
Self-supervised Shape Completion via Involution
and Implicit Correspondences

Supplementary Document

Mengya Liu1 , Ajad Chhatkuli1,3 , Janis Postels1 ,
Luc Van Gool1,3 , and Federico Tombari2

1 Computer Vision Lab, ETH Zurich
2 Google, TU Munich

3 INSAIT, Sofia University
{mengya.liu, ajad.chhatkuli, jpostels, vangool}@vision.ee.ethz.ch, tombari@google.com

I Overview

In this supplementary document, we provide additional details on the experi-
ments, and network architectures as well as additional visualizations and dataset
evaluations. We first provide additional experimental details in Section II includ-
ing the training details and the hyper-parameters setup. Next, we detail the mesh
completion process at inference time. We describe concretely the pre-processing
steps for creating our PartialUDF dataset in Section III. Next, we provide more
experimental results, and the correspondences analysis in Section II. Finally, we
analyze the limitations of our method in Section V.

II Experimental Details

II.1 Architecture details and hyper-parameters

Our network architecture has two modules, the completion module and the
template-based INR module (T). The template-based INR module is composed
of the warp function D and the INR decoder T , whereas the completion module
includes the completion function G and the upsampler U .

Template-based INR module. The warp function D has 10 layers of
rnvp+lstm architecture [8,16], with the hidden size of 128, and the decoder T is
parameterized with 4 MLP layers with the hidden size of 256, the last layer is a
combination of abs and tanh functions to output the UDF values within [0, 1].
Moreover, similar to DeepSDF [10] that focuses more on the near-surface area,
we also clamp the predicted UDF values d to [0, 0.1].

Completion module. The completion function G [13] has two sub-networks,
the encoder E and the decoder G. The encoder E is used to extract a 256-dim
shape code c′, with a pointnet++ [11] based set abstractions to extract a global
feature, together with a transformer [15] to encode the local context. The decoder
G takes as input the extracted feature c′ and outputs 128 points Y , describing
the missing part. Specifically, it first extracts the sparse point features, followed

https://orcid.org/0009-0006-9122-6698
https://orcid.org/0000-0003-2051-2209
https://orcid.org/0000-0002-3490-1726
https://orcid.org/0000-0002-3445-5711
https://orcid.org/0000-0001-5598-5212

2 M. Liu, A. Chhatkuli et al.

by 3 MLP layers acting on the concatenation of the per-point feature and the
shape code to generate the missing points Y . Finally, the generated Y points are
concatenated with the input points X ′ and down-sampled to Xc consisting of
512 points by farthest point sampling (FPS). Next, the sub-module upsampler
[13] consists of three steps of Snowflake Point Deconvolution (SPD). Each step
involves splitting each point into multiple child points by duplication and adding
variations. The upsampling factor is [1, 2, 2], which outputs a denser point cloud
with 2048 points.

Hyper-parameters.
Although, the SDF/UDF allows for shape representation superior to stan-

dard discrete representations, it does come with its own limitations. Specifically,
considering the partial shape UDF field is not equal to the full shape UDF field,
the far-away UDF samples may likely have the incorrect UDF values on the par-
tial shape compared to those on the full shape. In order to mitigate its effects,
we set the reconstruction loss weight to be larger on points closer to the surface,
and smaller on points far away.

wθT =

{
= 5e−di , di <= 0.005

= e−di , di > 0.005
(1)

where di denotes the initial UDF values. Thus, the reconstruction loss Lϕ is
constructed,

LθT =
∑

n∈{2,4,6,8,10}

wϕLn
curr(d

n
i , di) (2)

Ln
curr denotes the progressive reconstruction loss between the predicted dni from

the nth warp layer and di. We apply the loss in 2nd, 4th, 6th, 8th, and 10th layers.
Model complexity. We train the network for 2500 epochs with an initial

learning rate of 0.0005 and the decay rate is 0.5 every 500 epochs. For each input,
2048 on-surface points and 4000 UDF samples are randomly sampled from the
dataset. The batch size is set to 24, and the model is trained with 4 NVIDIA
Titan RTX GPUs. The model size is nearly 7M, and the training of the model
in the cars category costs nearly 1 day with a training set of around 3000 partial
shapes.

II.2 Inference details

At the inference time, we predict the partial shape feature c′ from the partial
input (point cloud only) and later extract the full shape global feature cX . It con-
ditions the template-based INR module to generate a complete implicit surface.
A detailed workflow outlining this process is depicted in Figure A. The par-
tial input is passed through the completion function G and upsampler U . These
components collectively generate the complete shape representation, denoted as
X, and extract the global shape code cX . The UDF samples in the space here
are voxel points in the unit box with a resolution of 256 [7] and predicted with
the supervision of cX . To obtain a dense surface mesh of the shape, we apply
MeshUDF [7] which leverages the predicted UDF values.

