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Abstract. We propose StereoGlue, a method designed for joint feature
matching and robust estimation that effectively reduces the combinato-
rial complexity of these tasks using single-point minimal solvers. Stere-
oGlue is applicable to a range of problems, including but not limited
to relative pose and homography estimation, determining absolute pose
with 2D-3D correspondences, and estimating 3D rigid transformations
between point clouds. StereoGlue starts with a set of one-to-many tenta-
tive correspondences, iteratively forms tentative matches, and estimates
the minimal sample model. This model then facilitates guided matching,
leading to consistent one-to-one matches, whose number serves as the
model score. StereoGlue is superior to the state-of-the-art robust esti-
mators on real-world datasets on multiple problems, improving upon a
number of recent feature detectors and matchers. Additionally, it shows
improvements in point cloud matching and absolute camera pose esti-
mation. The code is at: https://github.com/danini/stereoglue.

Keywords: robust estimation · RANSAC · feature matching

1 Introduction

Matching multiple observations (e.g ., image-to-image, image-to-point cloud, point
cloud-to-point cloud) of the same scene is a fundamental problem in computer
vision and robotics with a wide range of applications. These include image
retrieval [2, 61, 75, 80, 101], Structure-from-Motion [1, 10, 50, 94, 119], localiza-
tion [63, 76, 89, 91], SLAM [31, 32, 37, 72], multi-view stereo [24, 40, 41, 54], and
point cloud mosaicking [22,42,107,111].

Conventionally, the matching process adheres to a three-stage framework:
local feature detection, feature matching, and geometric robust estimation. Its
sequential nature poses a significant challenge, as failures in any stage lead to
an overall failure, undermining the reliability of the entire process. While re-
cent algorithms [23, 79, 98, 108] perform feature detection and matching jointly,
at the cost of significantly increased run-time for all-pair 3D reconstruction, a
gap remains in the literature of methods for simultaneous matching and robust
estimation. To address this deficiency, we introduce StereoGlue, a novel method
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Fig. 1: For two-view estimation, the steps of the proposed StereoGlue are: (1) fea-
tures with affine shapes are detected in the input images, e.g ., by SuperPoint [30]
combined with AffNet [68]. (2) For each feature in the source image, the matching by,
e.g . SuperGlue [88], is often ambiguous, especially at repeated patterns. Thus, we form
one-to-many matches for each point in the source image. (3) StereoGlue iteratively
selects a candidate one-to-one correspondence and estimates the model (e.g ., relative
pose) by a single-point solver. Guided sampling then forms one-to-one correspondences
consistent with the estimated model to calculate its score and select its inliers.

performing joint matching and robust estimation by iteratively selecting poten-
tial matches, estimating the model, and performing guided matching to calculate
the model score and select its inliers. While most methods must commit to one-
to-one matches to keep the problem tractable, we relax this to one-to-k matches,
making matching more robust and accurate in real-world scenes.
Feature detection and matching. Local image features are the main workhorse
in 3D reconstruction. Traditionally, such features encompass three main steps:
(scale-covariant) keypoint detection, orientation estimation, and descriptor ex-
traction. Keypoint detection typically operates on a scale pyramid, using hand-
crafted response functions such as Hessian [17, 66], Harris [46, 66], Difference of
Gaussians [61], or learned alternatives like FAST [86] or Key.Net [15]. Keypoint
detection provides a triplet (x, y, scale) that defines a square or circular patch.
Subsequently, the patch orientation is obtained using handcrafted approaches,
such as the dominant gradient orientation [61] or center of mass [87], or learned
ones like [59,68,112]. Optionally, the affine-covariant shape [16,68] might be de-
termined. Finally, the patch is geometrically rectified and described using local
patch descriptors such as SIFT [61], HardNet [67], SOSNet [100], and others.

Recent advances in deep learning have led to feature detection and descrip-
tion methods that do not rely on patch extraction. Methods like SuperPoint [30],
R2D2 [84], D2Net [34] and DISK [103] employ feedforward Convolutional Neural
Networks and assume up-is-up image orientation. Some recent methods have pro-
posed learning matching directly, such as SuperGlue [88] or LightGlue [60], while
others skip the detection step entirely [23,98,108]. While operating in a different
domain, state-of-the-art pairwise point cloud registration algorithms [49,79,114]
perform similar steps to find corresponding 3D points.
Robust Estimation. Feature matching often leads to several outliers inconsis-
tent with the scene geometry. This holds especially in wide-baseline cases, where
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Algorithm 1 StereoGlue
Input: P1, P2 – two sets of data points
Output: M∗ – correspondences, θ – model params.

θ∗ ← 0, q∗ ← 0, M∗ ← ∅ ▷ Initialization
while ¬Terminate() do
S ← NextBestMatch(P1,P2) ▷ Generate a match
θ ← EstimateModel(S) ▷ A one-point solver
M← GuidedMatching(θ,P1,P2)
q ← GetScore(θ,M)
if q > q∗ then ▷ Update the best model

q′, θ′,M′ ← LocalOptimization(θ,P1,P2)
θ∗ ← θ′, q∗ ← q′, M∗ ←M′

the inlier ratio often falls below 10%. Robust estimation is thus crucial to find
the sought model (e.g ., relative pose) and the matches consistent with it. Clas-
sical approaches employ a RANSAC-like [38] hypothesize-and-verify strategy,
iteratively applying minimal solvers [38, 47, 48, 56, 57, 97] to random subsets of
the input data until an all-inlier sample is found. To improve upon RANSAC,
various techniques have been developed, such as local optimization methods (LO-
RANSAC, LO+-RANSAC, and GC-RANSAC) [8,27,58], advanced scoring func-
tions (MLESAC, MSAC, MAGSAC, and MAGSAC++) [4,9,11,102], speed-ups
using probabilistic sampling (PROSAC, NAPSAC, and P-NAPSAC) [11,25,73],
preemptive verification (SPRT and SP-RANSAC) [13, 26], degeneracy checks
(DEGENSAC, QDEGSAC, and NeFSAC) [21, 28, 39], and methods for auto-
tuning of the inlier threshold (MINPRAN and a contrario RANSAC) [69,85,96].

