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Abstract. Semantic Bird’s Eye View (BEV) maps offer a rich repre-
sentation with strong occlusion reasoning for various decision making
tasks in autonomous driving. However, most BEV mapping approaches
employ a fully supervised learning paradigm that relies on large amounts
of human-annotated BEV ground truth data. In this work, we address
this limitation by proposing the first unsupervised representation learning
approach to generate semantic BEV maps from a monocular frontal
view (FV) image in a label-efficient manner. Our approach pretrains
the network to independently reason about scene geometry and scene
semantics using two disjoint neural pathways in an unsupervised manner
and then finetunes it for the task of semantic BEV mapping using only
a small fraction of labels in the BEV. We achieve label-free pretraining
by exploiting spatial and temporal consistency of FV images to learn
scene geometry while relying on a novel temporal masked autoencoder
formulation to encode the scene representation. Extensive evaluations on
the KITTI-360 and nuScenes datasets demonstrate that our approach
performs on par with the existing state-of-the-art approaches while using
only 1% of BEV labels and no additional labeled data.

Keywords: Unsupervised Representation Learning · Semantic BEV
Mapping · Scene Understanding

1 Introduction

Semantic Bird’s Eye View (BEV) maps are essential for autonomous driving
as they offer rich, occlusion-aware information for height-agnostic applications
including object tracking, collision avoidance, and motion control. Instantaneous
BEV map estimation that does not rely on large amounts of annotated data is
crucial for the rapid deployment of autonomous vehicles in novel domains. How-
ever, the majority of existing BEV mapping approaches follow a fully supervised
learning paradigm and thus rely on large amounts of annotated data in BEV,
which is extremely arduous to obtain and hinders the scalability of autonomous
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Fig. 1: LetsMap: The first unsupervised framework for label-efficient semantic BEV
mapping. We use RGB image sequences to independently learn scene geometry (yellow)
and scene representation (blue) in an unsupervised pretraining step, before adapting it
to semantic BEV mapping in a label-efficient finetuning step.

vehicles to novel environments [23,28–30]. Recent works circumvent this problem
by leveraging frontal view (FV) semantic labels for learning both scene geometry
and generating BEV pseudolabels [9], or by leveraging semi-supervised learning
using pairs of labeled and unlabeled samples [7]. However, the reliance on FV
labels as well as the integrated network design of both approaches gives rise
to three main challenges: (1) FV labels offer scene geometry supervision only
along class boundaries which limits the geometric reasoning ability of the model;
(2) FV labels are dataset-specific and any change in class definition mandates
full model retraining; and (3) tightly coupled network designs hinder the quick
adoption of latest advances from literature.

In this work, we address these limitations by proposing the first unsupervised
representation learning framework for predicting semantic BEV maps from
monocular FV images in a label-efficient manner. Our approach, LetsMap, utilizes
the spatiotemporal consistency and dense representation offered by FV image
sequences to alleviate the need for manually annotated data. To this end, we
disentangle the two sub-tasks of semantic BEV mapping, i.e., scene geometry
modeling and scene representation learning, into two disjoint neural pathways
(Fig. 1) and learn them using an unsupervised pretraining step. We then finetune
the resultant model for semantic BEV mapping using only a small fraction of labels
in BEV. LetsMap explicitly learns to model the scene geometry via the geometric
pathway by leveraging implicit fields, while learning scene representations via
the semantic pathway using a novel temporal masked autoencoder (T-MAE)
mechanism. During pretraining, we supervise the geometric pathway by exploiting
the spatial and temporal consistency of the multi-camera FV images across
multiple timesteps and train the semantic pathway by enforcing reconstruction of
the FV images for both the current and future timesteps using the masked image
of only the current timestep. We extensively evaluate LetsMap on the KITTI-
360 [21] and nuScenes [2] datasets and demonstrate that our approach performs
on par with existing fully-supervised and self-supervised approaches while using
only 1% of BEV labels, without leveraging any additional labeled data.
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2 Related Work