Supplymentary of ssp. Shape Completion 3

⊕ℰ

ℰ

#!

$

!"

#

"

!

#

$ℰ

ℰ
##

#$

UDF Sample
in grids

%

%

&

& $

'

(

!′

MeshUDFCompletion self-
constraint

Fig.A: Inference time visualization. The figure shows the forward flow at the inference
time. The partial shape is used to extract the partial shape code c′ and the full shape
global code cX after completing the partial shape. We randomly sample points where
we output the INR UDFs conditioned on cX and generate the dense mesh through
MeshUDF [7]. The blue box contains the part for completion self-constraint loss, which
is not used during inference time.

III PartialUDF Dataset Pre-processing

We provide detailed dataset pre-processing steps here. Following DeepSDF [10],
we prepare the UDF samples from synthetic objects in ShapeNetCore.v2 [2],
which provide the complete 3D meshes. Similar to DeepSDF, we employ virtual
cameras positioned around the objects in a unit sphere. However, instead of using
100 virtual cameras, we opt for 30 equally spaced camera positions. Moreover,
DeepSDF densely samples surface points from all 100 views, and computes the
Signed Distance Field (SDF) around the points. We instead sample surface points
and compute the Unsigned Distance Field (UDF) for each view, thus generating
the partial shapes and the UDF field for the partial shapes. 30,000 surface points
from each view are selected, and another set of 50,000 points are randomly
sampled in the surrounding space to compute the UDF field. The surface points
are sampled more aggressively near the surface. To draw a conclusion, for each
shape instance, there are 30 partial shapes, each consisting of dense surfaces
with 30,000 surface points and 50,000 UDF samples. We additionally provide
the normalization parameters for each shape. Note that, we randomly select
only 6 partial views for each instance during training and 2 partial shapes for
the test throughout each experiment, while ensuring that these shapes are in
different batches during the training. Furthermore, we compare our dataset with
the popular 3D-EPN dataset [6], which prepares the partial shapes by generating
the depth maps from random views. Both datasets come from the CAD models
in ShapeNetCore.v2 [2]. We measure the missing rates of some categories in
both datasets, results are presented in Table A. We see our dataset has similar
missing rates compared with 3D-EPN dataset. Except for the planes category,
our dataset has smaller missing rates as 3D-EPN [6].

In Figure B, we present visualizations of various partial observations from
the object. The first column shows the camera position (boxed) and the central

4 M. Liu, A. Chhatkuli et al.

Categories cars planes sofas chairs tables

3D-EPN [6] 65.89 56.96 64.65 63.21 63.54
PartialUDF-Shapenet 64.26 60.55 63.46 60.96 57.14

Table A: Missing rates (%) of various categories in 3D-EPN [6] and our PartialUDF-
Shapenet datasets.

localized object. The extracted partial shapes are presented in the right columns
from 6 random views for each object. The figure implies the varying degrees of
partiality observed across different views.

Moreover, in order to explore the applicability of our method to non-rigid
shapes, we also use the DFaust dataset [1] which provides both dense mesh
objects and ground-truth correspondences. Following a similar pre-processing
procedure as applied to the PartialUDF-Shapenet dataset, we obtained partial
inputs for a total of 9 sequences in the DFaust dataset, among which 7 sequences
are utilized for training and the rest 2 sequences for test. These sequences con-
tain slow but real, dynamic human body motions. Figure D provides a visual
representation of the prepared partial shapes from various viewpoints. The par-
tial shapes from the views are always quite sparse (the missing rate is around
72%), which makes it much more interesting dataset for the completion task.

Fig. B: PartialUDF-Shapenet Dataset visual-
ization. The first column shows the camera
setup (boxed) and the object mesh, followed by
the visualization of partial shapes from different
views.

Ours GTInputTemplate Generated points

Fig. C: Visualization results of
failure cases. We show some fail-
ure cases such as the generation of
outlier points (in red) and/or bad
completion (in mesh).

Supplymentary of ssp. Shape Completion 5

Fig.D: Visualizations of partial observations of DFaust dataset [1]. The figure shows
the partial shapes of the DFaust dataset from various sequences and from different
views.

IV More Experimental Results

We show some additional experimental results including visualizations in this
section.

