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Abstract. Recently, the understanding of the 3D world has garnered
increased attention, facilitating autonomous agents to perform further
decision-making. However, the majority of existing 3D vision-language
datasets and methods are often limited to specific tasks, limiting their
applicability in diverse scenarios. The recent advance of Large Language
Models (LLMs) and Multi-modal Language Models (MLMs) has shown
mighty capability in solving various language and image tasks. Therefore,
it is interesting to unlock MLM’s potential to be an omni 3D assistant
for wider tasks. However, current MLMs’ research has been less focused
on 3D due to the scarcity of large-scale visual-language datasets. In this
work, we introduce M3DBench, a comprehensive multi-modal instruction
dataset for complex 3D environments with over 320k instruction-
response pairs that: 1) supports general interleaved multi-modal
instructions with text, user clicks, images, and other visual prompts, 2)
unifies diverse region- and scene-level 3D tasks, composing various
fundamental abilities in real-world 3D environments. Furthermore, we
establish a new benchmark for assessing the performance of large models
in understanding interleaved multi-modal instructions. With extensive
quantitative and qualitative experiments, we show the effectiveness of our
dataset and baseline model in understanding complex human-environment
interactions and accomplishing general 3D-centric tasks. We will release
the data and code to accelerate future research on developing 3D MLMs.

Keywords: Multi-modal Learning

1 Introduction

The past year has witnessed remarkable success of Large Language Models
(LLMs) families [55} 60, 20, 58] in addressing various general language processing
tasks through instruction tuning [47]. Multi-modal Language Models (MLMs),
such as Flamingo [2], BLIP-2 [37], LLaVA [41] have progressed various visual
comprehension and reasoning tasks on 2D domain, including image captioning |6}
56, 64|, visual dialogue |13| and question-answering [26, 23]. To unlock the full
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Fig. 1: Examples from M3DBench. Enabling effective interaction between humans and
3D Assistants poses numerous challenges, particularly in comprehending interleaved
multi-modal instructions that may involve language, user clicks, captured images, and
more, all while seamlessly executing diverse tasks. M3DBench introduces a range of tasks
crafted to foster comprehensive interaction, addressing ambiguities through fine-grained
multi-modal instructions.

potential of these MLMs, it is essential to curate a well-constructed instruction-
following dataset , which empowers models to handle diverse vision
language (VL) tasks without extensive modifications to the architecture. However,
current research on MLMs has predominantly overlooked 3D visual, and a
comprehensive dataset for 3D instruction tuning is missing due to the daunting
workload of collecting instructions in ambiguous and cluttered 3D environments.

Previous works have made efforts to construct datasets for specialized 3D task,

such as object detection [21} [59], visual grounding [1} [11], dense captioning [1} [11],
VQA , and navigation . Consequently, most of the models
are specialists in only one or two of these tasks, potentially limiting

their adaptability across various applications. Works such as LAMM , 3D-
LLM , and Chat-3D have made preliminary attempts in constructing 3D
instruction-following datasets, achieving inspiring results. However, the range of
visual tasks covered by these datasets is relatively limited, which constrains their
effectiveness under diverse scenarios. These datasets primarily focus on language-
only instructions, posing challenges in identifying a specific object within 3D
environments, which are often cluttered and complex. For example, in a scene
with multiple wooden chairs, distinguishing a particular one using language alone
may require detailed instruction, as a simple reference like “a wooden chair”
might result in ambiguity. Furthermore, the lack of a comprehensive evaluation
benchmark poses challenges in assessing the capability of large models on 3D-
centric tasks. Current works, such as LAMM , primarily evaluate the model’s
performance on previous benchmarks that are not designed for assessing MLMs
with open-form output .
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Table 1: Comparison between M3DBench and other 3D VL datasets. M3DBench has
the following characteristics: 1) a comprehensive instruction-following dataset tailored
for 3D scenes. 2) Supporting multi-modal instructions that interleave text and diverse
visual prompts. 3) Spanning fundamental abilities in real-world 3D environments, such
as visual perception, scene understanding, spatial reasoning, and planning.
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In this paper, we introduce a comprehensive 3D instruction-following dataset
called M3DBench, serving as the foundation for developing a versatile and
practical assistant in the real-world 3D environment. Our dataset comprises
general 3D-centric tasks at both object and scene levels and over 320K instruction-
response pairs, covering fundamental capabilities such as visual perception, scene
understanding, spatial reasoning, embodied planning, and VL navigation, as listed
in Tab. [I} Furthermore, to tackle the challenge of ambiguity in language-only
instructions, we interleave text instructions with visual prompts that provide
rich clues about instances in the scene, including the user’s click, pointed region,
photographed images, 3D shape (as shown in Fig. (1)) in M3DBench, to enhance
the granularity, diversity, and interactivity of generated instructions (such as
“find the (image of a whiteboard captured by mobile phone) in the room”).