In this section, we outline current work on semantic BEV mapping, monocular
scene geometry estimation, and image-based scene representation learning.
BEV Segmentation: Monocular semantic BEV mapping methods typically fo-
cus on learning a lifting mechanism to transform features from FV to BEV. Early
works of VED [23] and VPN [28] learn the transformation without using scene
geometry, which limits their performance in the real world. PON [30] solves this is-
sue by incorporating scene geometry into the network design while LSS [29] learns
a depth distribution to transform features from FV to BEV. PanopticBEV [10]
splits the world into flat and non-flat regions and transforms them to BEV
using two disjoint pathways. Recent methods use transformers to generate BEV
features from both single image [31] and multi-view images [37]. Some works
also use multi-modal data to augment monocular cameras [11, 20, 22, 32]. All the
aforementioned approaches follow a fully supervised learning paradigm and rely
on vast amounts of resource-intensive human-annotated semantic BEV labels.
Recent works reduce reliance on BEV ground truth labels by combining labeled
and unlabeled images in a semi-supervised manner [7] or by leveraging FV labels
to generate BEV pseudolabels and train the network in a self-supervised man-
ner [9]. However, these approaches rely on additional labeled data or use tightly
coupled network designs which limits their ability to scale to new environments
or incorporate the latest advances in literature. In this paper, we propose a novel
unsupervised label-efficient approach that first learns scene geometry and scene
representation in a modular, label-free manner before adapting to semantic BEV
mapping using only a small fraction of BEV semantic labels.
Monocular Scene Geometry Estimation: Scene geometry estimation is a
fundamental challenge in computer vision and is a core component of 3D scene
reconstruction. Initial works use techniques such as multi-view stereo [6] and
visual SLAM [1,35] while recent approaches leverage learnable functions in the
form of ray distance functions [18] or implicit neural fields [25]. Early neural
radiance fields-based approaches were optimized on single scenes and relied on
substantial amounts of training data [25]. PixelNeRF [38] addresses these issues
by conditioning NeRF on input images, enabling simultaneous optimization across
different scenes. Recent works improve upon PixelNeRF by decoupling color from
scene density estimation [36], and by using a tri-planar representation to query
the neural field from any world point [17]. In our approach, we leverage implicit
fields to generate the volumetric density from a single monocular FV image to
constrain features from the uniformly-lifted 2D scene representation features.
Scene Representation Learning: Early works used augmentations such as
image permutation [26], rotation prediction [8], noise discrimination [14], and
frame ordering [19] to learn scene representation; which were primitive and lacked
generalization across diverse tasks. [5, 13] propose using contrastive learning
to learn scene representation, and [3] builds upon this paradigm by removing
the need for negative samples during training. Recent works propose masked
autoencoders [12] wherein masked input image patches are predicted by the
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Fig. 2: Overview of LetsMap, our novel unsupervised representation learning framework
for label-efficient semantic BEV mapping. The crux of our approach is to leverage FV
image sequences to independently model scene geometry and scene representation using
two disjoint pathways following an unsupervised training paradigm. The resulting model
is finetuned on a small fraction of BEV labels to the task of semantic BEV mapping.

network using the learned high-level understanding of the scene. More recently,
foundation models such as DINO [4] and DINOv2 [27] employ self-distillation
on large amounts of curated data to learn rich representations of the scene.
However, all these approaches work on single timestep images and fail to leverage
scene consistency over multiple timesteps. In this work, we explicitly enforce
scene consistency over multiple timesteps by proposing a novel temporal masked
autoencoding strategy to learn rich scene representations.

3 Technical Approach

In this section, we present an overview of LetsMap, the first unsupervised learning
framework for predicting semantic BEV maps from monocular FV images using
a label-efficient training paradigm. An overview of our framework is illustrated
in Fig. 2. The key idea of our approach is to leverage sequences of multi-camera
FV images to learn the two core sub-tasks of semantic BEV mapping, i.e., scene
geometry modeling and scene representation learning, using two disjoint neural
pathways following a label-free paradigm, before adapting it to the downstream
task in a label-efficient manner. We achieve this desired behavior by splitting the
training protocol into sequential FV pretraining and BEV finetuning stages. The
FV pretraining stage learns to explicitly model the scene geometry by enforcing
scene consistency over multiple views using the photometric loss (Lphotom, Sec. 3.2)
while learning the scene representation by reconstructing a masked input image
over multiple timesteps using the reconstruction loss (Lrgb, Sec. 3.3). Upon
culmination of the pretraining phase, the finetuning phase adapts the network
to the task of semantic BEV mapping using the cross-entropy loss on the tiny
fraction of available BEV labels (Lbev, Sec. 3.4). The total loss of the network is
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thus computed as:

L =

{
Lphotom + Lrgb when pretraining
Lbev when finetuning

. (1)

3.1 Network Architecture

Our proposed framework, as shown in Fig. 2, consists of a pretrained DINOv2 [27]
(ViT-b) backbone to generate multi-scale features from an input image; a geometry
pathway comprising a convolution-based adapter followed by an implicit neural
field to predict the scene geometry; a semantic pathway encompassing a sparse
convolution-based adapter to capture representation-specific features; an RGB
reconstruction head to facilitate reconstruction of the masked input image patches
over multiple timesteps; and a BEV semantic head to generate a semantic BEV
map from the input monocular FV image during the finetuning phase.

