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LetsMap: Unsupervised Representation Learning
for Label-Efficient Semantic BEV Mapping

Supplementary Material

In this supplementary material, we present additional experimental results to
analyze the performance of LetsMap, our unsupervised representation learning
framework for semantic BEV mapping. To this end, we present further ablation
experiments in Sec. S.1 and additional qualitative results in Sec. S.2.

S.1 Additional Ablative Experiments

In this section, we present additional ablative experiments to further study
the impact of various parameters on the overall performance of the model.
Specifically, we study the influence of (1) different DINOv2 variants (Sec. S.1.1)
and (2) masking patch size in our novel T-MAE module (Sec. S.1.2) on the
overall performance of the model. Further, we also present the results obtained
when the native backbones of the best baselines are replaced with our backbone
(Sec. S.1.3) and when the BEV percentage split defined in SkyEye [9] is used for
model finetuning (Sec. S.1.4).

S.1.1 DINOv2 Backbone Variants

In this section, we study the influence of different variants of the DINOv2
backbone on the overall performance of the model. Specifically, we first pretrain
the model using four variants, namely, vit-b, vit-s, vit-l, and vit-g, and finetune
each of them using 1% of semantic BEV labels. Tab. S.1 presents the results of
this ablation study. We observe that vit-s yields the lowest performance among all
variants, achieving 3.41 pp lower than vit-b. Being the smallest of all variants, vit-s
does not generate features that are as representative as its larger counterparts,
thus resulting in its reduced overall performance.
The three larger variants, i.e., vit-b, vit-l, and vit-g, however, yield very similar
mIoU scores with the difference between the highest and lowest performance
being only 0.80 pp. In other words, the performance of semantic BEV mapping
saturates after vit-b and does not improve upon using a larger backbone. We infer
that this behavior can be attributed to one of the following reasons: (1) larger
DINOv2 backbones provide better features for FV tasks, but these features do
not easily transfer to the task of BEV mapping, or (2) 1% of BEV labels are
insufficient to leverage the full potential of larger backbones. Given the similar
performance of vit-b as compared to vit-l and vit-g while being more efficient in
terms of number of parameters, we use the vit-b variant of the DINOv2 backbone
in this work.
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Table S.1: Ablation study on the impact of different DINOv2 backbones on the overall
model performance. All models in this experiment are finetuned using only 1% of BEV
labels. All metrics are reported in [%] on the KITTI-360 dataset.

Backbone vit-s vit-b vit-l vit-g

mIoU 25.55 28.96 28.40 28.16

Table S.2: Ablation study on the impact of masking patch size in T-MAE on the
overall performance of the model. All models are finetuned using only 1% of labels in
BEV. All metrics are reported in [%] on the KITTI-360 dataset.

Patch Size Road Side. Build. Terr. Per. 2-Wh. Car Truck mIoU

14 71.45 33.41 36.89 37.48 0.75 3.69 30.05 9.23 27.87
28 70.58 34.26 40.68 38.53 1.35 4.74 30.94 10.58 28.96
56 70.02 34.10 38.87 37.88 1.37 4.71 30.91 9.66 28.44

S.1.2 Masking Patch Size

In this section, we analyze the influence of masking patch sizes used for masking
the input image in our novel temporal MAE (T-MAE) module on the overall
performance of the model. To this end, we first pretrain the model using masking
patches of size 14, 28, and 56, and then finetune the resultant model on 1% of
BEV labels. Tab. S.2 presents the results of this ablation study.
We observe that a masking patch size of 28 gives the highest mIoU score across
all the evaluated patch sizes. A smaller patch size does not mask out enough of an
object and consequently does not present a challenging reconstruction task during
the unsupervised pretraining phase. In contrast, a larger patch size masks out
significant distinguishing regions in the image which hinders the representation
learning ability of the network during the pretraining phase. The effect of patch
sizes is noticeable across all classes while being significant for dynamic objects
which experience a substantial reduction in the IoU scores when too little of the
object is masked out. Given these observations, we use a patch size of 28 in our
LetsMap framework.