To evaluate the effectiveness of M3DBench, we develop a primary yet effec-
tive baseline model capable of processing interleaved multi-modal instructions,
consisting of three components: scene perceiver, multi-modal instruction adapter,
and LLM decoder. Furthermore, we develop a comprehensive benchmark for
assessing the general capabilities of large models when handling multi-modal
instructions. The evaluation benchmark comprises approximately 1.5K instances,
encompassing both region-level and scene-level tasks, such as object description,
multi-region reasoning, embodied planning, and multi-round dialogues. We be-
lieve that M3DBench will provide a solid foundation for future research in 3D
MLMSs with interleaved multi-modal instructions.

To summarize, our contributions are listed as follows:

— We introduce a large-scale 3D-centric instruction-response dataset that uni-
fies both region-level and scene-level tasks, focusing on scene perception,
understanding, reasoning, and planning.

— We propose an interleaved multi-modal instruction formula designed to
enhance the granularity, diversity, and interactivity of instructions.

— We present an LLM-based model capable of understanding multi-modal
instructions and executing multiple tasks.
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— We establish a comprehensive benchmark for evaluating the capabilities of
MLMs within 3D scenarios. Extensive experiments demonstrate the effective-
ness of both the dataset and the baseline.

2 Related Work

2.1 Multi-modal Datasets and 3D Benchmarks

The progress of MLMs [54) 31} |38, [37] has been greatly accelerated by the
availability of large-scale image-text data, such as MS COCO Caption [17], Visual
Genome [33], LAION-5B [57]. In order to improve models’ comprehension of
human instructions in visual tasks, several visual instruction-following datasets |41}
35, |70, [22] have been proposed. Additionally, while numerous studies in the field
of 3D have presented benchmark datasets for visual grounding [1}, [11], dense
captioning [1, [11], and visual question answering [4} |43], these datasets are
limited to specific tasks. In this paper, we propose a comprehensive dataset
that supports interleaved multi-modal instructions and covers various 3D-centric
tasks, including multi-region reasoning, scene description, multi-round dialogue,
and so on. Refer to Tab. [I] for a detailed comparison between our dataset and
other 3D VL datasets |1, [11}, 4, |43] as well as exiting 3D visual instruction
datasets |70}, 25 65]. Furthermore, rather than providing demonstrations only,
we evaluate diverse tasks with quantitative results.

2.2 Multi-modal Foundation Models

With the triumph of LLMs |7} 75,55} |60 20], recent studies [2} 37} |41} 36} 29} |30} 69]
start to explore Vision Language Models (VLMs), extending the capabilities of
LLMs in solving diverse visual-related tasks. Early attempts include Flamingo [2],
which incorporates visual features through gated cross-attention dense blocks,
and BLIP-2 [37], which uses a Q-former as a bridge to reconcile the modality
gap between the frozen image encoder and LLMs. In order to enhance the
VLMSs’ comprehension of human instructions, several visual instruction tuning
methods [41} [36] have been proposed. Addressing the adaptation of LLMs to
3D-related tasks, LAMM |[70| uses a simple projection layer to connect the 3d
encoder and LLM. 3D-LLM |25] utilizes point clouds and text instructions as
input, leveraging 2D VLMs as backbones. However, prior works that attempt
to integrate the 3D world into MFMs have exhibited limitations in handling
interleaved multi-modal instructions and accomplishing various tasks. In this work,
we propose to improve the abilities of MFMs in addressing diverse 3D-centric
tasks and handling interleaved multi-modal instructions with on a comprehensive
3D instruction dataset.

