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Fig. 1: Illustrating the font effect generation results by our FontStudio system. We
observe that most concepts are generated in adherence to complex font shapes adap-
tively. We also notice a coherent 3D structure and depth effect. Refer to the supple-
mentary for a detailed prompt of these generative font effects.

Abstract. Recently, the application of modern diffusion-based text-to-
image generation models for creating artistic fonts, traditionally the do-
main of professional designers, has garnered significant interest. Diverg-
ing from the majority of existing studies that concentrate on generating
artistic typography, our research aims to tackle a novel and more de-
manding challenge: the generation of text effects for multilingual fonts.
This task essentially requires generating coherent and consistent visual
content within the confines of a font-shaped canvas, as opposed to a tra-
ditional rectangular canvas. To address this task, we introduce a novel
shape-adaptive diffusion model capable of interpreting the given shape
and strategically planning pixel distributions within the irregular can-
vas. To achieve this, we curate a high-quality shape-adaptive image-text
dataset and incorporate the segmentation mask as a visual condition to
steer the image generation process within the irregular-canvas. This ap-
proach enables the traditionally rectangle canvas-based diffusion model
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to produce the desired concepts in accordance with the provided geo-
metric shapes. Second, to maintain consistency across multiple letters,
we also present a training-free, shape-adaptive effect transfer method
for transferring textures from a generated reference letter to others. The
key insights are building a font effect noise prior and propagating the
font effect information in a concatenated latent space. The efficacy of
our FontStudio system is confirmed through user preference studies,
which show a marked preference (78% win-rates on aesthetics) for our
system even when compared to the latest unrivaled commercial product,
Adobe Firefly1.

Keywords: Shape-Adaptive · Diffusion Model · Font Effect

1 Introduction

Recently, models based on diffusion techniques for text-to-image generation have
achieved significant success in rendering photorealistic images on standard rect-
angular canvases [6, 23, 32]. Many follow-up efforts have built many generation-
driven exciting applications like subject-driven image generation and spatial con-
ditional image generation. For instance, ControlNet [52] offers a powerful method
for integrating spatial conditioning controls, such as edges, depth, segmentation,
and more, into pre-trained text-to-image diffusion models, enhancing their ver-
satility and application range.

Despite these advancements, the focus predominantly remains on rectangular
canvases, leaving the potential for image generation on non-standard, arbitrarily
shaped canvases largely untapped. The task of creative font effect generation es-
sentially requires generating visual contents in non-regular and complex-shaped
canvas. It demands not only synthesizing semantic objects or concepts aligning
with arbitrary user prompts but also a deep understanding of the geometric
shapes of the font canvas. In essence, the visual elements produced must be
precisely positioned within the irregular-canvas to ensure visual harmony while
also ensuring faithful generation within the specific font canvas following the
given text prompt. Our empirical analysis, illustrated in Figure 2, demonstrates
the outcomes of directly utilizing conventional diffusion models, including Con-
trolNet, SDXL, and SDXL-Inpainting model, designed for rectangular canvases.
From this analysis, it becomes evident that simply adapting models intended
for rectangular canvases to generate visual content for the diverse array of font
shapes presents a significant and largely uncharted challenge in the field.

To bridge the gap between traditional rectangle-canvas-based diffusion mod-
els and the intricate task of comprehending font shapes for font effect generation,
we propose an innovative and potent shape-adaptive diffusion model. This model
excels in producing high-quality visual content that conforms to any given shape,
encompassing multilingual font outlines and even more intricate patterns such
as fractal-structured snowflakes. The key idea is to build a high-quality shape-
adaptive triplet training data and each instance consists of {irregular-canvas,
1 https://firefly.adobe.com/generate/font-styles
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Fig. 2: Comparison with conventional diffusion
models designed for rectangular canvas. Most of these
methods struggle to generate the appealing visual content
within font-shaped canvas. For ControlNet (CN), we find
treating the font mask as depth or computing the canny
edge map based on font mask suffers various artifacts. Our
FontStudio generates much better results in general.
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Fig. 3: FontStudio vs.
Adobe Firefly. Win-
rates accessed by human
evaluator preferences in
font effect generation.

irregular-image, text prompt} and then train a conditional diffusion model to
generate the visual contents within the irregular-canvas. To maintain compati-
bility with pre-trained diffusion models and ensure efficient training, we choose a
rectangular canvas to serve as a placeholder, accommodating both the irregularly
shaped canvas and the corresponding irregular image.