Recently, several learning-based algorithms have been proposed for robust
relative pose estimation. Such methods generally fall into two main categories:
ones aiming to learn correspondence weights for an iteratively re-weighted least-
squares approach [82, 99, 113, 115] or for outlier pre-filtering [117]. Other ones
learn importance scores to condition the random sampling process [18,109,110].

Motivation. Despite the recent progress, feature matchers still have to com-
mit to one-to-one matches even if such a decision is ambiguous (e.g ., due to
repetitive structures) without knowing the underlying scene geometry. On the
other hand, jointly performing feature matching and robust model estimation
is a prohibitively complex problem, making it impractical in the general case.
For example, when matching n features, the complexity is n2. Injecting this into
the complexity of robust estimation, we get

(
n2

m

)
, where m is the sample size to

fit a minimal model, such as m = 5 for essential matrix estimation. This makes
the probability of selecting an all-inlier sample that leads to an accurate model
extremely low. Having 1000 features and estimating an essential matrix requires
trying more than 1026 minimal sample combinations.

Here, we recognize that the problem complexity can be tamed by employing
single-point solvers [5,36,43–45,93]. This reduces the complexity of the joint pro-
cedure to that of the matching O(n2), as m = 1 in this special case. As the main
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Algorithm 2 Model Scoring and Guided matching
Input: P1 - points, θ - model, H - hashing fn.

K - k best match, ϵ - thr., W - weight fn., Q - scoring
Output: M - correspondences, q - model score
M← ∅ ▷ Initialization to empty set
for each p1 ∈ P1 do ▷ Each point in the 1st domain

r∗ ← ϵ, p∗
2 ← 0 ▷ Best residual and match

for each p2 ∈ (K(p1) ∩H(p1, θ)) do
if ϕ((p1,p2), θ) < r∗ then

r∗ ← ϕ((p1,p2), θ), p∗
2 ← p2

if r∗ < ϵ then
M←M∪ {(p1,p

∗
2)}

q ← q +W (K(p1))Q(θ)

contribution, we propose StereoGlue, a joint matching and robust estimation
pipeline that is general and improves upon the state-of-the-art robust estima-
tors. StereoGlue uses an off-the-shelf feature matcher to obtain a soft matching,
efficiently forming one-to-many correspondence pools, which are leveraged to si-
multaneously estimate the sought model and form consistent one-to-one matches.
Additionally, we explore various minimal solvers for relative [5, 6, 36] and abso-
lute camera pose estimation [105], for pairwise point cloud registration [51], and
we propose one for homographies. StereoGlue outperforms state-of-the-art esti-
mators by a significant margin on various real-world and large-scale datasets.

2 Joint Matching and Estimation

StereoGlue is proposed in this section to robustly estimate the parameters of
the sought model while simultaneously performing feature matching. See Fig. 1.
The pseudo-code of the algorithm is in Alg. 1. Similar to RANSAC, we formalize
the problem as iterative sampling and model estimation. However, we assume to
have a solver that estimates the model from one match. This allows formalizing
function NextBestMatch that selects sample S in each iteration, comprising a
single match. Model θ is estimated from S.

After estimating the model, we perform guided matching [10, 64, 95] using
model θ to find a set M of correspondences consistent with the model parame-
ters. The model quality q is calculated from M, e.g ., as its support (i.e., |M|),
or by any existing scoring technique. If a new best model is found, we apply local
optimization to improve its accuracy. The algorithm runs until the termination
criterion is triggered. Next, we will describe each step in depth.
Next Best Match Selection. Suppose that we are given n1, n2 ∈ N+ features
in the first and second domains (e.g ., image), respectively. Forming correspon-
dences has quadratic complexity O(n1n2). Thus, iterating through all potential
matches severely affects the run-time. To alleviate this computational burden, we
employ an off-the-shelf matcher to obtain the k best matches for each feature in
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Table 1: Relative pose estimation on PhotoTourism [52] on a total of 9900
image pairs. We report the avg. and median pose errors (in degrees; max. of the
translation and rotation errors), their AUC scores, and the inlier numbers. We use
the 3PC+uG [33] and the 1AC+uG [43] solvers with upright gravity, the 1AC+mD
solver [36] on depth from MiDaS-v3 [81,83], and the five point method (5PC) [74]. Up-
right gravity means that the solvers do not need gravity measurements – they assume it
is [0,−1, 0]. For solvers requiring more than a single match, we apply the state-of-the-
art MAGSAC++ [11]. Levenberg-Marquardt method [71] minimizes pose error on all
inliers. The best values are bold in each group. The absolute best ones are underlined.