2.3 3D Vision-language Learning

Recently, there has been growing interest in 3D VL learning [24} (18} 28, [78, {27 |14].
While various 3D representations exist, including voxels, point clouds, and neural
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fields, previous works have primarily focused on point cloud-text data. Among
those, 3D dense captioning [18,72, |16] aims to generate description of target object
within a 3D scene, while 3D visual grounding |68}, 77}, 73] involves identifying object
in a scene based on textual description. In 3D question answering [4} 67|, models
are required to answer questions based on the visual information. Although these
works have achieved impressive results in connecting 3D vision and language,
they heavily rely on task-specific model design. In contrast, we develop a unified
model based on LLMs, capable of decoding multiple 3D-related tasks without
the need for specific model designs. Furthermore, we establish a comprehensive
benchmark to assess the model’s performance across various tasks.

3 Interleaved Multi-modal Instruction Dataset

We introduce the design recipe for interleaved multi-modal instructions in Sec. [3.1]
along with the strategy for constructing a multi-modal 3D instruction dataset
in Sec. Then we detail the tasks at both the region-level and scene-level
covered by the dataset in Sec. [3:3] The statistical and analytical examination of
the dataset is presented in the supplementary materials.

3.1 Interleaved Multi-modal Instruction

In contrast to prior 3D instruction datasets limited to language-only instructions,
M3DBench introduces multi-modal instructions by interleaving text with diverse
visual prompts. Specifically, we generate visual prompts for 3D scenes and design
a formula that seamlessly integrates text with these interactive prompts, covering
the user’s click, selected region, image, and 3D shape.

User’s Click is generated by sampling a point from object-level annotations
within the 3D scene, either inside the object or along its surface.

— Region Prompts are derived from the 3D bounding boxes annotations.
Each box is further scaled with ratios in the interval [0.8,1.2].

Image Prompts integrate objects from images corresponding to 3D scene,
publicly available database(e.g. ImageNet [34]) and synthetic images (e.g.
SDXL [51).

3D shape prompts are created by selecting instances from 3D scenes that
come with object-level annotations. Furthermore, we enrich our collection
with models sourced from the public 3D asset repository |10].

To generate 3D multi-modal instructions, we design a unified formula utiliz-
ing special tokens as placeholders to seamlessly integrate textual descriptions
with different types of visual prompts. The special tokens are uniformly de-

noted as <click>, , <image>, and <shape > respectively. For instance,
a clicked point is represented as <click>x, y, z</click>, while a selected re-
gion is represented as . Visual prompts

for images and 3D shapes are indicated by <image>image id< /image> and
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<shape>shape id< /shape> respectively, where image id and shape id serve
as unique identifiers for the images and 3D shapes within the dataset. Finally, an
interleaved 3D multi-modal instruction I can be defined as an ordered sequence
composed of text and visual prompts, represented as I = [z}, 22, ... 2], where
each element ¢ € {text descriptions, visual prompts}. More examples and

details can be found in the supplementary.

3.2 Dataset Construction Engine

Annotating large-scale visual instruction data requires expert-level detailed in-
structions and corresponding responses for various tasks, which is time-consuming
and labor-intensive [40|. Drawing inspiration from advancements in image in-
struction generation [41}, 35} [70], we utilize the GPT-API [58], |46] to construct
M3Dbench, without the need for manual annotation. To achieve this, we develop
a three-stage data generation pipeline.

Stage I: Instruction & Response Generation. To construct M3Dbench, we
utilize existing datasets |21}, (11} |1, |71} 9} 32} |34}, [10] and generate instruction-
response data through both template-based and LLM-prompting methods. Specif-
ically, for 3D-only tasks such as object detection, we manually create instruction
and response templates. The instruction templates consist of task descriptions and
desired output format, while the response templates integrate ground-truth labels
(e.g. coordinates) into a natural language context. For 3D-language tasks, like
scene description and visual question answering, we prompt the GPT-API |58, |46]
with processed object attributes, textual descriptions, carefully crafted system
messages as well as few-shot examples to generate task-specific instruction data.
Notably, within the system messages, we instruct GPT-API [58, 46| to generate
instances in both declarative and interrogative forms to improve diversity. Fur-
thermore, we impose explicit length constraints to ensure the generated content’s
conciseness and relevance. More details regarding the templates and prompts can
be found in the supplementary.