During pretraining, an input image I0 is processed by the backbone to generate
feature maps of three scales. The geometry pathway, G, processes these multi-scale
features using a BiFPN [33] layer followed by an implicit field module to generate
the volumetric density of the scene at the current timestep. In a parallel branch,
a masking module first randomly masks non-overlapping patches in I0 and the
backbone then processes the visible patches to generate the corresponding image
features. The semantic pathway S then generates the representation-specific
features using a five-layer adapter that ensures propagation of masked regions
using the convolution masking strategy outlined in [34]. We then uniformly lift the
resultant 2D features to 3D using the camera projection equation and multiply
them with the volumetric density computed from G to generate scene-consistent
voxel features. We warp the voxel grid to multiple timesteps using the ego-motion
and collapse it into 2D by applying the camera projection equation along the
depth dimension. The RGB reconstruction head then predicts the pixel values
for each of the masked patches to reconstruct the image at different timesteps.
During finetuning, we disable image masking and orthographically collapse the
voxel features along the height dimension to generate the BEV features. A BEV
semantic head processes these features to generate semantic BEV predictions.

3.2 Geometric Pathway

The goal of the geometric pathway G is to explicitly model scene geometry in a
label-free manner using only the spatio-temporal images obtained from cameras
onboard an autonomous vehicle. Explicit scene geometry modeling allows the
network to reason about occlusions and disocclusions in the scene, thus improving
the quality of predictions in the downstream task. To this end, we design the
task of scene geometry learning using an implicit field formulation wherein the
main goal is to estimate the volumetric density of the scene in the camera
coordinate system given a monocular FV image, as shown in Fig. 3a. We multiply
the estimated volumetric density with the uniformly-lifted semantic features to
generate the geometrically consistent semantic features (see Sec. 3.3).
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(a) (b)

Fig. 3: (a) An illustration of our neural implicit field module. It leverages spatio-temporal
consistency offered by multi-camera images to model scene geometry. (b) FV predictions
from our unsupervised pretraining step. A FV image (top left) is processed by the
geometry pathway to generate a volumetric density which yields a depth map (top
right) upon ray casting. Parallelly, a masked FV image (bottom left) is processed by
the semantic pathway to reconstruct the masked image (bottom right).

We generate the volumetric density for the scene by following the idea of
image-conditioned NeRF outlined in [38]. Firstly, we retrieve the image features f
for randomly sampled points, x = (x, y, z), along every camera ray by projecting
them onto the 2D image plane and computing the value for each projection
location using bilinear interpolation. We then pass the image features along with
their positional encodings into a two-layer MLP, ϕ, to estimate the volumetric
density, σx, at each of the sampled locations. Mathematically, the volumetric
density at location x is computed as:

σx = ϕ(fux , γ(ux, dx)), (2)

where γ(·, ·) denotes the sinusoidal positional encoding computed using the 2D
projection ux of x on the image plane and its distance dx from the camera origin.

During training, we optimize ϕ by first computing the depth map from σ and
then computing the photometric loss between the multi-view FV images at both
the current as well as future timesteps. Specifically, for a camera ray through pixel
location u, we estimate the corresponding depth d̂u by computing the integral of
intermediate depths over the probability of ray termination at a given distance.
Accordingly, we sample k points, x1,x2, ...,xk, on each camera ray and compute
σ at each of these locations. We then compute the probability of ray termination
αi between every pair of consecutive points (xi, xi+1) to determine the distance
at which the ray is terminated, i.e., the depth d̂u. Mathematically,

αi = exp(1− σxi
δi), (3)

d̂u =

K∑
i=1

(

i−1∏
j=1

(1− αj))αidi, (4)

where di is the distance of xi from the camera origin and δi = di+1 − di. Fig. 3b
shows a depth map output from G. We use this depth map to supervise the
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geometric pathway G using the photometric loss between RGB images generated
using inverse and forward warping. Inverse warping is described as:

