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Abstract. Vision-language pre-training (VLP) models exhibit remark-
able capabilities in comprehending both images and text, yet they remain
susceptible to multimodal adversarial examples (AEs). Strengthening at-
tacks and uncovering vulnerabilities, especially common issues in VLP
models (e.g., high transferable AEs), can advance reliable and practical
VLP models. A recent work (i.e., Set-level guidance attack) indicates
that augmenting image-text pairs to increase AE diversity along the op-
timization path enhances the transferability of adversarial examples sig-
nificantly. However, this approach predominantly emphasizes diversity
around the online adversarial examples (i.e., AEs in the optimization
period), leading to the risk of overfitting the victim model and affecting
the transferability. In this study, we posit that the diversity of adver-
sarial examples towards the clean input and online AEs are both piv-
otal for enhancing transferability across VLP models. Consequently, we
propose using diversification along the intersection region of adversarial
trajectory to expand the diversity of AEs. To fully leverage the interac-
tion between modalities, we introduce text-guided adversarial example
selection during optimization. Furthermore, to further mitigate the po-
tential overfitting, we direct the adversarial text deviating from the last
intersection region along the optimization path, rather than adversarial
images as in existing methods. Extensive experiments affirm the effec-
tiveness of our method in improving transferability across various VLP
models and downstream vision-and-language tasks. Code is available at
https://github.com/SensenGao/VLPTransferAttack.

Keywords: Vision-Language Attack · Adversarial Transferability · Di-
versification · Intersection Region of Adversarial Trajectory

1 Introduction

Vision-language pre-training (VLP) models utilize multimodal learning, lever-
aging large-scale image-text pairs to bridge the gap between visual and lan-
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Fig. 1: Our method vs. set-level guided attack (SGA) [36]. (a) shows the main idea of
SGA, i.e., conducting augmentation around the online adversarial examples. (b) shows
the main idea of our method, that is, we perform augmentation in the intersection
region of adversarial trajectory. The red and blue dots both depict images sampled
from the intersection region, with red dots indicating the best samples selected using
the text-guided adversarial example selection strategy. The surrounding light red dots
represent applying the same resizing data augmentation to the best samples as utilized
in SGA. (c) and (d) compare the transferability of our method and SGA by using the
adversarial examples of ALBEF [30] and CLIPViT to attack CLIPCNN, respectively.

guage understanding. These models showcase revolutionary performance across
various downstream Vision-and-Language tasks, including image-text retrieval,
image captioning, visual grounding, and visual entailment, as demonstrated
in [20, 27, 28, 44]. Despite their success, recent research underscores the signifi-
cant vulnerability of VLP models, particularly when confronted with multimodal
adversarial examples [7,12,16,17,36,37,57]. Uncovering the vulnerabilities, espe-
cially common issues, can drive further research aimed at building more reliable
and practical VLP models.

Current research predominantly concentrates on attacking VLP models via
a white-box setting, where the model’s structural information can be exploited.
However, exploring the transferability of multimodal adversarial examples is
pivotal, especially given the limited access to detailed model structures in real-
world scenarios. There have been some efforts made to enhance the transfer-
ability of attacks on VLP models by introducing input diversity, as seen in the
work SGA [36]. While they have achieved some effectiveness, how to enhance
the transferability of multimodal adversarial examples is still an open question.

In this paper, we undertake a comprehensive examination of the factors con-
tributing to the limited transferability of the cutting-edge multimodal attack
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method, i.e., SGA [36]. As shown in Figure 1 (a), throughout the iterative genera-
tion of subsequent adversarial images, SGA conducts data augmentation around
the online adversarial image (i.e., adversarial examples generated during opti-
mization). This strategy enhances the diversity of adversarial examples along
the optimization path, leading to a certain improvement in transferability. How-
ever, such an approach still carries the potential risk of overfitting to the victim
model with the high reliance on the examples along the adversarial trajectory
(See Figure 1 (b)), which leads to low attack success rates when we migrate the
adversarial example to other VLP models (See Figure 1 (c) and (d)). To mitigate
this overfitting risk, one potential solution is to further enhance the diversity of
augmented adversarial examples in a judicious manner.