Features Estimator Solver AVG ↓ MED ↓ AUC@1◦ ↑ @2.5◦ ↑ @5◦ ↑ @10◦ ↑ @20◦ ↑ # inliers

SuperPoint + SuperGlue
StereoGlue 1AC+uG 2.6 0.7 34.5 55.9 70.3 81.3 89.2 394

1AC+mD 2.6 0.8 34.5 56.0 70.4 81.4 89.2 395

MAGSAC++ 5PC 4.1 1.3 23.0 43.5 59.9 74.1 84.6 276
1PC+uG 4.0 1.3 23.0 43.4 59.6 74.0 84.7 276

ALIKED + LightGlue
StereoGlue 1AC+uG 3.0 0.5 41.4 62.0 74.9 83.9 89.9 510

1AC+mD 3.6 0.6 38.7 58.5 71.2 80.5 87.2 532

MAGSAC++ 5PC 3.4 0.6 39.0 60.7 74.1 83.4 89.4 547
1PC+uG 4.9 0.6 37.8 59.2 72.3 81.2 87.1 548

DeDoDe + LightGlue
StereoGlue 1AC+uG 2.3 0.5 43.5 64.3 76.7 85.4 91.2 361

1AC+mD 3.7 0.5 41.6 60.7 72.8 81.7 88.1 361

MAGSAC++ 5PC 3.2 0.7 38.1 58.0 71.6 81.7 88.7 273
1PC+uG 4.3 0.7 36.8 56.3 69.5 79.3 86.1 273

DoG-8k + HardNet + AffNet
StereoGlue 1AC+uG 3.4 0.7 38.7 57.4 70.0 79.9 87.4 286

1AC+mD 5.2 0.9 22.2 50.6 62.6 73.0 81.7 202

MAGSAC++ 5PC 6.3 1.4 27.7 42.7 54.3 66.2 77.2 210
1AC+uG 5.1 0.9 33.3 50.5 62.5 72.9 81.6 257

DoG-8k + HardNet + Adalam

M
A

G
SA

C
+

+

5PC 8.8 0.8 34.3 52.5 65.0 74.8 82.4 307
LoFTR 5PC 3.6 1.3 22.5 43.4 59.6 73.7 84.5 866
LoFTR 3PC+uG 4.1 1.4 21.0 40.9 56.7 71.1 82.6 878

DISK 5PC 4.7 0.9 27.9 44.3 55.7 64.5 71.2 474
DISK 3PC+uG 4.5 0.8 29.1 45.8 57.1 66.1 72.9 617

R2D2 + NN 5PC 13.0 2.7 13.6 28.8 42.9 57.9 70.3 169
R2D2 + NN 3PC+uG 12.9 2.7 13.9 28.8 42.8 57.5 70.2 169

DoG-8k + SOSNet + NN 5PC 40.4 5.9 12.8 23.9 33.5 43.3 52.9 55
DoG-8k + SOSNet + NN 3PC+uG 40.4 5.9 12.9 23.8 33.4 43.3 52.9 55

the source domain, where k ≪ n2, k ∈ N+. For nearest-neighbors-based descrip-
tor matching, like in SIFT [61], we can simply obtain the k-nearest-neighbors
(kNN) to get the one-to-many pool. For algorithms like SuperGlue [88], Light-
Glue [60] or GeoTransformer [79] that solve the optimal transport problem, we
can obtain the k best matches from the matching score matrix as the ones with
the k highest scores. This allows StereoGlue to explore the k best matches and,
thus, reduce the matching ambiguity during robust estimation. For example, see
Fig. 1, where the potential matches are on the windows, and SuperGlue struggles
to find the correct correspondence due to the repetitive nature of the features.

As the objective is to find a good correspondence that leads to an accu-
rate model early, we employ a PROSAC-like [25] procedure where the poten-
tial matches are ordered by a quality prior. For matchers performing nearest
neighbors search, we use the SNN ratio [62]. For other matchers, we utilize the
matching score. Note that learning-based techniques [18,21] can also be used to
predict importance scores that can be used quality prior.
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Table 2: Relative pose estimation on ScanNet [29] on the 1500 image pairs
from [88, 98]. We report the avg. and median pose errors (in degrees; max. of the
translation and rotation errors), their AUC scores and the inlier numbers. We use the
3PC+uG [33] and 1AC+uG [43] solvers with upright gravity, the 1AC+mD solver [36]
on depth from MiDaS-v3 [81, 83], and the five point method (5PC) [74]. For solvers
requiring more than a single match, we apply the state-of-the-art MAGSAC++ [11].
Finally, the Levenberg-Marquardt method [71] minimizes the pose error on all inliers.
The best values are bold in each group. The absolute best ones are underlined.

Features Estimator Solver AVG ↓ MED ↓ AUC@1◦ ↑ @2.5◦ ↑ @5◦ ↑ @10◦ ↑ @20◦ ↑ # inliers