I ′tgt,inv(psrc) = Itgt⟨KTsrc→tgtd(psrc)K
−1psrc⟩, (5)

where K is the intrinsic matrix, ⟨·⟩ is the bilinear sampling operator, and psrc is a
pixel coordinate in the source image. Similarly, forward warping is described as:

I ′tgt,fwd(KTsrc→tgtd(psrc)K
−1psrc) = Isrc(psrc), (6)

We reduce the impact of occlusions across timesteps from corrupting the photo-
metric loss by only computing the pixelwise minimum for each of the forward
and inverse photometric losses. The photometric loss is then computed as:

Lphotom = ∥I ′tgt,fwd − Itgt∥1 + ∥I ′tgt,inv − Isrc∥1 (7)

3.3 Semantic Pathway

The semantic pathway S aims to facilitate the learning of holistic feature repre-
sentations for various scene elements in a label-free manner. This rich pretrained
representation enables efficient adaptation to semantic classes during finetuning.
To this end, we learn the scene element representations by masking out random
patches in the input image and then forcing the network to generate pixel-wise
predictions for every masked patch (Fig. 3b). We also exploit the temporal consis-
tency of static elements in the scene by reconstructing the RGB images at future
timesteps t1, t2, ..., tn using the masked RGB input at timestep t0. This novel
formulation of temporal masked autoencoding (T-MAE) allows our network to
learn spatially- and semantically consistent features which improve its occlusion
reasoning ability and accordingly its performance on semantic BEV mapping.

Our semantic pathway S, shown in Fig. 2, masks the input image I0 using
a binary mask M0 with a masking ratio m, and generates the corresponding
masked semantic 3D voxel grid V S

0 . We then multiply V S
0 with the volumetric

density σ obtained from the geometric pathway G to generate the intermediate
masked voxel grid V0. During pretraining, we densify V0 by filling the masked
regions using a common mask token [M], and generating pseudo voxel grids V0→i

by warping V0 using the known camera poses between the current and the ith

timesteps. Mathematically,

V0→i = T0→iV0, (8)

where T0→i is the transformation between camera poses at timesteps t0 and ti.
We then independently use the voxel grids V0, V0→1, V0→2, ..., V0→i as inputs to an
RGB reconstruction head to reconstruct the RGB images Î0, Î0→1, Î0→2, ..., Î0→i.
We compute the L2 loss on the normalized pixel values of every patch between Ik
and Îk to generate the supervision for the semantic pathway S. We thus compute
the reconstruction loss as:

Lrgb =

n∑
i=0

∥Ip
i − Îp

0→i∥2, (9)

where Ip denotes the per-patch normalized image.
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3.4 BEV Finetuning

We set up the network for finetuning by disabling image masking and discarding
the RGB reconstruction head. We finetune the network on semantic BEV mapping
by training the model on a fraction of BEV ground truth semantic labels using
the cross entropy loss function. Mathematically,

Lbev = CE(B, B̂), (10)

where B and B̂ are the semantic BEV ground truth and semantic BEV prediction
masks, respectively.

4 Experimental Results

In this section, we present quantitative and qualitative results of our unsupervised
label-efficient semantic BEV mapping framework, LetsMap, and provide extensive
ablative experiments to demonstrate the benefit of our proposed contributions.

4.1 Datasets

We evaluate LetsMap on two large-scale autonomous driving datasets, i.e., KITTI-
360 [21] and nuScenes [2]. Since neither dataset provides semantic BEV labels,
we adopt the label generation pipeline outlined in PoBEV [10] with minor
modifications to discard the occlusion mask to generate the semantic BEV
ground truth labels. We sample one forward-facing perspective image from either
fisheye camera for multi-camera supervision in KITTI-360 but use only a single
camera in nuScenes due to the lack of sufficient field-of-view overlap between the
spatial cameras. For KITTI-360, we hold out sequence 10 for validation and use
the remaining 8 sequences for training. For nuScenes, we follow the train-val split
from [30] and obtain 702 train and 142 validation sequences.