Building upon the aforementioned analysis, SGA overfits local adversarial
examples, while the clean image is the only accessible example that is far from
local adversarial examples. Therefore, we embark on a pioneering endeavor to
enhance the transferability of multimodal adversarial attacks by considering the
diversity of adversarial examples (AEs) around clean inputs and online AEs
throughout the optimization process. To achieve this, we consider the intersec-
tion region of adversarial trajectory, which encompasses the original image, the
adversarial image from the previous step, and the current adversarial image
during the iterative attack process (depicted in Figure 1 (b)). This innovative
approach aims to circumvent overfitting by strategic sampling within this region,
thereby avoiding an undue focus on adversarial example diversity solely around
adversarial images. After obtaining multiple samples, we calculate gradients for
each to determine perturbation directions away from the text. Subsequently, we
individually incorporate these perturbations into the current adversarial image
and select the one that deviates the most from the text.

Additionally, in the text modality, SGA only considers deviating the text
from the last adversarial image in the optimization period, but the adversarial
image is solely generated by the surrogate model, still posing the risk of overfit-
ting the surrogate model. For this reason, we propose to have the text deviate
simultaneously from the last intersection region along the optimization path.

Our proposed method is evaluated on two widely recognized multimodal
datasets, Flickr30K [41] and MSCOCO [35]. We conduct experiments on three
vision-and-language downstream tasks (i.e., image-text retrieval (ITR), visual
grounding(VG), and image captioning (IC)), and all results indicate the high ef-
fectiveness of our method in generating more transferable multimodal adversarial
examples. Moreover, when adversarial examples generated from image-text re-
trieval are transferred to other vision-and-language downstream tasks (i.e., VG
and IC), there is a substantial improvement in attack performance.

Our main contributions can be summarized as follows:

– We propose using the intersection region of adversarial trajectory to expand
the diversity of adversarial examples during optimization, based on which
we develop a high-transferability attack against VLP models.
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– We extend the generation of adversarial text to deviate from the last inter-
section region along the optimization path, aiming to reduce overfitting the
surrogate model, thereby achieving enhanced transferability.

– Extensive experiments robustly demonstrate the efficacy of our proposed
method in elevating the transferability of multimodal adversarial examples
across diverse models and three downstream tasks.

2 Related Work

2.1 Vision-Language Pre-training Models

VLP models leverage multimodal learning from extensive image-text pairs to im-
prove the performance of various Vision-and-Language (V+L) tasks [29]. Early
VLP models predominantly depend on pre-trained object detectors for acquir-
ing multimodal representations [6, 32, 45, 49, 59]. Recently, with the advent of
end-to-end image encoders like the Vision Transformer (ViT) [10, 46, 56] offer-
ing faster inference speeds, some work propose to use them as substitution for
computationally expensive object detectors [11,29,30,48,53].

There are two popular approaches for VLP models in learning vision-language
representations: the fused architecture and the aligned architecture. Fused VLP
models (e.g., ALBEF [30], TCL [53]), initially employ two separate unimodal
encoders to learn features for text and images. Subsequently, a multimodal en-
coder is utilized to fuse the embeddings of text and images. In contrast, aligned
VLP models, exemplified by CLIP [42], focus on aligning the feature spaces of
distinct unimodal encoders and benefit downstream tasks significantly [1]. This
paper concentrates on evaluating our proposed method using multiple popular
fused and aligned VLP models.

2.2 Downstream Vision-and-Language Tasks

Image-Text Retrieval (ITR) involves retrieving pertinent information, tex-
tual or visual, in response to queries from another modality [5, 8, 51, 60]. This
undertaking usually encompasses two sub-tasks: image-to-text retrieval (retriev-
ing text based on an image query) and text-to-image retrieval (retrieving images
given a text query).

In aligned VLP models, both the Text Retrieval (TR) and Image Retrieval
(IR) tasks leverage ranking results determined by the similarity between text and
image embeddings. However, in fused VLP models, where internal embedding
spaces lack alignment across unimodal encoders, the similarity scores between
image and text modalities are computed for all image-text pairs to retrieve the
Top-N candidates. Subsequently, these Top-N candidates serve as input for the
multimodal encoder, which computes the image-text matching score to establish
the final ranking.

Visual Grounding (VG) refers to the task of localizing the region within a
visual scene with corresponding entities or concepts in natural language. Among
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Table 1: Attack Success Rate (%) of SGA with and without image augmen-
tation. The SGA w.o. Aug doesn’t consider image augmentation. We use ALBEF to
generate multimodal adversarial examples on the ITR task to evaluate transferability.