IV.1 Correspondences Analysis

We further explore the capability of our method in improving the dense cor-
respondences. From Table 2 in the main paper, we decrease the dense corre-
spondences ℓ2 errors from 0.34 (INR_only) to 0.28 in the DFAUST dataset [1],
showing that by gradually completing the template space, we also improve the
dense correspondences. We provide the qualitative results in Figure E. Note the
diverse body poses we are able to complete. We show the template shapes pro-
vided by our method as well as the template-based INR model (INR_only) in
the green circle with colors representing the correspondences. We also display
the completed shapes from two methods with colors, the same colors denote the
corresponding points and keep the same as in the template shape. We observe
that our method generates a mean shape of the dataset by gradually completing
the template space, which is beneficial for dense correspondences. In contrast,
we can obviously see the color inconsistency in the INR_only method.

IV.2 More experimental results on ScanNet Dataset

we furthermore test our method on another real-world dataset, ScanNet [5] bath-
tub, bed, and lamp categories provided by PatchCompletion [12]. During infer-
ence time, we extract the partial point clouds from their voxelized representation
as the input. Our method is trained on the MVPS-Shapenet categories. We com-
pare our method with the supervised autoencoder 3D-EPN [6], autoregressive
model AutoSDF [9] and supervised patch-based method PatchComplete [12].
We measure the CD errors following PatchComplete, results are presented in
Table B. Results from the other methods are obtained from PatchComplete [12].
Our method defeats the supervised methods in both bathtub and lamp cate-
gories. More visualization results are in Figure F. Our method completes accu-
rate shapes while PatchComplete often fails to complete accurately.

6 M. Liu, A. Chhatkuli et al.

Ours INR_only Ours INR_only
INR_onlyOurs

Fig. E: Qualitative results of dense correspondences compared with INR_only method.
We provide the generated template shapes in the green circles, as well as the completed
meshes for both methods. The same color represents the corresponding points across
various shapes similar to [16].

Methods 3D-EPN [6] AutoSDF [9] PatchComplete [12] Ours
type sp. sp. sp. ssp.

Bathtub 7.56 7.84 6.77 6.55
Bed 7.76 7.91 7.24 7.50
Lamp 14.27 11.17 9.42 9.34

Table B: Quantitative results on Scannet dataset. We present CD errors compared
with 3D-EPN [6], AutoSDF [9], and PatchComplete [12]. Our method achieves com-
patible results.

Input

Patch
Complete

Ours

GT

Fig. F: Qualitative results on Scannet dataset. Compared with PatchComplete [12],
our method generates accurate shapes.

Supplymentary of ssp. Shape Completion 7

Completeness F1 CD

28% 84.57 1.76
65% 87.84 0.44

Fig.G: Evaluation of the method per-
formance regarding different complete-
ness in PartialUDF DFaust dataset.

input
after
upsampler

after
generator input

after
upsampler

after
generator

Fig.H: Completion module performance
on almost complete inputs. The blue points
represent the input point cloud, red points
are generated points after the generator
(completion function) and the upsampler
respectively.

IV.3 More quantitative results

We further provide more quantitative results on PartialUDF-Shapenet and Par-
tialUDF -DFaust dataset in Figure I,J, K. Compared with other methods, our
method generates clean and full meshes from the partial point clouds, while
P2C [4] generates noisy point clouds, and cannot fill in the missing areas well.
We also show detailed points generation from the completion module, as can be
seen, the point cloud is completed under the supervision of the template space.

IV.4 Ablation study with almost complete shape

We also explore the ability of the involution function when dealing with almost
complete shapes. We evaluate it with the setup in PartialUDF-DFAUST with
higher completeness of 65% (28% in the main paper experiments)). Note that, the
completeness of 65% is the average completeness of the trainset, which includes
the partial shapes with completeness from around 30% to 90%. Results are
shown in Table G. When the completeness improved, both F1 score and CD
errors present better performance. We additionally show the visualization of the
generated points with almost complete shapes in Figure H.

We recall that G(X ′) provides the missing part complementary to X ′. Thus,
when X ′ is almost complete, G◦G(X ′) should struggle to predict correctly, under
such definition of G. However, in practice, we do not enforce G(X ′) to not include
points in X ′. Thus, for such a set of points X ′ which is almost complete, G can
learn to predict missing points as well as part of the initial points (part trivial
solution). Moreover, the reconstruction loss on INR T ensures that the existing
input shape is preserved in X ′ ∪ G(X ′).