SuperPoint + SuperGlue
StereoGlue 1AC+uG 12.9 5.8 0.8 7.1 20.6 39.7 58.4 119

1AC+mD 14.0 5.5 0.8 7.0 20.7 39.8 58.1 110

MAGSAC++ 5PC 21.4 6.5 0.7 5.9 17.3 33.9 50.9 89
3PC+uG 32.4 21.0 0.5 4.2 11.5 21.9 33.1 84

ALIKED + LightGlue
StereoGlue 1AC+uG 23.0 6.8 0.7 6.6 18.7 35.1 50.7 138

1AC+mD 24.3 6.9 0.6 6.6 18.8 34.8 49.8 138

MAGSAC++ 5PC 18.0 7.1 0.7 6.3 17.7 33.0 48.0 176
1AC+uG 16.9 7.2 0.6 5.6 16.9 32.6 48.5 186

DeDoDe + LightGlue
StereoGlue 1AC+uG 26.6 9.7 0.5 5.3 15.6 29.6 43.8 102

1AC+mD 27.2 10.3 0.8 5.5 15.2 28.9 43.0 101

MAGSAC++ 5PC 14.7 6.8 0.6 5.6 15.6 28.7 42.0 88
1AC+uG 15.2 7.4 0.7 5.2 14.5 27.7 41.3 88

DoG-8k + HardNet + AffNet
StereoGlue 1AC+uG 26.8 15.0 0.7 5.0 13.0 24.2 37.2 146

1AC+mD 24.7 12.4 0.6 4.5 12.6 25.3 39.6 120

MAGSAC++ 5PC 33.7 29.9 0.3 2.3 6.6 13.6 22.9 81
1AC+uG 25.3 13.0 0.3 3.1 9.0 18.4 29.4 64

DoG-8k + HardNet + Adalam

M
A

G
SA

C
+

+ 5PC 54.1 17.8 0.5 3.7 11.1 22.3 34.9 101
LoFTR 5PC 30.3 6.6 1.1 8.3 22.5 41.2 57.7 468

R2D2 + NN 5PC 32.9 13.6 0.6 4.2 12.0 24.6 38.1 190
R2D2 + NN 3PC+uG 18.9 10.6 0.4 2.8 8.2 16.8 27.4 137

DoG-8k + SOSNet + NN 5PC 33.3 29.7 0.4 2.6 6.6 13.6 23.4 78
DoG-8k + SOSNet + NN 3PC+uG 60.8 36.4 0.3 1.6 5.3 12.4 22.5 38

Scoring and Guided Matching. Assume that we are given a model θ ∈ Rdθ

estimated from a single correspondence (dθ ∈ N is the dimensionality of the
model manifold), point sets P1 and P2 in the two domains, and a point-to-
model residual function ϕ : Rdθ ×Rdp → R, where dp ∈ N is the data dimension.
Model θ can be, for example, an essential matrix and ϕ the Sampson distance
or symmetric epipolar error. In short, we iterate through all potential matches
and select the pair with the lowest point-to-model residual for each point in the
first domain. Finally, the number of consistent correspondences serves as the
model score. The pseudo-code for the guided sampling is in Alg. 2. The inputs
of the algorithm are the points P1 in the first domain; model θ; a function
K : P1 → Pk

2 assigning the k best match in the second domain to a point in
the first one; the inlier-outlier threshold ϵ ∈ R+; a weighting W : R → R, a
model scoring Q : Rd → R, and a hashing function H : P1 × Rd → P∗

2 . We use
MAGSAC++ [11] as scoring function Q to calculate the model score.

Given point p1 and model θ, the purpose of the hashing function H is to
efficiently select matches from P2 that are consistent with θ when paired p1,
i.e., ∀p2 ∈ H(p1, θ) : ϕ(p1,p2) ≤ ϵ. Such H can be constructed for all popular
f : Rn → Rm mappings, such as homography or epipolar geometry, using regular
grids [14]. We adapt the method proposed in [14] for all tested problems.
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Table 3: Homography estimation on HPatches [3]. The AUC scores and avg. times
are reported. StereoGlue is applied with the proposed 1AC+uG-H solver assuming
upright gravity. We also run MAGSAC++ [11] with the 4PC [47] and 1AC+uG-H
solvers. The best values are bold in each group, the absolute bests are underlined.

Features Estimator Solver AUC@1px ↑ @2.5px ↑ @5px ↑ @10px ↑ Time (secs) ↓

SuperPoint + SuperGlue
StereoGlue 1AC+uG-H 50.5 73.9 84.9 91.1 0.04

MAGSAC++ 1AC+uG-H 45.6 71.7 83.9 90.9 0.66
4PC 37.9 65.6 79.0 90.1 0.60

DoG-2k + HardNet + AffNet
StereoGlue 1AC+uG-H 40.1 68.0 81.4 88.8 0.29

MAGSAC++ 1AC+uG-H 40.3 68.8 82.3 89.8 0.11
4PC 40.9 69.3 82.7 90.4 0.01

ALIKED + LightGlue
StereoGlue 1AC+uG-H 68.5 81.9 89.6 93.4 0.22

MAGSAC++ 1AC+uG-H 68.4 81.4 88.8 92.5 0.07
4PC 67.8 81.2 89.1 93.0 0.02

DeDoDe + LightGlue
StereoGlue 1AC+uG-H 66.5 79.6 87.3 91.1 0.03

MAGSAC++ 1AC+uG-H 65.4 78.1 85.9 89.9 0.05
4PC 65.6 78.7 86.6 90.7 0.01

LoFTR

M
A

G
SA

C
+

+

4PC 41.8 68.6 81.2 87.9 0.40
DoG-2k + SOSNet + NN 1AC+uG-H 38.3 65.5 79.5 87.4 0.47
DoG-2k + SOSNet + NN 4PC 36.9 63.3 77.0 85.1 0.25

R2D2 + NN 1AC+uG-H 27.6 51.5 65.9 75.1 0.20
R2D2 + NN 4PC 27.4 51.0 65.5 75.4 0.09
DISK + NN 1AC+uG-H 25.1 51.8 68.5 77.8 0.29
DISK + NN 4PC 25.0 51.5 68.1 78.7 0.20