Stage II: Data Quality Enhancement. While most instruction-response pairs
generated by GPT-APIs [58] [46] are of high quality, some may include unwanted
content, such as “based on the given description”. To address this, we utilize
pattern matching with specific keywords to exclude such pairs. Additionally, it has
been observed in prior studies that LLMs often suffer from hallucinations while
generating responses, such as non-existent objects. To address this challenge, we
adopt a strategy where instructions are treated as queries, and scene information
is provided as context when invoking GPT-APIs. We let human volunteers verify
the consistency between the new responses and the original ones, and engage in
multiple rounds of rewriting for inconsistent responses.

Stage III: Visual Prompts Injection. During Stage I of the instruction
generation, we additionally preserve the IDs of instances within the instructions.
Therefore, we can substitute instances’ IDs in the instructions with four types of
visual prompts described in Sec. By explicitly incorporating visual prompts
into the instructions, the diversity and interactivity of instructions have been
enhanced, with the experiment in Sec. demonstrating the advantages of
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multi-modal instructions over language-based ones. In total, we curate over 320K
pairs of instruction-following data, of which more than 138K instructions include
the visual prompts we proposed.

3.3 Task Coverage

M3DBench introduces a unified instruction-response format to cover diverse 3D-
centric tasks, encompassing essential capabilities ranging from visual perception
and understanding to reasoning and planning (detailed in Tab. . Examples of
different tasks can be found in the supplementary.

Object Detection(OD) aims at identifying and locating all the objects of
interest in a point cloud [48, [45]. Here, we transform the classic OD task into
an instruction-following format by providing task descriptions and specifying
the desired output format. Following LAMM [70], we manually design a set of
instruction-response templates with placeholders, and each instruction includes
the expected output format. The instruction and response templates can be found
in the supplementary.

Visual Grounding(VG) involves identifying the target object in the scene based
on a natural language referring expression |74} |66]. In M3DBench, we expand the
task format of VG. Specifically, our description information for querying extends
beyond textual input and includes various visual prompts, such as coordinate,
clicked point, image, 3D object, and so on. Moreover, our output is not limited
to locating a single target object but can also involve finding objects belonging
to the same category.

Dense Caption(DC) requires a model to generate natural language descriptions
for each object |18 |15]. However, existing DC datasets like ScanRefer [11] and
Nr3D |[1| provide only short captions. In M3DBench, we reconstruct the DC
datasets and introduce terms like brief or detailed in instruction to generate
either concise title or detailed description for the object, which allows for better
control over the granularity of the generated caption. The instruction templates
can be found in the supplementary.

Visual Question Answering(VQA) is a task that requires the model to
correctly answer a given question based on the information present in a visual
scene |4} 50]. In this work, we curate a collection of free-form, open-ended question-
answer pairs using publicly available 3D-language datasets. These VQA pairs
cover various aspects at both the object level and scene level, including instance
locations and attributes, object counts, room functions, and more.

Embodied Question Answering(EQA). Unlike traditional VQA tasks |4} |50
that primarily focus on answering questions related to global information, EQA
requires the agent to first comprehend and analyze the surrounding environment
to answer questions under that situation [43|. To collect instruction-following
data for EQA, we start by randomly selecting a location within the scene and
choosing to face a nearby object for reference direction, and then prompt GPT-4
to generate EQA pairs based on the given situation and text information.
Multi-region Reasoning(MR). Datasets such as DC |11 [1] facilitate un-
derstanding and reasoning for individual objects. However, reasoning between
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distinct regions is often overlooked. For instance, inquiries about the spatial
relationship between (region 1) and (region 2). Here, we introduce MR, which is
designed to enhance fine-grained comprehension of multiple regions of interest.
Our methodology involves feeding object location, descriptions [71], few-shot
examples, and language instructions to GPT-4 to obtain corresponding responses.

Scene Description(SD). Unlike DC |18 15|, which generates a caption for
each object, SD focuses on producing descriptions of the entire scene, extending
the descriptive ability of MLMs from the region level to scene level. To construct
instruction-following data for SD, we extract 3D bounding box annotations from
ScanNet [21] and dense captions from the 3D VL datasets |11} |1] as data sources.
By prompting GPT-4, we can generate detailed descriptions for each scene.

Multi-round Dialogue(MD). To construct MDs, we make use of 3D VL
datasets and follow a similar approach to that used in LLAVA [41]. During
this process, we prompt GPT-4 to generate MDs in a self-questioning and self-
answering format, taking advantage of coordinate information and language
descriptions from |1}, [11].