V Limitations

While our method demonstrates the capability to complete shapes in several
categories in a self-supervised manner, it is important to acknowledge that self-
supervised shape completion remains a highly challenging task. For example, we

8 M. Liu, A. Chhatkuli et al.

present some failure cases in Figure C, where we see that incorrect shape parts
are hallucinated by our method, resulting in the loss of performance. Moreover,
even when the generated points are of high quality, there are instances where
the template INR model becomes the limiting factor. As a consequence, the self-
supervised shape completion and correspondences in a wider range of categories
may require additional priors. Another limiting factor is the use of UDF for shape
representation which is known to be inferior to SDF, suffering from noise and
shape artifacts [7]. However, we found it rather challenging in order to obtain
consistent SDF values starting from the UDF values. Note that it is not possible
to have SDF values of partial shapes as the inside-outside definition may not be
available.

Input

SeedFormer

cGan

P2C

Ours

GT

Fig. I: Qualitative results on PartialUDF-DFaust dataset. We present the completed
shapes generated from various methods with different partial point clouds.

Supplymentary of ssp. Shape Completion 9

Input SeedFormer cGan ShapeInversion P2C Ours GTOurs Completion
Module

Fig. J: More visualization results on PartialUDF-Shapenet dataset planes, chairs cat-
egories. Compare with supervised SeedFormer [17], unpaird cGan [3], pretrained-
treeGan based ShapeInversion [14], self-supervised P2C [4] methods.

10 M. Liu, A. Chhatkuli et al.

Input SeedFormer cGan ShapeInversion P2C Ours GT

-

-

-

-

-

Ours Completion
Module

Fig.K: More visualization results on PartialUDF-Shapenet dataset cars,tables and so-
fas categories. Compare with supervised SeedFormer [17], unpaird cGan [3], pretrained-
treeGan based ShapeInversion [14], self-supervised P2C [4] methods.

Supplymentary of ssp. Shape Completion 11

References

1. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic faust: Registering hu-
man bodies in motion. In: CVPR (2017)

2. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

3. Chen, X., Chen, B., Mitra, N.J.: Unpaired point cloud completion on real scans
using adversarial training. arXiv preprint arXiv:1904.00069 (2019)

4. Cui, R., Qiu, S., Anwar, S., Liu, J., Xing, C., Zhang, J., Barnes, N.: P2c: Self-
supervised point cloud completion from single partial clouds. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 14351–14360
(2023)

5. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5828–5839 (2017)

6. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 5868–5877 (2017)

7. Guillard, B., Stella, F., Fua, P.: Meshudf: Fast and differentiable meshing of un-
signed distance field networks. In: Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III. pp. 576–
592. Springer (2022)

8. Liu, M., Chhatkuli, A., Postels, J., Gool, L.V., Tombari, F.: Unsupervised Tem-
plate Warp Consistency for Implicit Surface Correspondences. Computer Graphics
Forum (2023). https://doi.org/10.1111/cgf.14745

9. Mittal, P., Cheng, Y.C., Singh, M., Tulsiani, S.: Autosdf: Shape priors for 3d com-
pletion, reconstruction and generation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 306–315 (2022)

10. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 165–
174 (2019)

11. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

12. Rao, Y., Nie, Y., Dai, A.: Patchcomplete: Learning multi-resolution patch priors
for 3d shape completion on unseen categories. Advances in Neural Information
Processing Systems 35, 34436–34450 (2022)

13. Xiang, P., Wen, X., Liu, Y.S., Cao, Y.P., Wan, P., Zheng, W., Han, Z.:
Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-
transformer. In: Proceedings of the IEEE/CVF international conference on com-
puter vision. pp. 5499–5509 (2021)

14. Zhang, J., Chen, X., Cai, Z., Pan, L., Zhao, H., Yi, S., Yeo, C.K., Dai, B., Loy,
C.C.: Unsupervised 3d shape completion through gan inversion. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
1768–1777 (2021)

15. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceed-
ings of the IEEE/CVF international conference on computer vision. pp. 16259–
16268 (2021)

https://doi.org/10.1111/cgf.14745
https://doi.org/10.1111/cgf.14745

12 M. Liu, A. Chhatkuli et al.

16. Zheng, Z., Yu, T., Dai, Q., Liu, Y.: Deep implicit templates for 3d shape repre-
sentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 1429–1439 (2021)

17. Zhou, H., Cao, Y., Chu, W., Zhu, J., Lu, T., Tai, Y., Wang, C.: Seedformer:
Patch seeds based point cloud completion with upsample transformer. In: Com-
puter Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part III. pp. 416–432. Springer (2022)

	Self-supervised Shape Completion via Involution and Implicit Correspondences Supplementary Document

