant con-
tribution to the field. We also demonstrate that ATC can achieve comprable per-
formance to the prior state-of-the-art without any fine-tuning, i.e. when applied
off-the-shelf. We are optimistic that ATC will inspire subsequent advancements,
leveraging classical clustering methods to enhance modern neural architectures.
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