Embodied Planning(EP). Unlike EQA that primarily focuses on answering
questions, EP requires agents to possess planning and decision-making capabilities.
Specifically, the agent needs to perceive the environment, understand user’s
intentions, and generate appropriate action instructions to achieve predefined
goals [25].

Vision Language Navigation(INLV) require an agent to navigate and move in a
real-world 3D environment based on human instructions. We leverage annotations
from existing 3D-language navigation tasks [32] and transform them into an
instruction-following format. Instructions are expressed in natural language, while
the corresponding response is a trajectory formed by points in space.

4 Multi-modal Instruction Tuning

Existing LLM-based methods |70l 25} 65| are designed for text-based instructions
and struggle with handling inputs that integrate multiple types of prompts.
To address this, we introduce a baseline model that can perceive scenes and
understand the interleaved multi-modal instructions, accomplishing a variety of
tasks through a unified decoder. As shown in Fig. [2] the framework consists of
three parts: scene perceiver, multi-modal instruction adapter, and LLM. First, the
3D scene is processed by the scene perceiver, and the features are then projected
into the same feature space as the language embedding using a trainable projection
layer (Sec. . Simultaneously, instructions are processed by the multi-modal
instruction adapter, where information from various modalities is decoupled and
encoded into the language space (Sec. 4.2). Then the visual and instruction
tokens are concatenated and fed into the LLM (Sec. . Next, we will provide a
detailed description of each module.
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Fig. 2: Overview of our baseline model. We utilize scene perceiver to extract scene tokens
from 3D visual input. Multi-modal instructions are transformed into corresponding
instruction tokens via multi-modal instruction adapter. The scene tokens and multi-
modal instruction tokens are then concatenated and fed into a frozen LLM, which
generates the corresponding responses subsequently. The 3D encoder, image encoder
and LLM are frozen during the training process.

4.1 3D Scene Perceiver

Given the point cloud of a scene, denoted as P, we employ a pre-trained 3D
encoder to extract scene feature:

fs=EP(P). (1)

Similar to LLAVA , we also utilize a trainable visual feature projection matrix
W3P to project the visual features into the language embedding space and obtain

scene tokens:
X, =W3P . f,. (2)

The scene embeddings are denoted as X, = {x’;}nNzl, where 27 € R? and N
represents the number of visual tokens. d represents the dimension of hidden

states in LLM.

4.2 Multi-modal Instruction Adapter

To enable LLMs to understand interleaved multi-modal instructions, we introduce
Multi-modal Instruction Adapter (MIA), capable of processing textual descrip-
tions along with diverse visual prompts. Initially, the MIA discerns the types
of visual prompts within an instruction, utilizing predefined special tokens as
detailed in Sec. Based on this identification, different types of prompts will be
decoupled and fed into the appropriate prompt encoder to extract modal-specific
features.
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As for textual descriptions within the instructions, MIA utilizes the to-
kenizer and word embedding from LLMs to obtain corresponding tokens. To
process user’s click and pointed region in the instructions, MIA encodes them
using two separate and learnable, as demonstrated by the following formulation:

lick
Xetick = werer . Ppoint

. _ region .
X’r’egwn =W * Pregion

3)

Here, peick € R® and Dregion € RS represent the position of the user’s click
and pointed region, respectively. For image prompts, MIA leverages the frozen
CLIP [54] to extract image features, subsequently fed into a pre-trained projector
from LLaVA [41] to generate image tokens. In the case of 3D shape, MIA
downsamples them to 1024 points and normalizes their coordinates into a unit
sphere [78]. Then a pre-trained encoder is used to extract the object’s features,
and a trainable projection matrix is inserted between the encoder and LLM to
adjust these tokens.

4.3 LLM Decoder

We utilize the pre-trained LLM |75, |61} |20] as a unified decoder for various vision-
centric tasks. To accomplish this, we employ a 3D scene perceiver (Sec. |4.1)) to
encode the input scene P into discrete scene tokens X, = {x?}fj:l. These tokens
are then concatenated with the multi-modal instruction tokens X; = {x?}anl
LLM takes both the scene tokens and the multi-modal instruction tokens as input
and predicts the probability distribution of the output token X, = {xf}}ﬁzl in
an auto-regressive manner:

Po(Xo|Xo, Xi) = [ [ Po(al |5 X, X0). (4)

Furthermore, for tasks that rely on coordinates for assessment, such as visual
grounding, we decouple them from the output of LLMs (detailed in the supple-
ments). This simple approach enables us to develop a unified framework for a
wide range of 3D-only tasks without the need for modifications to the existing
LLMs |75} |60, 7).