The task of generating font effects requires preserving effect consistency
across multiple irregular canvases. Merely using the diffusion model in isolation
often results in inconsistent outcomes. To address this challenge, we introduce a
novel, training-free effect transfer method that combines the effect of a reference
letter with the shape mask of a target letter. This method leverages a font effect
noise prior to ensure font effect consistency and propagates the reference style
and texture from the source to the target image in a concatenated latent space.
Our empirical results demonstrate that this approach can effectively serve as a
powerful tool for transferring effects or styles.

Last, we established the GenerativeFont benchmark to facilitate a com-
prehensive evaluation of our methodologies across various dimensions. The re-
sults from a user study, depicted in Figure 3, when benchmarked against Adobe
Firefly—the leading font effect generation system—reveal a surprising outcome.
Our FontStudio system markedly outperforms Adobe Firefly in several key ar-
eas. Specifically, thanks to our shape-adaptive generation approach, we observed
a remarkable improvement in both shape fidelity and overall aesthetics, with our
system achieving win rates of 78% vs. 10% in aesthetics and 66% vs. 6% in shape
fidelity. While FontStudio secures these promising achievements, we continue
to thoroughly investigate the system’s limitations and engage in discussions on
emerging challenges that beckon attention from the broader research community.

2 Related Work

Artistic Font Generation. Previous research has explored various facets of
font-related tasks, with studies such as [4, 7, 44] concentrating on font creation.
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Other methods, including GAN-based approaches [3, 14, 20, 49], stroke-based
techniques [5], and statistical approaches [46–48], aim to transfer existing im-
age styles onto font images. Additionally, research on semantic font typogra-
phy [11, 22, 38, 45, 51, 53] investigates 2D collage generation and reverse chal-
lenges, while [19, 39, 40] focus on modifying characters for thematic expression
without sacrificing readability. There are also frameworks for glyph design, ei-
ther leveraging existing assets [50] or large language models [15]. Anything to
Glyph [43] parallels our study by suggesting alterations to location features in
the diffusion model’s denoising phase. However, this method often produces no-
ticeable shadows in both the foreground and background, restricting its utility in
further design applications and failing to ensure character consistency through-
out generation. Unlike these existing studies, we focus on generating text effects
for multilingual fonts, aiming to produce coherent and consistent visual content
within the confines of a font-shaped canvas.
Diffusion-based Image Synthesis and Attention. The landscape of text-
to-image generation has seen considerable growth in recent times [9,28,33], with
diffusion-based methodologies [32, 33, 37] at the forefront, pushing the bound-
aries of image synthesis quality. The scope of investigation has broadened from
straightforward text-to-image conversions to encompass a variety of intricate
image applications, including conditional image generation [42, 52], image in-
painting [2,36], image-to-image translation [9,28,33], image editing [12,18], and
tailored generation [17, 34, 35, 41]. It is noteworthy that these explorations pre-
dominantly take place on standard rectangular canvases. The integration of at-
tention mechanisms in diffusion models has spurred a variety of research in
areas like image editing [8, 10, 13, 27, 30, 31]. Recent works such as [1, 29] ex-
plore attention for style transfer, with StyleAligned [29] closely aligning with our
shape-adaptive effect transfer’s goals of achieving stylistic consistency through
attention-directed generation using reference images. We empirically show that
our method performs better in delivering stylistically coherent generated images
while preserving diversity.

3 Approach

First, we illustrate the definition and mathematical formulation of the font effect
generation task, delve into the primary challenges associated with this task, and
outline the foundational insights guiding our methodology. Second, we introduce
the key contribution of this work, namely, a shape-adaptive diffusion model,
designed to produce visual content on canvases of any shape. Last, we detail the
implementation of our shape-adaptive effect transfer method, which utilizes font
effect noise prior and font effect propagation to achieve our objectives.