We found it important to use a weighting W in the score calculation, es-
pecially when estimating relative pose, i.e., fundamental or essential matrix.
The reason is that the point-to-model residual (e.g ., Sampson distance) being
zero does not necessarily mean it is a correct correspondence. We are unable
to measure the translation along the epipolar lines [47]. Without accounting
for this, the process hallucinates many incorrect matches consistent with the
found model. The model has lots of inliers, while being incorrect. Therefore,
for cases with such residual functions, we introduce an additional parameter
µ ∈ [0, 1] that will act similarly to the Lowe ratio threshold [61] or Wald crite-
rion [106]. For each point p1, we are given K(p1) = {p1

2, ...,pk
2} with matching

scores S(p1) = {s112, ...sk12} from the feature matcher. We only keep those poten-
tial matches from K(p1), where the matching score si12 ≥ µ (maxS(p1)). Thus,
K ′(p1) = {pi

2 | pi
2 ∈ K(p1)∧si12 ≥ µ (maxS(p1))}. Weight W (p1) = |K ′(p1)|−1

in the proposed algorithm. Therefore, the weight is inversely proportional to the
number of matches that have similar matching scores.

Local Optimization. In state-of-the-art robust estimators [8, 11, 27], local op-
timization is crucial to achieve high accuracy. Thus, when a new best model is
found, we apply a few iterations of inner RANSAC only on the selected matches
as proposed in [58]. In practice, the LO runs only log t times [27], where t is the
total iteration number of the outer loop. The iteration number spent inside the
local optimization is set to a small value, e.g ., 20.
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3 Solvers from a Single Correspondence

This section discusses minimal solvers for various problems capable of estimating
a model from a single match. Such solvers can be designed by making assump-
tions about the model manifold or leveraging rich features. Under assumptions,
we mean prior constraints that allow for reducing the degrees of freedom. For
example, we can assume that the camera is mounted to a moving vehicle and,
thus, the relative rotation between two frames acts only around the vertical axis,
and the y component of the translation is zero. Under rich features, we mean
ones that provide more constraints than solely the point locations. Such features
include affine correspondences (AC) [12], oriented 3D points, or surface patches.

Relative Pose can be estimated from a single AC accompanied with either
monocular depth predictions [36] or gravity direction [43]. Assuming a known
direction is not restricting. Consumer devices are usually equipped with Inertial
Measurement Units (IMUs) that provide accurate gravity direction by default.
In case of unknown gravity, it is often safe to assume upright orientation [33],
especially when the estimator runs LO that alleviates the impact of a noisy prior.

Absolute Pose can be estimated from a single AC by the recent P1AC
solver [105]. While the method requires the 3D points to be oriented, such in-
formation can be easily obtained from the point cloud of the stored 3D map.

Rigid Transformation. Given a 3D-3D correspondence predicted by, e.g .,
GeoTransformer [79], the Q-REG algorithm [51] fits a quadratic surface to each
point, considering their neighbors in the point cloud. The principle curvatures of
this local quadratic surface serve as a local coordinate system. In case of having
a match, the pair of local coordinate systems provide the relative rotation. The
point locations give the translation between the point clouds.

Homography. As we are unaware of homography solvers that do not assume
special camera motions, we propose a novel one leveraging ACs and known grav-
ity directions. The design and equations of the solver are detailed in Appendix A.

4 Experiments

StereoGlue is evaluated on real-world datasets for relative pose, homography,
absolute pose, and rigid transformation estimation. All experiments were imple-
mented in C++ and run on an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz.

4.1 Relative Pose Estimation

Affine Features. As existing single-point solvers require ACs, we need to obtain
them from images. The standard way is to use a local feature detector, like
DoG [61] or Key.Net [15], estimate keypoint locations and scales, and use the
patch-based AffNet [68] to get affine shapes. Finally, a patch-based descriptor,
like HardNet [67] or SOSNet [100], runs. This approach is among leaders in the
IMC 2020 benchmark [52]. The second way is to use handcrafted AC detectors,



StereoGlue: Robust Estimation with Single-Point Solvers 9

Table 4: Results of different affine correspondence detectors.

Detector Desc. +AffNet AUC@1◦ 2.5◦ 5◦ 10◦ 20◦

DoG-8k [61]

H
ar

dN
et

+
N

N ✓ 38.7 57.4 70.0 79.9 87.4
Key.Net [15] ✓ 22.6 38.8 51.1 62.7 73.6
DISK [103] ✓ 16.4 27.7 37.9 49.6 63.0
MSER [65] ✗ 13.6 24.3 34.4 46.2 58.6

SP [30] ✓ 11.5 22.0 31.6 42.9 55.4
WαSH [104] ✗ 0.0 0.1 0.8 4.0 13.6

SP [30] +NN ✓ 8.7 17.5 26.4 37.0 48.7
SP [30] +SG ✓ 34.5 55.9 70.3 81.3 89.2

DISK [103] +NN ✓ 30.1 47.3 59.5 69.6 77.7

(a) Affine features on PhotoTourism [52] used
inside StereoGlue on a total of 9900 image pairs.