4.4 Training Strategy

The training objective is to maximize the likelihood of generating this target
response sequence X, = {x:}}ﬁ:l, given the visual input X, and multi-modal
instruction X;:

L
Lo=— Z log Py (2! |25% X4, X5). (5)
n=1

Here, 6 represents the trainable parameters. Note that during training, we freeze
3D encoder, image encoder, as well as language decoder, and only train the
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projection layers to enable rapid iterations. Exploring alternative architecture
or refining training strategy may yield further improvements. We leave this as a
direction for future work.

5 Experiments

We first introduce the baseline model, metrics, and implementation details
in Sec. Additionally, we provide the main results and analyses in Sec.
We showcase some visualization results in Sec. 5.4} In Sec. [5.3] we give insightful
analyses of multi-modal instructions and zero-shot performance.

5.1 Baseline, Metrics, and Implementations

Baseline. Since there is no prior method that works out of the box with our
interleaved multi-modal instruction setup, we develop several variants as baseline
to accommodate M3DBench. Specifically, we incorporate two different types of 3D
encoders, based on PointNet++ [53| and Transformer [62], into our baseline model.
Furthermore, we consider two widely-used versions of LLMs as our language
decoder: OPT-6.7B [75] and LLaMA-2-7B [61]. After end-to-end instruction
tuning, we evaluate baseline models to assess their effectiveness.

Evaluation Metrics. The evaluation metrics include both traditional and GPT
metrics. Traditional metrics, such as CiDEr [63], METEOR 5], Acc@0.25IoU [11],
and so on, are used to measure the model’s performance on specific tasks. For
a more comprehensive evaluation of the models’ instruction-following abilities,
we employ GPT-4 to assess the quality of the different variants’ responses.
Specifically, we provide GPT-4 with the answers generated by different variant
models, the reference answers, and evaluation requirements. GPT-4 evaluates
these responses and assigns a score ranging from 0 to 100. A higher average score
indicates better performance of the model. To improve the robustness of our
evaluation, we conduct three assessments with GPT-4 and use the average score
as final result. Furthermore, we request GPT-4 to provide justifications for the
scoring results, which helps us better judge the validity of the evaluation.
Implementations. Following previous works in 3D learning |15} 44], we down-
sample each 3D scene to 40,000 points as scene input. For the PointNet++-based
encoder, we initialize it with the checkpoint obtained from Depth Contrast [76].
As for the Transformer-based encoder, we employ the checkpoint from Vote2Cap-
DETR |[15]. Additionally, we use the pre-trained encoder ViT-L/14 [54] as the
image encoder. We train all the baseline models using the Adam optimizer [42]
with a cosine annealing scheduler where the learning rate decays from 107> to
1075, The model comprises roughly 52 million trainable parameters, accounting
for less than 1% of the frozen LLM backbone’s (LLaMA-2-7B [61]) parameter.

5.2 Quantitative Evaluation

Main Results. As shown in Tab. [2] we comprehensively evaluate four variants
and reported the quantitative results across five tasks: Dense Captioning, Visual



12 M. Li et al.

Table 2: Benchmark for Dense Caption, Visual Question Answering, Multi-region
Reasoning, Embodied Question Answering, Embodied Planning. We present the perfor-
mance of baseline methods on the evaluation dataset. T means the higher, the better.

3D Vision Encoder LLM Decoder BLEU-11 BLEU-2¢ BLEU-31 BLEU-41 ROUGET METEOR? CIDErt
Dense Caption

Pointnet+-+
Transformer

Visual Question Answering

Pointnet+-+
Transformer

Multi-region Reasoning

LLaMA-2-7B 3.06 0.89 0.34 0.00 11.64 5.26 17.99
6.47 2.78 1.29 0.51 20.73 9.55 41.80
8.61 3.54 1.07 0.00 15.83 13.01 24.81