S.1.3 Impact of DINOv2 on Baseline Approaches

In this section, we analyze the impact of the DINOv2 backbone on the overall
performance of the baseline models. Specifically, we replace the native backbones
of the two best baselines, PanopticBEV [10] and SkyEye [9], with a pretrained
DINOv2 backbone as used in our model. We follow the setting defined in Sec. 4.4 of
the main paper and report the results when finetuning with varying percentages
of BEV labels in Tab. S.3. We observe that PoBEV reports slightly better
performance across all percentage splits when using the DINOv2 backbone with
the highest improvement of 1.41 pp observed when using 100% of BEV labels. In
contrast, we observe that the performance of SkyEye deteriorates when the native
encoder is replaced with the DINOv2 backbone. At lower percentage splits of
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1%, 5%, and 10%, the BEV segmentation performance drops by 2.85 pp, 3.76 pp,
and 2.62 pp which indicates that the SkyEye framework is unable to adapt the
DINOv2 features to this task. The performance drop is observed across all classes
and is especially large for car and two-wheeler which we believe is a consequence
of not having an explicit scene geometry estimation module to estimate the
extent of objects in the scene. We infer that the native backbone of SkyEye
absorbs a significant chunk of scene geometry, but when replaced with a frozen
backbone as in our model, SkyEye fails to learn sufficient geometric information.
We thus conclude that using our backbone in the baseline approaches results in
only a slight improvement in PoBEV and deteriorates the BEV segmentation
performance in SkyEye.

Table S.3: Performance of baseline approaches when using the DINOv2 backbone as
used in LetsMap. All experiments are on the KITTI-360 dataset.

BEV Model FV PT Backbone Road Side. Build. Terr. Pers. 2-Wh. Car Truck mIoU

1%

PoBEV ✗ - Native 60.41 20.97 24.65 23.38 0.15 0.23 21.71 1.23 19.09
SkyEye ✓ ✓ 69.26 33.48 32.79 39.46 0.00 0.34 32.36 7.93 26.94

PoBEV ✗ -
DINOv2

62.36 21.02 27.18 24.22 0.04 0.12 17.50 0.95 19.17
SkyEye ✓ ✓ 65.13 29.56 29.02 34.22 0.78 2.87 26.04 5.12 24.09
LetsMap ✗ ✓ 70.58 34.26 40.68 38.53 1.35 4.74 30.94 10.58 28.96

5%

PoBEV ✗ - Native 64.45 27.36 30.15 31.66 0.69 0.98 29.75 6.06 23.89
SkyEye ✓ ✓ 72.16 37.20 34.89 42.97 4.77 9.16 40.74 9.88 31.47

PoBEV ✗ -
DINOv2

67.61 30.73 30.97 32.80 0.42 0.47 25.48 5.58 24.26
SkyEye ✓ ✓ 69.84 34.19 32.80 37.13 2.54 4.74 32.49 7.93 27.71
LetsMap ✗ ✓ 73.74 39.56 42.07 41.49 2.46 6.32 34.68 14.88 31.90

10%

PoBEV ✗ - Native 66.58 30.28 31.76 34.50 1.22 3.28 33.43 7.56 26.08
SkyEye ✓ ✓ 73.36 38.30 37.54 44.62 4.80 9.67 42.84 10.06 32.65

PoBEV ✗ -
DINOv2

68.99 33.17 35.81 34.15 0.70 1.58 29.74 10.06 26.77
SkyEye ✓ ✓ 72.19 36.18 35.26 39.84 3.78 5.61 36.95 10.44 30.03
LetsMap ✗ ✓ 74.74 39.40 43.63 43.33 2.91 6.95 37.62 18.09 33.33

50%

PoBEV ✗ - Native 69.88 33.81 33.40 40.48 2.47 4.63 38.81 9.84 29.16
SkyEye ✓ ✓ 73.10 39.23 38.08 45.72 4.05 10.44 44.72 12.10 33.43

PoBEV ✗ -
DINOv2

73.04 37.38 37.86 41.31 1.82 3.83 37.13 14.85 30.90
SkyEye ✓ ✓ 73.66 38.85 41.49 41.73 2.90 6.99 38.43 12.42 32.06
LetsMap ✗ ✓ 74.29 38.48 43.87 42.77 2.80 5.22 37.68 15.20 32.54

100%

PoBEV ✗ - Native 70.14 35.23 34.68 40.72 2.85 5.63 39.77 14.38 30.42
SkyEye ✓ ✓ 73.57 39.45 38.74 46.06 3.95 9.66 45.21 10.92 33.44

PoBEV ✗ -
DINOv2

73.29 37.81 40.23 42.11 1.78 3.32 38.66 17.42 31.83
SkyEye ✓ ✓ 73.51 39.13 40.04 42.08 3.17 5.90 39.29 12.72 31.98
LetsMap ✗ ✓ 74.81 38.59 42.58 43.67 3.52 6.21 38.47 15.24 32.88

S.1.4 BEV Finetuning using SkyEye Split

In this section, we report the results obtained upon finetuning both the baselines
as well as our model with the single random set generated for each BEV percentage
split as defined in SkyEye [9]. Please note that all networks are finetuned using the
corresponding percent of BEV ground truth labels. Tab. S.4 presents the results
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Table S.4: Ablation study on the impact of our unsupervised pretraining on the overall
network performance using the finetuning split defined in SkyEye. All experiments are
on the KITTI-360 dataset.