4.2 Training Protocol

We train LetsMap on images of size 448× 1344, and 448× 896 for KITTI-360
and nuScenes, respectively. We select these image sizes to ensure compatibility
with both the image encoder as well as the lower scales of the BiFPN adapter
module since they are divisible by both 14 and 32. The pretraining phase follows
a label-free paradigm and trains the network using only spatio-temporal FV
images with a window size of 4, masking ratio of 0.75, and masking patch size of
28 for 20 epochs with an initial learning rate (LR) of 0.005 which is decayed by a
factor of 0.5 at epoch 15 and 0.2 at epoch 18. We finetune the network on the
task of semantic BEV mapping for 100 epochs using only 1% of BEV labels for
the KITTI-360 dataset and one sample from every scene for the nuScenes dataset
(≈ 1

40%). We use an LR of 0.005 during finetuning and decay it by a factor of 0.5
at epoch 75 and 0.2 at epoch 90. We optimize LetsMap using the SGD optimizer
with a batch size of 12, momentum of 0.9, and weight decay of 0.0001.
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Table 1: Evaluation of semantic BEV mapping on the KITTI-360 dataset. All metrics
are reported in [%].

Method FV BEV Road Side. Build. Terrain Person 2-Wh. Car Truck mIoU

IPM [24] 100% - 53.03 24.90 15.19 32.31 0.20 0.36 11.59 1.90 17.44
VED [23] - 100% 65.97 35.41 37.28 34.34 0.13 0.07 23.83 8.89 25.74
VPN [28] - 100% 69.90 34.31 33.65 40.17 0.56 2.26 27.76 6.10 26.84
PON [30] - 100% 67.98 31.13 29.81 34.28 2.28 2.16 37.99 8.10 26.72
PoBEV [10] - 100% 70.14 35.23 34.68 40.72 2.85 5.63 39.77 14.38 30.42

PoBEV [10] - 1% 60.41 20.97 24.65 23.38 0.15 0.23 21.71 1.23 19.09
SkyEye [9] 100% 1% 69.26 33.48 32.79 39.46 0.00 0.34 32.36 7.93 26.94
LetsMap (Ours) 0% 1% 70.58 34.26 40.68 38.53 1.35 4.74 30.94 10.58 28.96

Table 2: Evaluation of semantic BEV mapping on the nuScenes dataset. All metrics
are reported in [%].

Method FV BEV Road Side. Manm. Terrain Person 2-Wh. Car Truck mIoU

IPM [24] 100% - 43.51 9.05 26.21 16.60 0.14 0.72 4.65 3.67 13.07
VED [23] - 100% 67.97 25.23 49.69 31.51 0.80 1.28 21.85 17.51 26.98
VPN [28] - 100% 66.47 23.94 47.65 33.19 2.02 4.13 22.66 18.33 27.30
PON [30] - 100% 67.50 24.49 47.02 30.86 2.49 6.85 26.68 18.85 28.09
PoBEV [10] - 100% 70.15 27.87 50.04 35.32 3.89 7.06 31.60 21.27 30.90

PoBEV [10] - ≈ 1
40% 64.55 19.85 45.21 28.45 1.20 1.06 20.45 11.48 24.03

LetsMap (Ours) 0% ≈ 1
40% 67.72 27.06 47.10 34.78 3.31 5.79 21.92 13.57 27.66

4.3 Quantitative Results

We evaluate the performance of LetsMap on KITTI-360 by comparing it with
the self-supervised approach SkyEye [9] as well as the fully-supervised baselines
outlined in SkyEye. However, since SkyEye cannot be trained on nuScenes due
to the lack of FV labels, we compare our approach with only the fully-supervised
baselines on the nuScenes dataset. For all experiments, we use the code provided by
the authors and ensure fair comparison by using the training protocols described
in their original manuscripts. We use the standard mIoU metric for quantifying
the performance [15]. Tab. 1 and Tab. 2 present the results of this evaluation for
KITTI-360 and nuScenes respectively. For these experiments, we report metrics
obtained when fully-supervised approaches are trained using 100% of BEV labels,
SkyEye is pretrained using 100% of FV labels and finetuned on a tiny fraction of
BEV labels, while LetsMap is trained on only a tiny fraction of BEV labels, i.e.,
1% on KITTI-360 and one sample per scene (≈ 1

40%) on nuScenes.
We observe from Tab. 1 that our approach, LetsMap, outperforms four of

the five fully-supervised baselines by more than 2 pp while using only 1% of
BEV labels. Notably, LetsMap also exceeds SkyEye by 2.02 pp without using any
additional labeled data. We note that our approach significantly outperforms
SkyEye on the static classes of road and building, as well as the dynamic classes
of person, 2-wheeler, and truck. This improvement stems from explicit modeling
of both scene geometry and representation which ensures well-constrained extents
of dynamic objects as well as efficient mapping of scene elements to BEV classes
using only 1% of BEV labels. Although better than SkyEye, we observe that
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Table 3: Ablation study on the impact of our unsupervised pretraining on the overall
network performance. The column “FV” shows whether the models leverage FV pre-
training, and the column “PT” denotes whether the models have been pretrained. All
experiments are on the KITTI-360 dataset.