ALBEF TCL CLIPViT CLIPCNN

Source Attack TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF SGA w.o. Aug 99.9 99.95 70.07 71.67 30.55 39.88 32.31 42.54
SGA w. Aug 99.9 99.98 87.88 88.05 36.69 46.78 39.59 49.78

VLP models, ALBEF expands Grad-CAM [43] and utilizes the acquired atten-
tion map to rank the detected proposals [54].

Image Captioning (IC) is to generate a textual description that logically
describes or implies the content of a given visual input, typically involving the
creation of captions for images. The evaluation of Image Captioning models often
employs metrics such as BLEU [39], METEOR [4], ROUGE [33], CIDEr [47]
and SPICE [2], which serve to assess the quality and relevance of the generated
captions in comparison to reference captions.

2.3 Transferability of Adversarial Examples

Adversarial attacks [13–15, 18, 25] are typically categorized as white-box and
black-box attacks. In a white-box setting [23, 26], the attacker has full access
to the model, whereas black-box attacks [3, 40], more realistic in practical ap-
plications, occur when information about the model is limited. In the realm of
image attacks [21,22,24], prevalent methods for crafting transferable adversarial
examples often leverage data augmentation techniques (e.g., DIM [52], TIM [9],
SIM [34], ADMIX [50], PAM [58]). Zhang et al . [57] introduced a white-box
attack targeting popular VLP models for downstream tasks in the multimodal
domain. Building upon this work, Lu et al . [36] proposed SGA, considering the
diversity of adversarial examples by expanding single image-text pairs to sets of
images and texts to conduct black-box attacks on VLP models.

However, SGA primarily emphasizes diversity in the vicinity of adversarial
examples during the optimization process, potentially increasing the risk of over-
fitting the victim model and impacting transferability. Therefore, our primary
focus in this study is to further enhance the diversity of adversarial examples in
a thoughtful manner and avoid an undue focus on adversarial example diversity
solely around adversarial images.

3 Methodology

3.1 Background and Motivation

Adversarial attacks on VLP models involve inducing a mismatch between ad-
versarial images and corresponding adversarial text while adhering to specified
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constraints on image and text perturbations. Here, (v, t) denotes an original
image-text pair from a multimodal dataset, with v′ representing an adversarial
image and t′ denoting adversarial text. The allowable perturbations are restricted
within the ranges B[v, ξv] for images and B[t, ξt] for text. The image and text
encoders of the multimodal model are denoted as FI and FT , respectively. To
generate valid multimodal adversarial examples, the objective is to maximize
the loss function J specific to VLP models:{

max J (FI(v
′), FT (t

′))
s.t.v′ ∈ B[v, ξv], t

′ ∈ B[t, ξt].
(1)

The state-of-the-art approach for exploring the transferability of multimodal
adversarial examples (i.e., SGA [36]) involves augmenting image-text pairs to en-
hance the diversity of adversarial examples along the optimization path. Specif-
ically, during the iterative generation of adversarial images, let v′i represent the
adversarial image generated at the i-th step. In the subsequent step (i+1), SGA
initiates the process by applying a resizing operation for data augmentation to
v′i, resulting in V ′

i = {v′i1, v′i2, ..., v′iM} (See Figure 1 (a)). The iterative formula
can be expressed as follows:

v′i+1 = v′i + α · sign(
∇v

∑M
j=1 J(FI(v

′
ij), FT (t))

∥∇v

∑M
j=1 J(FI(v′ij), FT (t))∥

). (2)

To further examine the impact of image augmentation along the optimization
path in the SGA method, we utilize ALBEF as a surrogate model to generate
multimodal adversarial examples. These examples are then employed to target
VLP models such as TCL and CLIP, assessing the transferability of the attacks.
Detailed results are presented in Table 1. Our observations reveal that SGA
enhances the transferability of adversarial attacks, showing an increase ranging
from 6.14% to 17.81%. However, it is noteworthy that the success rate of attacks
on the target models remains notably lower than that on the source model. This
discrepancy is primarily attributed to the fact that SGA predominantly empha-
sizes diversity around AE v′i during the optimization period, without adequately
considering the diversity of adversarial examples toward the clean image, leading
to the risk of overfitting the victim model and affecting the transferability.