Detector Desc. +AffNet AUC@1◦ 2.5◦ 5◦ 10◦ 20◦

DoG-8k [61]

H
ar

dN
et

+
N

N ✓ 0.5 4.5 12.6 25.3 39.6
SP [30] ✓ 0.4 2.6 7.7 16.3 26.9

DISK [103] ✓ 0.3 2.2 6.3 13.4 21.3
Key.Net [15] ✓ 0.3 1.8 5.3 10.7 17.4
MSER [65] ✗ 0.1 1.2 3.5 7.2 12.5

WαSH [104] ✗ 0.0 0.1 0.5 1.9 5.7
SP [30] +NN ✓ 0.6 4.2 11.7 23.1 36.1
SP [30] +SG ✓ 0.8 7.0 20.7 39.8 58.1

DISK [103] +NN ✓ 0.3 2.4 7.2 14.7 25.1

(b) Affine features on ScanNet [29] used inside
StereoGlue on a total of 1500 image pairs.

such as MSER [65] and WαSH [104]. On top of such features, we can detect any
patch-based descriptors, e.g ., HardNet [67] or SOSNet [100].

We also experimented with joint detector-descriptor models, such as Super-
Point [30], DISK [103], DeDoDe [35], and ALIKED [118], that output keypoints
and descriptors. We run Self-Scale-Ori [59] to get the scale and orientation and
then AffNet to upgrade point features to affine ones.

In the main experiments, we run the proposed StereoGlue on DoG + HardNet
+ AffNet + NN (NN – nearest neighbor matching) and SuperPoint / ALIKED
/ DeDoDe with Self-Scale-Ori, AffNet, and SuperGlue / LightGlue. Obtaining a
pool of potential matches is straightforward when using NN on HardNet descrip-
tors. To get a similar pool for SuperGlue, we directly access the matching score
matrix that is obtained when solving the optimal transport problem. This al-
lows selecting the k best matches for each point. Additionally, we will show other
methods, those that achieve reasonable performance on particular datasets.

Minimal Solvers. We compare three solvers. 5PC [97] is the widely-used algo-
rithm estimating the pose from five point correspondences. The 1AC+mD solver
is proposed in [36]. It estimates the pose from a single AC and predicted monoc-
ular depth. To allow running this solver, we obtain relative depth by MiDaS-
v3 [81,83]. We also compare solver 1AC+G [43] that requires a single AC and a
known direction in the images. To demonstrate the robustness of the proposed
StereoGlue, we always run 1AC+G assuming that the gravity points downwards
it is of upright direction [0,−1, 0]T. Thus, we call the solver 1AC+uG. This way,
we do not need to know the gravity direction prior to running the algorithm.
This is based on two assumptions that proved true on the tested datasets: (i)
people tend to roughly align their cameras with the gravity direction [52,77]; (ii)
StereoGlue is robust enough due to the employed local optimization procedure.
We also test the 3PC+G [33] solver that requires three PCs and gravity.
PhotoTourism. For testing the methods, we use the data from the CVPR
IMC 2020 PhotoTourism challenge [52]. It consists of 25 scenes (2 – validation;
12 – training; 11 – test sets) of landmarks with photos of varying sizes collected
from the internet. The algorithms are tested on the two scenes for validation
– a total of 9900 pairs. For robust estimation, we chose MAGSAC++ [11] as



10 D. Barath et al.

Table 5: Rigid transformation estimation on the 3DLoMatch dataset [49] with matches
from GeoTr [79]. The compared methods are RANSAC with 50K iterations and Q-
REG [51] (results copied from [51]). Metrics are registration recall at 0.2m (RR), mean
rotation (RRE) and translation (RTE) errors, and RMSE. The best values are bold.

Model RR (%) ↑ RRE (cm) ↓ RTE (cm) ↓ RMSE (cm) ↓

GeoTransformer 74.1 23.15 58.3 57.8
GeoTr + 50K 75.0 22.69 57.8 57.3
GeoTr + Q-REG 77.1 16.70 46.0 44.6
GeoTr + StereoGlue 80.7 16.04 43.9 36.3

the main competitor. We compare the following detectors: SuperPoint [30] with
SuperGlue [88], DeDoDe [35] and ALIKED [118] with LightGlue [60], DoG [61]
with HardNet [67] descriptors, DoG with HardNet followed by Adalam [20], DoG
with SOSNet [100] descriptors, DISK [103], and R2D2 [84]. Also, we show the
results of LoFTR [98]. The average error of the gravity prior [0,−1, 0]T is 10.8◦.

The results are in Table 1. We report the average and median pose errors
(i.e., the max. of the rotation and translation errors) in degrees, the AUC scores
at 1◦, 2.5◦, 5◦, 10◦, and 20◦, and the average inlier number. Note that the inlier
number is not informative when different detectors and matchers are compared.
We show it to highlight that the proposed method increases the inlier number
compared to MAGSAC++ with 5PC on the same features.

DeDoDe + LightGlue, in conjunction with the proposed StereoGlue, leads to
the highest accuracy across all detectors and robust estimator combinations. It
is important to note that the proposed StereoGlue improves all methods in all
accuracy metrics. Interestingly, the solver, AC+uG, assuming upright gravity
performs better than the one with monodepth predictions. The 3PC+uG [33]
solver only marginally improves the results of MAGSAC++.
ScanNet. The ScanNet dataset [29] contains 1613 monocular sequences with
ground truth poses and depth. We evaluate our method on the 1500 pairs used
in [88,98]. These pairs contain wide baselines and extensive texture-less regions.
The avg. error of the gravity prior is 24.8◦.