17.49 7.67 3.43 1.80 24.01 13.76 50.62

26.56 22.65 19.49 43.27 20.71 183.06
34.47 29.95 26.11 46.39 22.49 256.98
45.62 40.16 35.65 55.54 29.28 307.44
51.05 46.11 41.97 61.47 31.33  384.78

25.09 19.70 15.28 42.94 21.07 150.57
28.68 24.26 20.27 39.58 20.73 215.23
. 35.92 31.34 27.43 45.28 25.19 251.00
45.75 39.32 33.90 29.61 53.93 29.77 311.35

Pointnet -+ [53

Transformer OPT-6.7B 75

Embodied Question Answering

Pointnet+-+

Transformer

FEobodied Planning
Pointnet ++

Transformer

17.05 13.45 10.19 33.90 14.81 137.03
28.93 23.20 17.80 43.87 22.84 184.93
30.11 24.43 18.73 40.58 20.18 154.21
39.19 33.18 27.22 52.95 26.81 240.51

26.56 22.65 19.49 43.27 20.71 183.06
33.52 28.22 23.58 42.87 21.31 39.35
29.10 24.53 21.04 40.52 20.38 85.85
51.40 46.89 42.88 60.93 32.28  256.59

Question Answering, Multi-region Reasoning, Embodied Question Answering, and
Embodied Planning. We employed BLEU 1-4 , ROUGE-L , METEOR ,
and CiDEr [63] as evaluation metrics.

Analyzing the results, one can see that when using the same language decoder,
variants utilizing transformer-based encoder [47] outperform those based on
Pointnet++ in four out of five tasks. Upon examining the impact of different
language decoders while keeping a constant 3D encoder, it is evident that the
OPT-6.7B-based decoder [75] achieves superior performance across the majority
of metrics, compared to LLaMA-2-7B-based decoder . Overall, the variant with
transformer-based encoder [47] and OPT-6.7B-based decoder outperforms
other variants across all evaluated tasks It is noteworthy that the all of variants
exhibit lower performance on DC compared to other tasks. This can be attributed
to the unique challenge posed by the DC task in M3DBench, which involves
both brief captions and detailed descriptions at the object level. Moreover, the
suboptimal performance of current baseline models across various tasks offers
potential direction for further development of 3D MLMs. For instance, improving
the performance of MLMs on benchmark tasks is crucial for scene understanding,
reasoning, and planning, and we leave them for future work to explore. In the
supplementary, we provide further experimental results for other tasks.

5.3 Insightful Analyses

Are Interleaved Multi-modal Instructions Superior to Language-Only Instruc-
tions? As illustrated in Tab. [3] it is evident that compared to language-only
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Table 3: Verifying the efficacy of interleaved multi-modal instructions. We use
transformer-based [62] encoder and OPT-based [75] decoder, using ROUGE [39] metric
for assessing.

Instruction Type Dense Caption Visual QA Multi-region Reasoning Embodied QA Embodied Planning
Language-only 22.38 59.72 45.99 47.95 50.77
Multi-modal 24.01 61.47 53.93 52.95 60.93

Table 4: Zero-shot results on Embodied Question Answering (EQA) and Embodied
Planning (EP). For held-out evaluation, we demonstrate the performance of baseline
methods on two tasks. Notably, we find that leveraging LLaMA-2 [61] as the language
decoder exhibits superior zero-shot generalization compared to OPT |75].

LLM Decoder BLEU-11 BLEU-21 BLEU-31 BLEU-41 ROUGET METEOR? CIDErt
Embodied Question Answering
OPT-6.7B |75) 12.04 8.94 7.12 5.39 16.87 11.09 57.60
LLaMA-2-7B |61 21.06 13.10 8.85 5.79 25.28 13.54 64.80
Embodied Planning
OPT-6.7B |75) 5.44 3.49 2.19 1.58 11.52 8.04 22.59
LLaMA-2-7B |61 20.80 11.75 6.32 3.69 17.83 12.08 28.73

instructions, incorporating multi-modal prompts significantly boosts the model’s
performance across a range of tasks. Notably, enhancements are observed in
dense captioning (+1.63%), visual question answering (+1.75%), multi-region rea-
soning (+9.64%), embodied question answering (+5%), and embodied planning
(+9.53%). This improved performance indicates the advantage of multi-modal
instructions in enriching the model’s comprehension and execution of human
queries, demonstrating their superiority over language-only instructions.