3.1 Preliminary

We use the subscript ̂ to indicate that the given tensor has a non-rectangular
and irregular spatial shape. For example, X represents a tensor with a rectan-



FontStudio: Shape-Adaptive Diffusion Model 5

gular spatial shape like h×w, while X̂ denotes a tensor of irregular shape with
variable dimensions.
Definition of font effect generation. Given a target font effect text prompt T
and a sequence of irregular font shape canvases {M̂i|i = 1, ..., n} corresponding
to a sequence of letters, the objective is to build a set-to-set mapping function
f(·) that can generate a set of coherent and consistent font effect images {Îi|i =
1, ..., n} of the same shape as the given irregular font-shape canvases {M̂i|i =
1, ..., n} accordingly. We illustrate the mathematical formulation of font effect
generation process as follows:

{Îi | i = 1, ..., n} = f({M̂i | i = 1, ..., n} | T), (1)

where we can also use different font effect text for each mask separately. We
propose to access the font effect generation quality from the following four critical
aspects:

– Aesthetics: Each generated image Îi should be visually attractive.
– Font Shape Fidelity : While an exact match isn’t necessary, each Îi should

closely resemble its original font shape M̂i.
– Font Style Consistency : Îi should exhibit a coherent style for any other image

Îj , presenting as a unified design.
– Prompt Fidelity : Every Îi must adhere to the provided target effect prompt.

Primary challenges. The first key challenge in font effect generation is ensuring
that the generated visual objects are positioned creatively and coherently on the
font-shaped canvas. We have already shown that the results from simply applying
diffusion models designed for rectangular canvases are far from satisfactory, as
demonstrated in Figure 2. The second challenge involves maintaining font shape
fidelity, as the primary goal of generative fonts is to convey messages creatively.
Additionally, ensuring consistent font effects across different letters is also a
non-trivial and challenging task, considering the canvas shapes vary significantly
among different letters.
Formulation of our framework. To address the above challenges, we first
reformulate the font effect generation task into the combination of two sub-tasks
including font effect generation for a reference letter and font effect transfer from
reference letter to each other letter. The mathematical formulation is summarized
as follows:

Îref = g(M̂ref | T), (2)

Îi = h(M̂i | T, M̂ref , Îref), i ∈ {1, · · · ,n}, (3)

where we use the function g(·) to perform font effect generation based on a single
irregular reference canvas, denoted as M̂ref . The function h(·) is used to generate
consistent font effects, conditioned on the previously generated reference font
effect image Îref , the reference font mask M̂ref , and the current font mask M̂i.
We choose the same reference letter mask for all font effect transfer letters. To
implement these two critical functions, we proposed a Shape-Adaptive Diffusion



6 Xinzhi Mu et al.

Model marked as g(·) and a Shape-adaptive Effect Transfer together with Shape-
Adaptive Diffusion Model marked as h(·). We will explain the details in the
following discussion.

3.2 Shape-Adaptive Diffusion Model

The key challenge in font effect generation arises from the gap between most
existing diffusion models, which are trained on rectangular canvases, and the
requirement of this task for visual content creation capability on any given ir-
regularly shaped canvas. To close this critical gap, we introduce a shape-adaptive
diffusion model that is capable of performing visual content creation on any ir-
regularly shaped canvas as function g(·).

We follow the mathematical formulations outlined in Equation 2 and uti-
lize the transformation function g(·), which is applied to the irregular canvas
M̂i conditioned on a given user prompt T, to represent the shape-adaptive dif-
fusion model. The output of the function g(·) is essentially an image Îi with
an irregular shape. Given that directly processing irregular canvases of varying
resolutions presents several non-trivial challenges in training standard diffusion
models, we propose rasterizing and positioning the irregular canvas mask within
a rectangular placeholder, as M = Rasterize(M̂). Essentially, M is the binary
rasterized form of M̂ where the pixels inside M̂ are with 1 and the other pixels
are with 0. Additionally, we utilize a rectangular image I to encapsulate the
irregular font effect image Î and include an irregular alpha mask layer MI to
eliminate the regions outside the irregular canvas. Given the irregular shaped
canvas mask and image encapsulated within rectangle ones, we reformulate the
original Equation 2 as follows:

I,MI = ḡ(M | T) (4)

where the predicted alpha mask layer MI is different from the input conditional
font mask M and it is necessary to ensure coherent and creative effects along the
boundary regions. With the alpha mask prediction, we also avoid the necessity
to use additional segmentation model to handle the artifacts outside the font-
shaped canvas. We elucidate the key that differentiating the refined alpha mask
from the conditional canvas mask is achieved through canvas mask augmentation
during the training of the subsequent shape-adaptive diffusion model.