The results are shown in Table 2. Here, ALIKED and DeDoDe are signifi-
cantly less accurate than SuperPoint features with SuperGlue matcher. Stere-
oGlue with DoG or SuperPoint+SuperGlue key points improves the performance
by a large margin. It makes SuperPoint+SuperGlue comparable to the detector-
free LoFTR [98] with achieving even smaller avg. and med. errors and higher
AUC@20◦. With StereoGlue, DoG+HardNet is among the top-performing meth-
ods, with not much worse results than the recent ALIKED and DeDoDe. Both
1AC+uG and 1AC+mD lead to similar accuracy.
Feature Ablation. We compared a number of affine detectors to choose the best
ones. The AUC scores on PhotoTourism are shown in Table 4a and on ScanNet
in Table 4b. On PhotoTourism, we used the 1AC+uG solver. On ScanNet, we
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Table 6: Absolute pose estimation on the Cambridge Landmarks [55] and Aachen Day-
Night [92] datasets compared with P3P [78] and P1AC [105] inside GC-RANSAC [8].
For Cambridge L., we report the recall at 5cm/1◦, 0.1m/1◦, 0.2m/1◦; for Aachen at
0.25m/2◦, 0.5m/5◦, 5m/10◦. The best values are bold.

P3P + GC-RSC P1AC + GC-RSC P1AC + StereoGlue

Cambridge L.
5cm/1◦ 52.6 53.4 62.4

0.1m/1◦ 54.6 65.1 77.9
0.2m/1◦ 73.1 80.7 82.9

Aachen Day
0.25m/2◦ 62.0 62.0 64.8
0.5m/5◦ 83.4 84.6 85.6
5m/10◦ 96.0 95.9 96.0

Aachen Night
0.25m/2◦ 47.1 51.3 53.9
0.5m/5◦ 60.2 66.0 67.5
5m/10◦ 74.3 82.2 80.1

used 1AC+mD. All methods use StereoGlue. DoG with HardNet and AffNet is
on par with SuperPoint with SuperGlue on PhotoTourism. On ScanNet, SP+SG
is the best. Interestingly, SuperPoint works better with HardNet descriptors than
its own when NN matching is used. As expected, classical affine shape detectors,
i.e. MSER and WαSH, are inaccurate even with HardNet descriptors.

4.2 Homography Estimation

Fig. 2: Image noise study. The aver-
age (over 100k runs) angular errors of
the rotations and translation estimated
by the 4PC [47], 2AC [5], and proposed
1AC+G(H) homography solvers plotted as
a function of the image noise in pixels.

The HPatches [3] dataset contains
52 sequences under significant illu-
mination changes and 56 sequences
that exhibit large viewpoint variation.
Since the intrinsic matrices are not
provided in HPatches, we calibrate
the cameras of the 56 sequences with
viewpoint changes by the RealityCap-
ture software [19]. We use these se-
quences in the evaluation.

The results are reported in Ta-
ble 3. StereoGlue improves on all re-
cent detector and matcher combina-
tions. It leads to the best performance
in all accuracy metrics when com-
bined with ALIKED + LightGlue.
Run-time. As reported in Table 3,
the avg. run-time of StereoGlue on H estimation runs for at most a few tens
of milliseconds. The avg. time of pose estimation on PhotoTourism is 0.09, and
on ScanNet is 0.03 seconds. For comparison, MAGSAC++ with the 5PC solver
runs for 0.01 secs on ScanNet and for 0.04 secs on PhotoTourism. Even though
StereoGlue is slower, it still runs in real-time while achieving SOTA accuracy.
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Fig. 3: Stability study. Frequencies (100k runs) of log10 rot. and trans. errors (◦) in
homographies estimated by the 4PC [47], 2AC [5], and proposed 1AC+G(H) solvers.

Synthetic Experiments. To create a synthetic scene, we generate two cam-
eras with random rotations and translations and focal length set to 1000. A
randomly oriented 3D point is generated and projected into both cameras. The
affine transformation is calculated from the point orientation. We generated 100k
random problem instances and ran the solvers on noiseless samples. Fig. 3 shows
histograms of the log10 rotation and translation errors. The plots show that all
solvers are stable – there is no peak close to 100. In Fig. 2, the average errors
in degrees are shown as a function of the image noise. We use a fixed gravity
(0.1◦) and affine noise (0.5 px). It is important to note that the realistic affine
noise is unclear in practice, with no work analyzing it. These plots only intend to
demonstrate that the solvers act reasonably w.r.t. increasing noise levels, which
they do.

4.3 Absolute Pose Estimation

To evaluate our method on image-based localization, we use the Cambridge
Landmarks [55] and Aachen Day-Night v1.1 [90, 92, 116] datasets. For Cam-
bridge Landmarks, we report the recall at 0.05m/1◦, 0.1m/1◦ and 0.2m/1◦
of the pose errors; for Aachen at 0.25m/2◦, 0.5m/5◦, 5m/10◦. We compare
with P3P [78] and P1AC [105] combined with GC-RANSAC (results copied
from [105]) on DoG+HardNet+AffNet features. The results are shown in Ta-
ble 6. StereoGlue with P1AC [105] improves significantly on all datasets.

4.4 Rigid Transformation Estimation

To evaluate StereoGlue on this task, we use the 3DLoMatch [49] dataset. It
contains 62 scenes, with 46 used for training, 8 for validation, and 8 for test-
ing. The point cloud pairs in 3DLoMatch exhibit particularly low overlap, thus
making the dataset complicated. We calculate the correspondence RMSE; Regis-
tration Recall (RR), which measures the fraction of successfully registered pairs,
defined as having a correspondence RMSE below 0.2 m; the average relative
rotation (RRE), and translation errors (RTE).
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The results, using GeoTransformer [79] to obtain potential one-to-many matches,
are reported in Table 5. The values of the competitors are copied from [51]. The
proposed StereoGlue substantially improves in all metrics.