For this purpose, we propose to consider diversification along the intersection
region of adversarial trajectory, which encompasses the original image v, the ad-
versarial image from the previous step v′i−1, and the current adversarial image v′i
during the iterative attack process. This region is established to sample images
within it to broaden the diversity of adversarial examples (See Figure 1 (b)).
Moreover, to fully leverage the interplay between modalities, we aim for per-
turbations guided by textual information that induce v′i to deviate significantly
from the associated text t. Additionally, in the text modality, our objective is
to identify adversarial perturbations that simultaneously deviate from the inter-
section region rather than only adversarial images, thereby reducing overfitting
the surrogate model and enhancing the effectiveness of black-box attacks.
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3.2 Diversification along the Intersection Region

As outlined in Section 3.1, we enhance the diversity of adversarial examples
by introducing diversification along the intersection region. Specifically, at the
ith iteration during optimization, we have the v′i, v′i−1, and the clean v, and
these variables form a triangle region denoted as △vv′i−1v

′
i, i.e., the intersection

region of adversarial trajectory in Figure 1. Then, we initially sample multiple
instances within the region △vv′i−1v

′
i, representing the set of samples as e =

{e1, e2, ..., eN}. Each sample can be expressed as ek = β · v + γ · v′i−1 + η · v′i,
where β+ γ+ η = 1.0. Consequently, we can compute the gradient perturbation
for each sample. For the k-th sample, denoted as ek, its gradient perturbation
pk is calculated as follows. In this way, we can get a perturbation set P =
{p1, p2, ..., pN} by

pk = α · sign( ∇eJ(FI(ek), FT (t))

∥∇eJ(FI(ek), FT (t))∥
). (3)

3.3 Text-guided Augmentation Selection

In Section 3.2, a diverse perturbation set P is derived from the intersection
region. To harness the full potential of modality interactions, we introduce text-
guided augmentation selection to obtain the optimal sample. Specifically, we
individually incorporate each element from the perturbation set P into the ad-
versarial image v′i. The selection process aims to identify the sample that maxi-
mally distances v′i from t. This procedure can be represented as:

m = argmax
pm∈P

J(FI(v
′
i + pm), FT (t)). (4)

At this juncture, em represents the selected sample. We employ SGA as our
baseline and incorporate the image augmentation methods considered along its
optimization path. The chosen optimal sample em is resized and expanded into
the set Em = {em1, em2, ..., emM}. Subsequently, we utilize the expanded set Em

to generate the final adversarial perturbation, yielding v′i+1:

v′i+1 = v′i + α · sign(
∇e

∑M
j=1 J(FI(emj), FT (t))

∥∇e

∑M
j=1 J(FI(emj , FT (t))∥

). (5)

3.4 Adversarial Text deviating from the Intersection Region

In the text modality, SGA only considers deviating adversarial text from the
ultimate adversarial image generated during the iterative optimization process.
If there are a total of T iterations, The generation of t′ only considers deviating
from the adversarial image v′T . The adversarial image v′T is exclusively created
by the surrogate model, thereby still presenting the risk of overfitting to the
surrogate model. However, during the optimization process of the adversarial
image, the clean image is entirely independent of the surrogate model. For this
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reason, we propose to have the text deviate simultaneously from the last in-
tersection region along the optimization path. Specifically, the adversarial text
deviates from the triangle region constituted by v, v′T−1 and v′T .

t′ = argmax
t′∈B[t,ϵt]

(λ·J(FI(v), FT (t
′))+µ·J(FI(v

′
T ), FT (t

′)))+ν ·J(FI(v
′
T−1), FT (t

′))).

(6)
We also set adjustable scaling factors, among which λ+ µ+ ν = 1.0.

3.5 Implementation Details

In the specific process of our attack, we employ an iterative approach. In each it-
eration, we sample within the intersection region of adversarial trajectory, guided
by textual information, to select a sample that maximally deviates the current
adversarial image v′i from the text t. Subsequently, we subject this sample to
image augmentation processing, calculate gradients to determine the perturba-
tion direction, and overlay it onto the current adversarial image, resulting in
v′i+1. Through multiple iterative steps, we obtain an adversarial image v′T . For
the text modality, in contrast to previous methods that solely focus on deviating
from the adversarial image v′T , our goal is to derive an adversarial text t′ that
simultaneously deviates from the last intersection region △vv′T−1v

′
T along the

optimization path.