BEV Model FV PT Epochs Road Side Build Terr. Pers. 2-Wh. Car Truck mIoU

1%

PoBEV ✗ -

100

60.41 20.97 24.65 23.38 0.15 0.23 21.71 1.23 19.09
SkyEye ✓ ✓ 69.26 33.48 32.79 39.46 0.00 0.34 32.36 7.93 26.94
LetsMap ✗ ✗ 69.40 32.09 34.75 35.27 1.01 2.79 28.76 7.66 26.47
LetsMap ✗ ✓ 70.58 34.26 40.68 38.53 1.35 4.74 30.94 10.58 28.96

5%

PoBEV ✗ -

80

64.45 27.36 30.15 31.66 0.69 0.98 29.75 6.06 23.89
SkyEye ✓ ✓ 72.16 37.20 34.89 42.97 4.77 9.16 40.74 9.88 31.47
LetsMap ✗ ✗ 72.80 37.89 38.59 40.06 2.34 5.62 34.86 16.26 31.05
LetsMap ✗ ✓ 73.74 39.56 42.07 41.49 2.46 6.32 34.68 14.88 31.90

10%

PoBEV ✗ -

50

66.58 30.28 31.76 34.50 1.22 3.28 33.43 7.56 26.08
SkyEye ✓ ✓ 73.36 38.30 37.54 44.62 4.80 9.67 42.84 10.06 32.65
LetsMap ✗ ✗ 74.31 38.45 40.04 41.26 3.19 6.02 35.56 16.53 31.92
LetsMap ✗ ✓ 74.74 39.40 43.63 43.33 2.91 6.95 37.62 18.09 33.33

50%

PoBEV ✗ -

30

69.88 33.81 33.40 40.48 2.47 4.63 38.81 9.84 29.16
SkyEye ✓ ✓ 73.10 39.23 38.08 45.72 4.05 10.44 44.72 12.10 33.43
LetsMap ✗ ✗ 73.89 38.42 42.25 41.46 2.26 6.26 37.20 15.08 32.10
LetsMap ✗ ✓ 74.29 38.48 43.87 42.77 2.80 5.22 37.68 15.20 32.54

100%

PoBEV ✗ -

20

70.14 35.23 34.68 40.72 2.85 5.63 39.77 14.38 30.42
SkyEye ✓ ✓ 73.57 39.45 38.74 46.06 3.95 9.66 45.21 10.92 33.44
LetsMap ✗ ✗ 74.22 39.39 42.86 42.96 2.55 6.66 35.68 17.11 32.68
LetsMap ✗ ✓ 74.81 38.59 42.58 43.67 3.52 6.21 38.47 15.24 32.88

LetsMap underperforms PoBEV for most dynamic classes, reporting 8.83 pp and
3.80 pp lower on car and truck respectively. This is likely due to insufficient views
for training the implicit field or the presence of moving objects which results in
its sub-optimal performance. Increasing the number of timesteps and sampling
more perspective images from the fisheye cameras could address this limitation.

On the nuScenes dataset, we note that LetsMap is comparable to most of
the fully-supervised baselines but is consistently outperformed by the state-
of-the-art approach PoBEV. nuScenes, being extremely dynamic and diverse,
presents a significant challenge to our implicit field formulation which enforces
a static scene constraint. This is especially evident in the car and truck classes
which report 9.68 pp and 7.70 pp lower than PoBEV. Nonetheless, LetsMap is
able to efficiently learn the scene representations of static classes, resulting in a
comparable performance with all baselines while using only 1% of annotated data.