BEV Model FV PT Epochs Road Side. Build. Terr. Pers. 2-Wh. Car Truck mIoU

1%

PoBEV ✗ -

100

61.70 17.10 27.81 26.72 0.07 0.36 21.51 0.84 19.51
SkyEye ✓ ✓ 72.56 34.33 36.70 41.66 0.00 0.16 33.85 10.29 28.71
LetsMap ✗ ✗ 70.89 33.88 37.71 37.41 0.80 2.87 31.59 6.59 27.72
LetsMap ✗ ✓ 72.94 37.79 43.70 38.29 0.87 2.57 30.62 10.86 29.70

10%

PoBEV ✗ -

50

70.00 32.75 38.07 34.43 0.80 3.33 34.46 9.25 27.89
SkyEye ✓ ✓ 76.07 40.30 40.30 45.33 3.75 8.15 42.64 10.73 33.41
LetsMap ✗ ✗ 76.69 40.41 42.55 42.17 1.33 6.57 40.46 18.06 33.53
LetsMap ✗ ✓ 74.47 41.16 46.31 43.31 5.48 8.80 41.55 21.24 35.29

50%

PoBEV ✗ -

30

72.09 35.64 36.64 42.41 1.61 3.92 41.41 9.77 30.44
SkyEye ✓ ✓ 76.43 39.89 45.22 46.64 5.10 7.93 42.43 12.30 34.49
LetsMap ✗ ✗ 75.46 39.45 42.71 39.69 3.85 5.70 41.88 17.82 33.32
LetsMap ✗ ✓ 76.54 42.65 49.23 41.47 3.36 8.61 38.76 19.42 35.01

of this study. We observe that our pretraining strategy significantly improves
the performance of our model across all three percentage splits with the largest
improvement of 1.98 pp observed when using 1% of BEV labels. We also note
that LetsMap outperforms SkyEye by 0.99 pp and 1.88 pp when using 1% and
10% which highlights the impact of our approach in low label regimes. Thus, in
line with Sec. 4.4 and Tab. 3, we conclude that our novel pretraining strategy
positively influences network performance on the BEV segmentation task and
results in competitive segmentation performance even in extremely low label
regimes.

S.2 Additional Qualitative Results

In this section, we qualitatively evaluate the performance of our model by
comparing the semantic BEV maps obtained when the amount of BEV supervision
is gradually increased from 1% to 100%. Fig. S.1 presents the results of this
evaluation. Fig. S.1(a, b, c, d) present the results on the KITTI-360 dataset and
Fig. S.1(e, f, g, h) present the results on the nuScenes dataset.
We observe that the semantic BEV map predictions are largely consistent across
all the percentage splits of the two datasets with only minor differences pertaining
to the predicted object extents. This behavior is evident in Fig. S.1(d, f) where
the model finetuned with 1% of BEV data tends to stretch objects along the
radial direction, while models finetuned with higher percentage splits are not
significantly affected by this factor. Moreover, we note that the 1% model is
able to both detect and localize all the objects in the BEV map to a high
degree of accuracy, with only minor errors in the heading of the detected objects
(Fig. S.1(c)). Further, we observe in Fig. S.1(a, f, h) that the model finetuned
with 1% labels is able to accurately reason about occlusions in the scene, such
as the road behind the truck in Fig. S.1(a) and the regions beyond the curve in
the road in Fig. S.1(h). This occlusion handling ability stems from the use of an
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Fig. S.1: Qualitative results obtained when LetsMap is finetuned using 1%, 5%, 10%,
50% and 100% of labels in BEV. Figures (a-d) depict predictions on the KITTI-360
dataset, while figures (e-h) show the predictions on the nuScenes dataset.
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independent implicit field-based geometry pathway to reason about the scene
geometry in the unsupervised pretraining step. In some cases, however, the scene
priors learned during the pretraining step do not generalize well to a given image
input. For example, we observe in Fig. S.1(c) that the grass patch next to the
vehicle in the adjacent lane is erroneously predicted as a road for the 1% model,
while the models finetuned with more than 10% BEV data accurately capture
this characteristic. Nonetheless, these observations reinforce the fact that our
unsupervised pretraining step encourages the network to learn rich geometric
and semantic representations of the scene which allows models finetuned with
extremely small BEV percentage splits to generate accurate BEV maps.