Our shape-adaptive diffusion model consists of two sub-models: a shape-
adaptive generation model followed by a shape-adaptive refinement model. The
shape-adaptive generation model, dubbed SGM, primarily generates content rel-
evant to the prompt within a designated region, utilizing M. Following this, the
shape-adaptive refinement model (SRM) takes over, aiming to enhance the ini-
tial results by creating an image I with more defined and natural edges, along
with the corresponding mask MI for the generated image I. Figure 4 illustrates
the entire framework of of our approach.
Shape-adaptive Generation Model. Training a shape-adaptive generation
model is non-trivial, and we face two key challenges. The first is the lack of high-
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Fig. 4: Overall framework of our approach. The shape-adaptive diffusion model
(SDM) consists of two components: the shape-adaptive generation model (SGM) and
the shape-adaptive refinement model (SRM). The SGM generates content within a
rasterized shape, whereas the SRM refines content edges and produces a refined shape
alpha mask using our shape-adaptive VAE decoder (SVD). In stage one, we use SDM
to generate reference images and in stage two, by employing shape-adaptive effect
transfer (SAET), we transfer the style of reference images to target images to ensure
style consistency between Îi. Prior indicates font effect noise prior used in SAET.

quality training data that aligns text with images encapsulated within an irreg-
ularly shaped canvas. The second challenge arises from the default self-attention
and cross-attention schemes, which directly map text information across the en-
tire rectangular canvas. This approach inadvertently allows for visual content
generation in regions outside the irregularly shaped canvas, which is also raster-
ized into a rectangle, thereby diminishing the effectiveness of targeted content
generation within the desired canvas region. To overcome these challenges, we
propose two key contributions: constructing high-quality shape-adaptive image-
text data and implementing a shape-adaptive attention scheme. We elaborate
more details on these two techniques in the following discussion.
Shape-adaptive Image-Text Data Generation. To construct high-quality,
shape-adaptive image-mask-text triplets for training our shape-adaptive genera-
tion models, we have chosen BLIP [24] to generate a text prompt set, DALL·E3 as
the engine for generating our training images according to prompts and SAM [21]
to generate foreground masks. For details on data generation, please see the sup-
plementary. This process has resulted in approximately 80, 000 prompts, with
each prompt yielding three unique images and corresponding masks, culminat-
ing in a total of 240, 000 high-quality training instances. Examples are shown in
Figure 5.
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Fig. 5: Illustrating examples of our shape-adaptive images generated with DALL·E3
(first row) for training the shape-adaptive generation model(SGM) and shape-adaptive
VAE decoder(SVD). We show the SAM-based segmentation masks (left six columns)
and the human-designed canvas masks (right two columns) for training SGM in the
second row. The last row displays the augmented masks used as input conditions during
SVD training, ensuring that the model learns to refine the augmented masks into the
segmentation masks.

Shape-adaptive Attention. We use Φ ∈ Rcin×h×w to represent the image
latent features extracted by a VAE encoder before they are sent into the UNet
of the diffusion model. We use Φ′ ∈ Rn×c to represent the reshaped and trans-
formed latent features that are sent into the multi-head cross-attention mecha-
nism. By applying different linear projections, we transform Φ′ into the query
embedding space Q, and the text prompt embedding (or pixel embedding) into
the key embedding space K and value embedding space V for cross-attention
(or self-attention). To accommodate our irregularly shaped canvas, we introduce
a specialized variant: shape-adaptive attention scheme.

The key insight involves partitioning the entire image’s feature maps into two
groups: the foreground and the background. We use MA to denote the foreground
pixels, the subscript fg to label the key and value embeddings associated with
the regions inside the irregular canvas, and the subscript bg to label the key and
value embeddings associated with the regions outside the irregular canvas. The
mathematical formulation is shown as follows:

ShapeAdaptive-MultiHeadAttention(Q,Kfg,Kbg,Vfg,Vbg) =

MA · MultiHeadAttention(Q,Kfg,Vfg)