4.4 Ablation Study

In this section, we investigate the influence of various components of our approach
by performing an ablation study on the KITTI-360 dataset. Specifically, we
evaluate the impact of model pretraining when presented with varying amounts
of labeled BEV data, the benefit of each of our neural pathways, and the effect
of varying masking ratios on the overall performance of the network.
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Table 4: Ablation study to investigate the efficacy of various network components. All
experiments are on the KITTI-360 dataset using 1% of BEV labels.

Model Geometric Semantic Road Side. Build. Terr. Pers. 2-Wh. Car Truck mIoU

L1 ✗ ✗ 69.40 32.09 34.75 35.27 1.01 2.79 28.76 7.66 26.47
L2 ✓ ✗ 70.85 34.34 38.12 35.03 0.93 4.06 29.79 8.84 27.75
L3 ✓ ✓ 70.58 34.26 40.68 38.53 1.35 4.74 30.94 10.58 28.96

Impact of Model Pretraining: In this section, we study the impact of model
pretraining by finetuning our model with and without pretraining with varying
percentages of labeled BEV data. Accordingly, we establish five percentage splits
of BEV labels, i.e., 1%, 5%, 10%, 50%, and 100%, and sample three random
sets for each percentage split. We train each percentage split three times, once
using each random set, and report the mean value to mitigate the risk of random
chance affecting the final results. Moreover, we also train the best two baselines,
i.e., PoBEV and SkyEye, across all percentage splits as a reference for evaluating
our approach. Tab. 3 presents the results of this ablation study.

We observe that our model trained using our unsupervised pretraining strat-
egy, LetsMap, consistently outperforms our model without pretraining across
all percentage splits. The most substantial improvements of 2.49 pp and 1.41 pp
occur when finetuning with only 1% and 10% of BEV labels, respectively. We
also note that LetsMap outperforms PoBEV by 9.87 pp and SkyEye by 2.02 pp
when using only 1% of BEV labels. At extremely low percentage splits, PoBEV
does not encounter enough BEV labels to learn the mapping from FV to BEV,
while the FV semantic-based pretraining of SkyEye does not impart sufficient ge-
ometric modeling and representation learning ability to the network. The notable
improvement over SkyEye is primarily attributed to the superior segmentation
performance on static classes such as road and building as well as non-moving
dynamic objects such as trucks and buses. This improvement directly stems
from the use of implicit neural fields to model scene geometry which helps the
network to effectively reason about static elements in the scene. Moreover, we
highlight that LetsMap finetuned using only 5% of BEV labels already outper-
forms the state-of-the-art fully supervised approach PoBEV trained using 100%
of BEV labels; thus underscoring the impact of model pretraining in reducing
the dependence on large quantities of labeled data. We also note that SkyEye
consistently outperforms our approach across four of the five percentage splits
on person, two-wheeler, and car. We believe that the superior performance of
SkyEye stems from the presence of 100% FV labels which provide unparalleled
semantic knowledge during the pretraining phase. Nevertheless, our approach
still yields competitive results without using any additional labeled data, thus
highlighting the impact of our unsupervised pretraining mechanism.

Influence of Network Components: In this section, we quantify the impact of
the geometric and semantic pathways on the overall performance of the network
by incrementally incorporating each component into the pretraining step and
finetuning the resultant model on 1% of BEV labels. Tab. 4 presents the results
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Table 5: Ablation study on the impact of masking ratio. All experiments are on the
KITTI-360 dataset using 1% of BEV labels.

Masking Ratio 0% 25% 50% 75% 90%

mIoU 27.75 27.87 28.22 28.96 27.31

of this ablation study. The first row, comprising model L1, illustrates a network
without our unsupervised pretraining and serves as a baseline to assess the
improvement brought about by the other components. Model L2 incorporates
the geometric pathway into the pretraining which results in an improvement of
1.28 pp over model L1. The inclusion of geometric pathway during pretraining
allows the implicit field to learn the scene geometry and reason about occlusions
which helps improve the IoU metric on most of the classes by nearly 1 pp.
Upon the incorporation of our novel temporal MAE strategy via the semantic
pathway in model L3, we observe a significant 1.21 pp improvement over model
L2. By learning to reconstruct the missing information in the masked patches
over multiple timesteps, the network learns spatially- and temporally consistent
representations of various scene components which allows it to easily map the
learned representation to the semantic BEV task using only 1% of BEV labels.