How Does the Model Perform under Zero-Shot Scenarios? To assess the zero-
shot performance of baseline models, we partition M3DBench into held-in datasets
for training and held-out datasets for evaluation. Analyzing the results presented
in Tab. 4] we draw three key insights: 1), multi-modal instruction tuning enables
the model to reason on new tasks; 2), the LLaMA-based model |61] surpasses the
OPT-based model |75 in zero-shot generalization across both Embodied Question
Answering and Embodied Planning tasks; 3), there still exist performance gaps
compared to results obtained through full-supervised instruction fine-tuning
(detailed in Tab. ; These findings indicate that through multi-modal instruction
tuning on M3DBench, model demonstrates reasoning abilities on tasks that it
has not encountered before.

5.4 Qualitative Results

We showcase some qualitative examples of our baseline model on the evaluation
dataset in Fig. [3] One can see that our proposed method, trained on M3DBench,
is capable of performing corresponding tasks under a variety of interleaved
multi-modal instructions.
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Which object is closer to the double ; - -
iy gl e @ [Can you describe the object found in the]

<box> in a brief way?

The trash can is closer to the double @
doors than the TV. A tall, white cabinet located @
near the sink.

@ [Can you describe the cabinet found in the <box> m}

EGLE abine
found within the <box> relative to Al e s SRR

the shower curtain?
The mirror is located on the wall to @
the right of the shower curtain.

& “ Deliver a brief, straightforward
description of the toolbox situated
near the pointed <point>.

@ What is the position of the mirror

The cabinet is located in the kitchen, specifically in the corner of @
the room. It is a tall cabinet, with a white color and a rectangular
shape. The cabinet is situated in the corner of the room, which
suggests that it is a prominent feature in the space. The cabinet is
also located near the sink, which suggests that it may be used for
storage or organization of kitchen supplies. The cabinet's
placement in the corner of the room may also indicate that it is a
focal point in the kitchen. To access the cabinet, one would need

m to move towards the corner of the room. Overall, the cabinet's

A small, rectangular toolbox. placement and color suggest a clean and organized kitchen space.
- ) @

Q Isthe g nexttoa desk? GPT-4 Score © 40

GPT-4 Explanations: The Al assistant's response is not very
Yes, the window is next to the desk . @ accurate when compared to the ground truth answer. While the
assistant provides a detailed description, it incorrectly identifies
Whatiethelposttionlor theldoar the location of the. Fahlnet as be\ng. in t.he kitchen, whereas the
. ground truth specifies that the cabinet is near a wall and to the

relative to the closet? a 1 N
left of a chair, suggesting a workspace or study area. The assistant
The door i ocated to the rightof | /2] also fails to mention key details such as the painting above the
P — cabinet, the paper holder, the TV remote, and the office chair.
These inaccuracies and omissions significantly reduce the
S el EEER relevance and usefulness of the assistant's response. The
. . o assistant does, however, provide a clear and detailed image of a

shelf, is the window visible? > N N A .
kitchen setting, which shows that it can provide useful
Al information under different circumstances.
Yes, the window is visible

Fig. 3: Qualitative Results. We provide visualization results on various 3D-centric tasks
in diverse 3D environments. Orange highlights the wrong answer.

6 Discussion

Limitation. We provide a baseline method capable of handling multi-modal
instructions, which has not been previously explored. Exploring the design of a
better architecture to efficiently extract information from interleaved multi-modal
instructions is meaningful. Additionally, exploring novel training strategies is
worth further investigation.

Conclusion. In this paper, we present M3DBench, a comprehensive multi-
modal 3D instruction-following dataset, designed to facilitate the development of
MLMs in the 3D domain. M3DBench encompasses a wide range of 3D vision-
centric tasks and over 320K pairs of 3D instruction-following pairs, covering
fundamental functionalities such as visual perception, scene understanding, spatial
reasoning, planning, and navigation. Additionally, M3DBench introduces a novel
multi-modal prompting scheme, interweaving language instruction with user clicks,
pointed regions, images, and other visual prompts. Comprehensive quantitative
and qualitative results demonstrate that models trained with M3DBench can
successfully follow human instructions and complete 3D visual-related tasks. We
hope that our proposed multi-modal 3D instruction dataset, baseline model, and
benchmarks will inspire and fuel future explorations in the field of 3D MLMs.
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