+(1−MA) · MultiHeadAttention(Q,Kbg,Kbg),

(5)

where we empirically discover that our shape-adaptive attention scheme can
effectively minimize content creation outside the irregular canvas.
Shape-adaptive Generation Model Training. Based on the above prepared
240, 000 shape-adaptive image-text pairs generated by DALL·E3 and the pro-
posed shape-adaptive attention scheme, we conduct the training of the shape-
adaptive generation model following the controlnet-depth-sdxl-1.0 [25] by replac-
ing the original depth map condition with the generated or hand-crafted canvas
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masks. During training, we fix the UNet part of the model and only fine-tune the
ControlNet components. We conduct the training on a cluster with 16× A100
GPUs, set the batch size as 256, and maintain a constant learning rate of 1e-6
throughout the training process, which spanned 60, 000 steps.
Shape-adaptive Refinement Model. Shape-adaptive generation model can
generate user specified content within a designated area. However, there are a few
drawbacks. First, there may still be solid color backgrounds and object shadows
that interfere with the generation of the alpha mask (See Ī in Figure 4). Second,
the generated font effects are usually hard-edged which may not be preferred
by the user. To further improve the visual appealing of the content within the
irregular canvas, suppress the undesired artifacts outside the canvas and offer a
flexible control between readability and text-effect strength, we propose to apply
an additional shape-adaptive refinement model to refine the object’s edges for a
more natural appearance and generating a precise post-refinement alpha mask.
Regeneration Strategy of Shape-adaptive Refinement Model. We first
crop the output Ī predicted by the shape-adaptive generation model following
the font-shaped canvas mask M, and then paste the segmented font-shaped
canvas region onto a rectangle white-board, resulting in Ī′. Next, we extract
its latent representation z0

′ and add noise to get zt for t < T . We implement
a regeneration strategy to start with Ī′ as the starting image and introducing
a small amount of noise, disrupt the high-frequency signals while preserving
the low-frequency components. We find the diffusion model struggles to alter
low-frequency signals during the denoising process, but concentrates on refining
high-frequency elements to smooth out the object’s edges.

Our shape-adaptive refinement model supports flexible control of readability
and text-effect strength via noise strength. By using a larger noise strength value,
the model tends to generate results with stronger text effect and vice versa. In
our default setting, we set noise strength of shape-adaptive refinement model to
0.8. This value provides the model with enough flexibility to modify the character
boundaries while ensuring the characters remain readable.
Shape-adaptive VAE Decoder (SVD). By applying a decoder to the de-
noised estimation z0, we can generate a font effect image with refined edges,
which may not confront to the given font-shaped canvas. This necessitates refin-
ing the alpha mask to enhance visual quality. To this end, we propose fine-tuning
a shape-adaptive VAE decoder capable of predicting an additional refined alpha
mask associated with the decoded font effect image. We simply augment the
original VAE decoder with an additional input and output channel to facili-
tate mask conditioning and prediction. During fine-tuning, we apply alpha mask
augmentation to the original segmentation masks predicted with SAM [21], as
shown in the third row of Figure 5. In summary, the fine-tuned VAE decoder is
capable of predicting a refined alpha mask in addition to decoding the image.

3.3 Shape-adaptive Effect Transfer

As we have ensured the creation of high-quality visual content on any given
irregular font-shaped canvas, the next critical challenge is ensuring a consistent



10 Xinzhi Mu et al.

Fig. 6: Illustrating font effect noise prior and font effect propagation within shape-
adaptive effect transfer (SAET) scheme. SAET can be applied on both shape-adaptive
generation model (SGM) and shape-adaptive refinement model (SRM). When SAET is
applied to SGM, we use Īref for both font effect noise prior and font effect propagation.
When SAET is applied to SRM (shown in figure), we use Ī′i for font effect noise prior
and Iref for font effect propagation.

font effect across multiple characters. We propose a shape-adaptive effect transfer
(SAET) scheme to transfer the reference font effect from one image to all target
letter font images. SAET can be applied to any diffusion-like models. The key
idea involves modulating the inputs and outputs of the diffusion model as well
as influencing the latent feature of the denoising process, denoted as zt. In our
case, we applied SAET to shape-adaptive diffusion model including both SGM
and SRM. Therefore, we can reformulate the original Equation 3 as follows:

Ii,MIi = h̄(Mi | T, Mref , Iref , MIref ), i ∈ {1, · · · ,n}, (6)