Impact of Mask Ratios: In this experiment, we evaluate the impact of different
masking ratios on the overall performance of the model and present the results
in Tab. 5. We observe that a masking ratio of 75% is ideal for our novel tem-
poral masked autoencoding mechanism. Lower masking ratios do not present a
sufficiently challenging pretraining task and thus result in only marginal improve-
ments over model L2 in Tab. 4, while higher masking ratios mask out a significant
portion of vital information resulting in worse performance as compared to a
model with no masked autoencoding.

4.5 Qualitative Results

We qualitatively evaluate the performance of LetsMap in Fig. 4 by comparing
it with SkyEye [9] on the KITTI-360 dataset, and PoBEV [10] on the nuScenes
dataset. We observe from Fig. 4(a) that both SkyEye and LetsMap are able to
predict static classes such as road and sidewalk to a high degree of accuracy, but
SkyEye fails to properly localize the car and significantly stretches it along the
depth dimension. Our approach, on the other hand, can both properly localize
the car in the BEV map as well as predict its extent. In Fig. 4(b) we observe that
SkyEye fails to detect the car in the scene, while our approach not only detects the
object in the scene but also accurately estimates its extent. Further, we observe
in Fig. 4(c) that our approach is able to better predict the extent of the truck as
well as predict the location of the road class in far-off regions. We hypothesize
that our approach efficiently leverages the rich geometric and semantic knowledge
learned by the disjoint neural pathways to effectively transfer the knowledge from
FV to BEV even when using only 1% of BEV labels. We observe from Fig. 4(d-f)
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Fig. 4: Qualitative results of our unsupervised learning framework LetsMap in com-
parison with SkyEye [9] on the KITTI-360 dataset, and PoBEV [10] on the nuScenes
dataset. We also display an Improvement/Error map which highlights pixels where
LetsMap outperforms the baseline in green, where baseline outperforms LetsMap in
blue, and where both models misclassify in red.

that our model accurately estimates the static elements of the scene which is
evident from the error/improvement map in the last column. Although trained on
only 1% of BEV labels as compared to 100% for PoBEV, our approach manages
to precisely capture the locations of car and truck instances in the BEV map.
Fig. 4(d) also highlights one of the limitations of our approach wherein dynamic
objects such as cars, trucks, and pedestrians are often radially stretched. This
limitation is primarily caused by the lack of sufficient camera views to learn the
entire 3D representation of the dynamic objects which could be addressed by
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exploiting the cross-view correlation and spatio-temporal consistency of surround
view cameras. Interestingly, Fig. 4(e) reveals that LetsMap is also able to leverage
representative scene priors learned during the pretraining step to infer knowledge
about occluded regions. In this prediction, LetsMap is able to predict that the
terrain class extends further into the occluded region, unlike PoBEV which
incorrectly predicts this region as sidewalk ; thus highlighting the benefit of our
unsupervised pretraining protocol.

4.6 Discussion of Limitations

LetsMap suffers from three main limitations, all of which stem from modeling scene
geometry using implicit fields. Firstly, existing implicit field formulations enforce
a strong static scene assumption which is often violated in real-world autonomous
driving environments. An explicit dynamic object handling module as discussed
in [16] could be used to address this limitation in such environments. Secondly,
implicit fields rely on a large and diverse set of camera views of a given object to
learn its optimal scene geometry. However, this is infeasible in autonomous driving
which results in the generation of sub-optimal volumetric grids in their current
form. Lastly, our formulation of implicit fields is supervised using the photometric
loss between temporal multi-camera images. However, the photometric loss is
often sensitive to varying lighting conditions, occlusions, and disocclusions, as well
as object motion - all of which are exacerbated when the ego motion between two
frames is large. This problem can typically be addressed by adding a stereo camera
to capture slightly offset images and provide a reliable frame for loss computation.

5 Conclusion

In this paper, we present the first unsupervised representation learning approach,
LetsMap, for predicting semantic BEV maps from monocular FV images using
a label-efficient learning paradigm. Our approach leverages the spatio-temporal
consistency and rich scene semantics offered by FV image sequences to indepen-
dently learn the sub-tasks of BEV mapping, i.e., scene geometry estimation and
scene representation learning, in an unsupervised pretraining step. It finetunes
the resultant model on the BEV segmentation task using only a small fraction
of labels in BEV. Using extensive evaluations on the KITTI-360 and nuScenes
datasets, we demonstrate that LetsMap performs on par with the existing fully-
supervised and self-supervised approaches while using only 1% of BEV labels
and without relying on any additional source of labeled supervision.
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