4 Experiments

In this section, we present experimental evidence demonstrating the enhanced
transferability of multimodal examples generated from our proposed method
across VLP models and various Vision-and-Language tasks. First, in Section
4.1, we introduce the experimental settings, including the popular image-text
pair datasets and VLP models we use, as well as restrictions for adversarial
attacks. Subsequently, the process of searching for optimal parameters is shown
in Section 4.2. After that, we evaluate cross-model transferability in the context
of the image-text retrieval task, as detailed in Section 4.3. Following this, in
Section 4.4, we extend our investigation to the transfer of multimodal adversarial
examples generated within the image-text retrieval task to other tasks, aiming
to gauge cross-task transferability. Lastly, Section 4.5 outlines ablation studies.

4.1 Setups

VLP Models. In our transferability evaluation experiments across various VLP
models, we explore two typical architectures: fused and aligned VLP models. We
select CLIP [42] for the aligned VLP model. CLIP offers a choice between two
distinct image encoders, namely ViT-B/16 [10] and ResNet-101 [19], denoted as
CLIPViT and CLIPCNN, respectively. In the case of fused VLP models, we opt
for ALBEF [30] and TCL [53]. ALBEF uses a 12-layer ViT-B/16 image encoder
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and two 6-layer transformers for text and multimodal encoding. TCL shares this
architecture but has different pre-training objectives.

Datasets. In this study, we leverage two widely recognized multimodal
datasets, namely Flickr30K [41] and MSCOCO [35], for evaluating the image-text
retrieval task. The Flickr30K dataset comprises 31,783 images, each accompa-
nied by five captions for annotation. Similarly, the MSCOCO dataset consists of
123,287 images, and approximately five captions are provided for each image.

Additionally, we employ the RefCOCO+ [55] dataset to assess the Visual
Grounding task. RefCOCO+ is a dataset containing 141,564 referring expres-
sions for 50,000 objects within 19,992 MSCOCO images. This dataset serves
the purpose of evaluating grounding models by focusing on the localization of
objects described through natural language. For another Vision-and-Language
task, Image Captioning, we leverage the MSCOCO dataset as well.

Adversarial Attack Settings. In our study, we adopt adversarial attack
settings of SGA [36] to ensure a fair comparison. Specifically, we leverage BERT-
Attack [31] to craft adversarial texts. The perturbation bound ξt is set as 1 and
length of word list W = 10. PGD [38] is employed to get adversarial images and
the perturbation bound, denoted as ξv, is set as 8/255. Additionally, iteration
steps T is set as 10 and each step size α = 2/255. Furthermore, when randomly
sampling from the intersection region of adversarial trajectory, we set the number
of samples to 5. When generating adversarial texts, we set the three parameters
λ, µ, ν in Equation 6 to 0.6, 0.2, and 0.2 respectively. The values chosen for these
adjustable parameters can be found in Section 4.2.

Evaluation Metrics. The key metric for adversarial transferability is the
Attack Success Rate (ASR), which measures the percentage of successful attacks
among all generated adversarial examples. A higher ASR indicates more effective
and transferable attacks.

4.2 Optimal Parameters

In our proposed method, the number of samples N taken from the intersection
region of adversarial trajectory and scaling factors in Equation 6 are adjustable.
We conduct specific experiments to explore optimal parameter settings and ex-
amine their influence on the efficacy of our approach. To be more specific, we
utilize ALBEF for generating multimodal adversarial examples on the Flickr30K
dataset and assess the transferability on the other three VLP models.

Number of Samples taken from Intersection Region of Adversarial
trajectory N . The bottom of Table 2 illustrates when the sample size reaches
5, transfer effects are observed for both the Image Retrieval task and the Text
Retrieval task. As the sample size continues to increase, the transferability only
fluctuates and does not exhibit further improvement. Taking into account both
transfer effects and computational costs, a sample size of 5 is identified as the
optimal configuration.

Scaling factors λ, µ, ν in Adversarial Text Generation. In Equation 6,
λ represents the weight of clean images, while µ and ν represent the weights of
adversarial images. Therefore, we stipulate that λ cannot be zero, and µ and ν
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Table 2: Optimal Parameters: Attack Success Rate(%) on different settings, Top
for different values of λ, µ, ν and Bottom for different numbers of samples N .