In the following, we differentiate the style source (reference image) from the style
recipient (target image) for clarity.
Framework Overview. The efficacy of shape-adaptive effect transfer scheme
is attributed to two pivotal factors: first, it provides the target image with an
effect prior based on the reference image; second, it iteratively integrates effect
information from the reference image throughout the denoising process, resulting
in a target image with a consistent font effect. Figure 4 also illustrates the overall
framework of our shape-adaptive effect transfer approach.
Font Effect Noise Prior. Drawing inspiration from SDEdit [26], we devise a
font effect noise prior scheme by initializing target font images with partially
noised latents derived from the original reference font effect image. This ap-
proach enhances the model’s ability to generate styles consistently. The overall
implementation is depicted in Figure 6.
Font Effect Propagation. We further propose to propagate the font effect
information from the reference font image to the target font image like fol-
lowing: at any denoising stage t within a UNet, given the target image’s la-
tent zt and the reference image’s latent zref,0, we escalate zref,0 to the same
noise level as zt, yielding zref,t. We then concatenate zt with zref,t to obtain
z̄t = Concat(zref,t, zt), which is then processed through UNet for denoising. Af-
ter deducing the noise component, we selectively utilize the noise pertaining to zt
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Table 1: Ablation results of SGM

Model M-CLIP-Int ↑ M-CLIP-Ext ↓

SDXL-ControlNet-Canny 26.03 21.52

SDXL-ControlNet-Depth 24.11 23.24

SGM trained w. Est-depth 24.51 18.28

SGM trained w. Cropped Est-depth 24.11 18.22

SGM 27.26 18.11

Table 2: Shape-Adaptive Effect
Transfer vs. StyleAligned

Model CLIP-I↑ DINO↑
FontStudio w.o. SAET 81.02 54.27
FontStudio w. StyleAligned 82.77 60.79
FontStudio 84.63 67.07

Table 3: Comparison with Adobe
Firefly

Model CLIP↑ CLIP-I↑
Firefly 28.48 81.74
FontStudio 29.44 84.63

for denoising zt to achieve zt−1, iterating this step until reaching z0. The effect
propagation between the source latents and the target latents mainly happen
within the self-attention modules. Figure 6 illustrates the detailed process.

We modify both the shape-adaptive generation model and shape-adaptive
refinement model to support processing the concatenated latent representations
of a source font effect image and a target font image with font effect prior. We
empirically find setting the noise strengths with different values within SGM and
SRM achieves the best results. Refer to the supplementary for more details.
Discussion. Our empirical findings suggest that our method is resilient to varia-
tions in the reference font shape, yielding consistent results across a wide range of
reference font shapes. We have observed that choosing a reference character with
a larger foreground area is beneficial. This is interpreted as the larger foreground
providing more informative units for the self-attention mechanism, thereby en-
hancing the generation of new characters. In practice, we often use the letter
‘R’ from the specified font as our reference for generation due to its typically
large foreground area. Refer to supplementary material for more details. Addi-
tionally, our approach demonstrates flexibility across different language scripts,
having been successfully applied to fonts in Chinese, Japanese, and Korean in
our extended experiments.

4 Experiments

4.1 GenerativeFont benchmark

We introduce the GenerativeFont benchmark, which comprises 145 test cases,
to enable comprehensive comparisons. These prompts vary in length and are
categorized into five themes: Nature, Material, Food, Animal, and Landscape.
The character sets extend beyond English, incorporating Chinese, Japanese, and
Korean characters, offering a diverse linguistic and cultural representation. This
benchmark serves as the foundation for all data analyses and comparative studies
conducted in this work. For detailed information on its construction, please refer
to the supplementary material.
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4.2 Ablation Study on Shape-Adaptive Diffusion Model