5 Conclusion

We propose StereoGlue to jointly perform feature matching and robust estima-
tion by leveraging a pool of one-to-many correspondences. It is substantially less
sensitive to matching ambiguities than using traditional top-1 matches. Stere-
oGlue improves performance in various applications when applied on top of pop-
ular and state-of-the-art feature detectors. Although the used solvers for image
matching assume that the gravity direction is known, StereoGlue is so robust
that the upright [0,−1, 0]T prior works even on ScanNet, where it is only a rough
approximation with an avg. error of 24.8◦ compared to the actual direction.

A Homography Solver

In this section, we describe the proposed single-match-based homography solver.
Affine correspondence (p1,p2,A) is a triplet, where p1 = [u1 v1 1]T and
p2 = [u2 v2 1]T are a homogeneous point pair in two images and A is a 2×2 linear
transformation called local affine transformation. For A, we use the definition
provided in [70] as it is given as the first-order Taylor approximation of the
3D → 2D projection function.
Fundamental matrix (F) ∈ R3×3 is rank-2 matrix relating points p1, p2 as:

pT
2 Fp1 = 0. (1)

Essential matrix (E) is related to F as K′−TEK−1 = F, where K, K′ are the
intrinsic parameters of the cameras [47]. (1) can be written as pT

2 K
′−TEK−1p1 =

0. From now on, we assume that corresponding points p1, p2 have been premul-
tiplied by K, K′. This simplifies (1) to

pT
2 Ep1 = 0. (2)

Essential matrix E is decomposed as E = [t]×R, where R ∈ SO(3), t ∈ R3 is
the relative pose of the two views. The relationship of an affine correspondence
(AC) and essential matrix E was first defined in [7] as

A−Tn1 = −n2, (3)

where n1, n2 are the normals to the epipolar lines in the images. In summary,
an affine correspondence imposes three independent constraints on the essential
matrix. One is given by (2), and two others by (3).
Homography H ∈ R3 is defined as H = R − 1

dtn
T, where R ∈ SO(3) and

t ∈ R3 are the relative camera rotation and translation, respectively, d ∈ R is
the plane intercept and n ∈ R3 is its normal. To solve for H, we derive the
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constraints for relative pose R, t from a single AC (p1,p2,A), and the gravity
directions v1 = [xv1 , yv1 , zv1 ]

T,v2 = [xv2 , yv2 , zv2 ]
T known in both images. The

relative pose with a known vertical direction has three degrees of freedom (DoF),
and the AC imposes three constraints on it.

To [53], we can express the rotation as R = RT
2 RyR1, where Ry is a

rotation around y-axis, R1 transforms v1 to y-axis, R2 transforms v2 to y-
axis. Let y = [0, 1, 0]T be the y-axis. The axis of R1 is computed as v1 ×
y = [−zv1/d, 0, xv1/d]

T, where d = x2
v1 + z2v1 , the angle is obtained as

arccos (vT
1 y) = arccos (yv1). Rotation R1 is computed using the Rodrigues for-

mula, rotation R2 is obtained similarly. Matrix Ry is expressed elementwise as

Ry =
1

1 + x2

1− x2 0 −2x
0 1 + x2 0
2x 0 1− x2

 , (4)

where x = tanϕ/2. Now, we can express the essential matrix E as E = RT
2 [t

′]×RyR1,
where t′ = R2t. Let q1 = R1p1 and q2 = R2p2. Eq. (2) becomes

qT
2 [t

′]×Ryq1 = 0, (5)

To modify constraints (3) in a similar way, we define B = A−T[r11 r
2
1]

T, C =
[r12 r

2
2]

T, where r1i , r2i r3i are the column vectors of Ri, i ∈ {1, 2}. The elements of
B are written in row-major order as b1, ..., b6, and the elements of C as c1, ..., c6.
We can rewrite the constraints (3) as

A−Tn1 − n2 = A−Tl1[1:2] − l2[1:2]

= A−T[r11 r21]
TRT

y [t
′]T×q2 − [r12 r22]

T[t′]×Ryq1 = 0.
(6)

Constraints (5), (6) give 3 equations in variables x ∈ R and t′ ∈ R3. After
multiplying the equations with 1 + x2, we get three equations that are linear
in the elements of translation t′. We can, therefore, use the hidden variable
approach to rewrite the equations in the form M(x)t′ = 0, where M(x) is a
3 × 3 matrix whose elements depend on x. If (x, t′) is a solution to the linear
system, then matrix M(x) must be singular. Consequently, detM(x) = 0 holds.
This is a univariate polynomial of degree 6. We find its roots as the eigenvalues
of its companion matrix. After finding x, we calculate t′ as the kernel of matrix
M(x) and the rotation Ry according to (4). Finally, we compute the relative
pose (R, t) as R = RT

2 RyR1, t = RT
2 t

′.
Next, we will solve for the unknown plane parameters using the estimated

relative pose. We can set n′ = 1
dn and simplify the expression as follows:

H = R− tn′T. (7)

To find homography H consistent with (p1,p2,A) and vertical directions v1

and v2, we substitute (R, t) into (7). Then, we only need to find n′ ∈ R3. We
substitute (7) into the constraints from [7] connecting ACs and homography H.
We obtain 6 linear equations in 3 unknowns. The LS method obtains vector n′

from the above system. Finally, we compute the homography H from R, t, n′

using the equation (7).
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