ALBEF TCL CLIPViT CLIPCNN

Source Attack TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

[λ, µ, ν] = [0.2, 0.0, 0.8] 99.9 99.93 89.67 90.5 42.21 52.0 46.23 55.44
[λ, µ, ν] = [0.2, 0.2, 0.6] 99.9 99.93 90.41 90.43 41.96 51.87 46.49 55.3
[λ, µ, ν] = [0.2, 0.4, 0.4] 99.9 99.93 90.31 90.43 41.96 51.87 45.34 54.82
[λ, µ, ν] = [0.2, 0.6, 0.2] 99.9 99.95 90.52 90.57 42.21 51.84 45.08 54.92
[λ, µ, ν] = [0.2, 0.8, 0.0] 99.9 99.93 90.31 90.57 41.72 51.74 46.1 54.68
[λ, µ, ν] = [0.4, 0.0, 0.6] 99.9 99.93 91.25 90.88 45.52 55.32 48.91 57.63
[λ, µ, ν] = [0.4, 0.2, 0.4] 99.9 99.93 91.25 90.83 45.03 55.22 48.28 57.77
[λ, µ, ν] = [0.4, 0.4, 0.2] 99.9 99.93 91.15 90.71 44.91 55.28 48.15 57.87
[λ, µ, ν] = [0.4, 0.6, 0.0] 99.9 99.93 91.15 90.88 44.91 54.77 49.04 57.56
[λ, µ, ν] = [0.6, 0.0, 0.4] 99.9 99.93 91.46 90.95 46.38 56.38 49.04 59.11
[λ, µ, ν] = [0.6, 0.2, 0.2] 99.9 99.93 91.57 91.17 46.26 56.8 49.55 59.01
[λ, µ, ν] = [0.6, 0.4, 0.0] 99.9 99.93 90.94 90.98 46.01 56.72 49.55 58.87
[λ, µ, ν] = [0.8, 0.0, 0.2] 99.9 99.93 90.73 90.98 46.13 56.71 49.46 58.74
[λ, µ, ν] = [0.8, 0.2, 0.0] 99.9 99.93 90.31 90.95 45.77 56.65 49.34 58.87

ALBEF

N = 3 99.9 99.95 90.62 90.79 45.64 56.54 48.83 58.73
N = 4 99.79 99.91 91.36 91.17 45.83 56.78 50.45 59.01
N = 5 99.9 99.93 91.57 91.17 46.26 56.8 49.55 59.01
N = 6 99.9 99.93 90.94 90.38 45.79 56.96 50.7 58.52
N = 7 99.9 99.91 89.88 90.95 45.4 56.35 50.7 59.07

can have at most one zero value. Initially, as the value of λ gradually increases,
indicating the gradual introduction of clean images, the transferability of mul-
timodal adversarial examples increases accordingly. However, when the value of
λ becomes too large, it also leads to a disproportionately low proportion of ad-
versarial images, resulting in a decrease in adversarial transferability. According
to the experiments, the optimal parameters we select are [0.6, 0.2, 0.2].

4.3 Cross-Model Transferability

As outlined in Section 4.1, our experimental design focuses on assessing the trans-
ferability of adversarial examples across two widely adopted VLP model architec-
tures: fused and aligned. There are four VLP models selected, namely: ALBEF,
TCL, CLIPViT, CLIPCNN. The selected downstream V+L task for evaluation
is image-text retrieval. Our approach involves employing one of four models to
generate multimodal adversarial examples within the specified parameters of our
proposed method. Subsequently, we validate the effectiveness of the generated
adversarial examples through a comprehensive set of experiments, encompass-
ing both self-attacks and attacks on the other three models. This evaluation
encompasses one white-box attack and three distinct black-box attacks.

We adopt the methodology proposed by SGA [36] as our baseline, Therefore,
the effectiveness of our method is compared against it. Moreover, we also present
the effectiveness and transferability results of various other attack methods on
VLP models. Table 3 provides a comprehensive comparison of these methods on
the dataset Flickr30K, More experiments on the MSCOCO dataset are provided
in the Appendix. In the comparison, PGD [38] is an image-only attack, while
Bert-Attack [31] focuses solely on text-based attacks. Sep-Attack involves per-
turbing text and image separately. Furthermore, Co-Attack takes into account
cross-modal interactions, generating an adversarial example for one modality
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Fig. 2: Visualization on Image Captioning. We use the ALBEF model, pre-trained
on Image Text Retrieval(ITR) task, to generate adversarial images on the MSCOCO
dataset and use the BLIP [29] model for Image Captioning on both clean images and
adversarial images, respectively.

under the guidance of the other modality. SGA, our baseline, expands a single
image-text pair into a set of images and a set of texts to enhance diversity.