To assess the ability of models to accurately generate content within the font
canvas area in accordance with provided prompts, we introduced the M-CLIP-Int
and M-CLIP-Ext metrics. These metrics make use of an additional mask to direct
the evaluation towards the intended areas, both inside and outside the canvas.
In the calculations for M-CLIP-Int and M-CLIP-Ext, we mask areas outside the
canvas in white and subsequently average these altered CLIP similarity scores
across the benchmark.
Comparison between Shape-adaptive Generation Model and Conven-
tional Rectangle-canvas based Diffusion Models. Figure 2 showcases the
qualitative results from conventional diffusion models trained for rectangle can-
vas. SDXL faces challenges in performing the font effect generation task due to
missing shape-specific guidance. Conversely, SDXL-Inpaint, while not tailored to
fill the entire area with designated content, often produces barely recognizable
shapes. Both SDXL-ControlNet-Canny and SDXL-ControlNet-Depth are capa-
ble of processing masked inputs; however, their training primarily focuses on
matching prompts with the entire rectangle image canvas, inadvertently causing
prompt content to appear outside the intended shape area. This misalignment
adversely affects their M-CLIP-Ext scores, as detailed in Table 1. Additionally,
the lack of targeted control guidance within the shape leads to diminished M-
CLIP-Int scores for these models. We also note that it is impractical to apply
SDXL-ControlNet-Segmentation to our task. The reason is that ControlNet re-
quires a precomputed segmentation map of finite number of classes, and it is
hard to estimate a reasonable segmentation map that fits the irregular font
shape while following the complex semantics of user prompts.
Training Objective. We fine-tuned two depth models using our image dataset:
the first model employed estimated depth maps, while the second utilized depth
maps that were cropped according to the shape mask. Table 1 shows that both
models underperformed in all metrics, underscoring the difficulty depth models
face in generating content within specified areas, despite being trained with
our data. However, our training approach significantly increases the models’
flexibility, a key factor in the superior performance of our model.

4.3 Ablation Study on Shape-adaptive Effect Transfer

In this section, we employ the CLIP-I score and DINO score to assess the visual
font effect similarity across the generated characters as in [34].
Comparison with Baseline and StyleAligned [16]. Our baseline for com-
parison involves the shape-adaptive diffusion model without SAET, where each
character is generated independently using uniform seed. We also substitute
StyleAligned for our SAET to evaluate its performance. The outcomes, illus-
trated in Table 2, reveal that models utilizing SAET significantly outperform
those that do not in terms of both CLIP-I and DINO score. Figure 7 high-
lights that, despite a fixed generation seed, maintaining style consistency across
different shapes proves challenging for models without SAET.
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Fig. 7: Qualitative comparison results: FontStudio vs. StyleAligned.
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Fig. 8: Qualitative comparison results: FontStudio vs. Adobe Firefly Text Effect.

Fig. 9: Qualitative font-effect results generated with our FontStudio.
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4.4 Comparison with State-of-the-Art

Comparison with Adobe Firefly. Figure 8 shows outputs from both frame-
works. Firefly’s outputs feature high contrast and a consistent style but often
include mismatched patterns, reducing character clarity and aesthetic value.
In contrast, FontStudio presents outputs with cohesive colors, diverse styles,
and clear linework, enhancing letter integration. For shape fidelity, both frame-
works maintain character legibility, though Firefly’s can appear fragmented with
missing strokes due to its aesthetic issues. Stylistically, both are largely consis-
tent, though Firefly occasionally shows minor discrepancies. Regarding prompt
fidelity, both generally follow prompt instructions, but Firefly struggles more
with style-related prompts. Table 3 delineates the quantitative comparison on
GenerativeFont benchmark between our results and those by Firefly, focus-
ing on the CLIP Score and CLIP-I Score, reflective of Prompt Fidelity and Style
Consistency, respectively. Our analysis underscores our methodology’s superior
performance over Firefly across these metrics. Moreover, we provides more visu-
alization results in Figure 9.
User Study and GPT-4V evaluation. We engaged 25 evaluators, including
10 professionals, to assess the benchmark results, and similar assessments were
conducted for GPT-4V. Participants rated the outcomes using four metrics to
determine which were superior. The findings, displayed in Figure 3, confirm the
superiority of our FontStudio over Adobe Firefly in every category. We also
have similar results for GPT-4V with a 65% win rate in aesthetics, 76% in shape
fidelity and 74% in style consistency. Refer to the supplementary for more details.

5 Conclusion

We introduced FontStudio, an innovative system crafted for generating coher-
ent and consistent visual content specifically designed for font shapes. The system
consists of two principal components: a shape-adaptive diffusion model that tack-
les the challenge of creating content on irregular canvases, and a shape-adaptive
effect transfer scheme ensuring uniformity across characters. Furthermore, we
present the GenerativeFont benchmark, a tool developed for the quantita-
tive evaluation of our method’s efficacy. Our empirical studies demonstrate that
FontStudio adeptly responds to user prompts, creating high-quality and aes-
thetically pleasing font effects. Notably, it surpasses both previous studies and
the commercial solution Adobe Firefly in all metrics assessed.
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