First, we compare the performance of various methods under white-box at-
tacks, wherein we can leverage the model architecture and interact with the
model. It is evident that our method, along with SGA, performs the best in
the four white-box attack experiments compared to other methods. Whether
TR or IR, the attack success rate at the top-1 rank (R@1) consistently exceeds
99.9%. Given the already high white-box attack success rate achieved by the
SGA method, there is limited room for improvement in our approach within
this context. Subsequently, we shift our focus to elucidating the enhancements
our method brings to transferability, specifically in the realm of black-box at-
tack performance. We delineate this exploration into two segments, contingent
on whether the source model and the target model share the same architecture.

Cross-Model Transferability in Same Architecture. ALBEF and TCL
both utilize a similar model architecture but differ in their pre-training objectives
while maintaining a common fundamental model structure. Therefore, when AL-
BEF and TCL are employed as target models for each other, the success rate
of attacks using multimodal adversarial examples is remarkably high. Notably,
the black-box attack success rate of IR reaches 95.58% when TCL is the tar-
get model in our proposed method. Additionally, the transferability of SGA
can reach approximately 90%, but the room for improvement is very limited,
our method has improved compared to SGA, ranging from 2.71% to 3.69%. In
contrast, when considering CLIPViT and CLIPCNN—both being aligned VLP
models—their image encoders vary significantly, with one utilizing the Vision
Transformer and the other employing ResNet-101. Given the significant struc-
tural differences between traditional CNNs and Transformers, existing methods
show low cross-model transferability, highlighting room for improvement. Our
method outperforms SGA by about 7.67% to 11.62%.
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Table 3: Comparison with state-of-the-art methods on image-text retrieval.
The source column shows VLP models we use to generate multimodal adversarial
examples. The gray area represents adversarial attacks under a white-box setting, the
rest are black-box attacks. For both Image Retrieval and Text Retrieval, we provide
R@1 attack success rate(%).

ALBEF TCL CLIPViT CLIPCNN

Source Attack TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

PGD 93.74 94.43 24.03 27.9 10.67 15.82 14.05 19.11
BERT-Attack 11.57 27.46 12.64 28.07 29.33 43.17 32.69 46.11
Sep-Attack 95.72 96.14 39.3 51.79 34.11 45.72 35.76 47.92
Co-Attack 97.08 98.36 39.52 51.24 29.82 38.92 31.29 41.99

SGA 99.9 99.98 87.88 88.05 36.69 46.78 39.59 49.78
Ours 99.9 99.93 91.57 91.17 46.26 56.8 49.55 59.01

TCL

PGD 35.77 41.67 99.37 99.33 10.18 16.3 14.81 21.1
BERT-Attack 11.89 26.82 14.54 29.17 29.69 44.49 33.46 46.07
Sep-Attack 52.45 61.44 99.58 99.45 37.06 45.81 37.42 49.91
Co-Attack 49.84 60.36 91.68 95.48 32.64 42.69 32.06 47.82

SGA 92.49 92.77 100.0 100.0 36.81 46.97 41.89 51.53
Ours 95.2 95.58 100.0 99.98 47.24 57.28 52.23 62.23

CLIPViT

PGD 3.13 6.48 4.43 8.83 69.33 84.79 13.03 17.43
BERT-Attack 9.59 22.64 11.80 25.07 28.34 39.08 30.40 37.43
Sep-Attack 7.61 20.58 10.12 20.74 76.93 87.44 29.89 38.32
Co-Attack 8.55 20.18 10.01 21.29 78.53 87.5 29.5 38.49

SGA 22.42 34.59 25.08 36.45 100.0 100.0 53.26 61.1
Ours 27.84 42.84 27.82 44.6 100.0 100.0 64.88 69.5

CLIPCNN

PGD 2.29 6.15 4.53 8.88 5.4 12.08 89.78 93.04
BERT-Attack 8.86 23.27 12.33 25.48 27.12 37.44 30.40 40.10
Sep-Attack 9.38 22.99 11.28 25.45 26.13 39.24 93.61 95.3
Co-Attack 10.53 23.62 12.54 26.05 27.24 40.62 95.91 96.5

SGA 15.64 28.6 18.02 33.07 39.02 51.45 99.87 99.9
Ours 19.5 34.59 21.6 37.88 48.47 59.12 99.87 99.9

Cross-Model Transferability in Different Architectures. When fused
VLP models (i.e., ALBEF and TCL) are used for generating adversarial ex-
amples, our method achieves a significant improvement compared to existing
methods, outperforming the current state-of-the-art (SOTA) methods by 9.23%
to 10.7%. When the fused VLP models are targeted for attack, our method still
outperforms all existing methods when generating adversarial examples against
the aligned VLP models (i.e., CLIP). In this scenario, the transferability of all
methods is relatively low. Compared to our method’s baseline SGA, we attain
an improvement ranging from 2.74% to 8.25%.

4.4 Cross-Task Transferability

We not only assess the transferability of multimodal adversarial examples gen-
erated by our proposed method across different VLP models but also conduct
experiments to evaluate its effectiveness in transferring across diverse V+L tasks.
Specifically, we craft adversarial examples for the Image-Text Retrieval (ITR)
task and evaluate them on Visual Grounding (VG) and Image Captioning (IC)
tasks. As evident from Table 4 and visual results in Figure 2 and 3, the ad-
versarial examples generated for ITR demonstrate transferability, successfully
impacting both VG and IC tasks. This highlights the efficacy of cross-task trans-
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Fig. 3: Visualization on Visual Grounding. We use the ALBEF model, pre-trained
on the ITR task, to generate adversarial images on the RefCOCO+ dataset and use
the same model, pre-trained on Visual Grouding(VG) task, to localize the regions
corresponding to red words on both clean images and adversarial images, respectively.

ferability in our proposed method. Furthermore, our transferability consistently
outperforms that of SGA.

4.5 Ablation Study

Our proposed method builds upon the SGA [36] as a baseline, introducing two
key improvements. Firstly, we utilize diversification along the intersection region
of adversarial trajectory to expand the diversity of adversarial examples. Sec-
ondly, we generate adversarial text while simultaneously distancing it from the
last intersection region along the optimization path. To investigate the impact
of each improvement on the effectiveness of our method, we conduct ablation
studies on the ITR task and employ transferability from ALBEF to the other
three VLP models as the evaluation metric.

In the ablation study, we systematically eliminate each enhancement from
our approach and compare their transferability with both the baseline SGA
and our final method, which incorporates a combination of two improvements.
The results are depicted in Figure 4. It is evident that when attacking models
with the same architecture versus different architectures, the impacts of two
distinct improvements are also different. When attacking TCL with the same
structure as ALBEF, under Setting1, our method exhibits a greater decrease
in transferability, indicating that diversification along the intersection region is
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Table 4: Cross-Task Transferability. We utilize ALBEF to generate multimodal
adversarial examples for attacking both Visual Grounding(VG) on the RefCOCO+
dataset and Image Captioning(IC) on the MSCOCO dataset. The baseline represents
the performance of each task without any attack, where a lower value indicates better
effectiveness of the adversarial attack for both tasks.

ITR → VG ITR → IC
Attack Val TestA TestB B@4 METEOR ROUGE-L CIDEr SPICE

Baseline 58.46 65.89 46.25 39.7 31.0 60.0 133.3 23.8
SGA 50.56 57.42 40.66 28.0 24.6 51.2 91.4 17.7
Ours 49.70 56.32 40.54 27.2 24.2 50.7 88.3 17.2

Fig. 4: Ablation Study: Attack Success Rate(%) on other three target mod-
els. The baseline is SGA. Setting 1 removes diversification along the intersection
region of adversarial trajectory. Setting 2 removes the text deviating from the last
intersection region along the optimization path.

most crucial in our approach under this scenario. However, under Setting2, the
decrease in transferability is more pronounced when attacking the aligned VLP
model, indicating that at this point, adversarial texts deviating from the last
intersection region play a larger role in the effectiveness of our method.

5 Conclusion

In this paper, we conduct a systematic evaluation of existing multimodal attacks
regarding transferability. We found that these methods predominantly prioritize
diversity around adversarial examples (AEs) during the optimization process,
potentially leading to overfitting to the victim model and hindering transfer-
ability. To address this issue, we propose diversification along the intersection
region of adversarial trajectory to broaden diversity not only around AEs but
also towards clean inputs. Moreover, we pioneer an exploration into extend-
ing adversarial texts deviating from the intersection region. Through extensive
experiments, we demonstrate the effectiveness of our method in enhancing trans-
ferability across VLP models and V+L tasks. This work could act as a catalyst
for more profound research on the transferability of multimodal AEs, alongside
fortifying the adversarial robustness of VLP models.
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