
Improving Feature Stability during Upsampling 21

Improving Feature Stability during Upsampling –
Spectral Artifacts and the Importance of Spatial Context

Supplementary Material

In the following, we present results and figures to support our statements in the
main paper and provide additional information. The following has been covered in the
appendix:

– Appendix A: Detailed experimental setup for all downstream tasks.

• Appendix A.1: Image Restoration experimental setup

• Appendix A.2: Semantic Segmentation experimental setup

• Appendix A.3: Disparity Estimation experimental setup

• Appendix A.4: Detailed setup of Adversarial attacks for all downstream tasks.

• Appendix A.5: Detailed setup of adversarial training for semantic segmentation
and image restoration.

– Appendix B: Semantic Segmentation: Additional Experiments and Ablations. In
detail:

• Appendix B.1: Detailed results from Sec. 5.2 and Sec. 5.2.

• Appendix B.1: Discussion on saturation of kernel size for upsampling.

• Appendix B.2: An ablation on the impact of the capacity of the encoder block
for standard options such as ResNet or ConvNeXt blocks.

• Appendix B.3: Ablation about including or excluding a small parallel kernel
during upsampling using transposed convolution.

• Appendix B.4: Short study on drawbacks of using interpolation for pixel-wise
upsampling.

• Appendix B.5: A comparison to different kinds of upsampling Operations on
Segmentation Models.

• Appendix B.6: A comparison of the performance of different sized kernels
in the transposed convolution operations of UNet-like models adversarially
trained using FGSM attack and 3-step PGD attack on 50% of the mini-batches
during training.

22 S. Agnihotri et al.

– Appendix C: Image Restoration : Additional Results:

• Appendix C.1: Here we report the number of parameters and latency study of
LCTC.

• Appendix C.2: Adversarial training evaluation for Restormer and NAFNet for
Image deblurring task.

• Appendix C.3: Qualitative results for image reconstruction models using Restormer
and NAFNet and evaluated on clean data, PDG and CosPGD attack with vary-
ing numbers of attack iterations.

• Appendix C.4: Visualizing Kernel Weights: Here we visualize kernel weights
from a random channel for models from Figure 5 to show the how different
kernels handle uneven contributions of pixels that leads to spectral artifacts.

• Appendix C.5: Out-Of-Distribution and Real World Generalization.

– Appendix D: Disparity Estimation : We provide additional results for Section 5.3:
including performance against adversarial attacks.

• Appendix D.1 Additional discussion on the results and importance of a parallel
3×3 kernel with large kernels for transposed convolution operation.

– Appendix E: Nomenclature- What are “Large Context Transposed Convolu-
tions?”: We discuss the nomenclature used in this work and describe what com-
prises a LCTC.

– Appendix F: Additional visualizations of Upsampling Artifacts and their Fre-
quency Spectra: Here we extend Figure 1 with more examples showing failure
of upsampling operations used in prior work and superiority of LCTC both in the
spatial and frequency domain.

– Appendix G: Limitations: Here we discuss the limitations of our work in detail.

A Experimental Setup

All the experiments were done using NVIDIA V100 16GB GPUs or NVIDIA Tesla
A100 40GB GPUs. For image restoration, models were trained on 1 NVIDIA Tesla
A100 40GB GPU. For the semantic segmentation downstream task, UNet [70] was
trained using 1 GPU. For the disparity estimation task, STTR-light [50] was trained
using 4 NVIDIA V100 GPUs in parallel.

Improving Feature Stability during Upsampling 23

A.1 Image Restoration

Architectures. We consider the recently proposed state-of-the-art transformer-based
Image Restoration architectures Restormer [89] and NAFNet [16]. Both architectures as
proposed use Pixel Shuffle [77] to upsample feature maps. We use these as our baseline
models. We replace this pixel shuffle operation with a transposed convolution operation.
Dataset. For the Image Restoration task, we focus on Image Deblurring. For this, we
use the GoPro image deblurring dataset [63]. This dataset consists of 3214 real-world
images with realistic blur and their corresponding ground truth (deblurred images) cap-
tured using a high-speed camera. The dataset is split into 2103 training images and 1111
test images.
Training Regime. For Restormer we follow the same training regime of progressive
training as that used by [89]. Similarly, for NAFNet we use the same training regime as
that used by [16].
Evaluation Metrics. Following common practice [1, 16, 89], We report the PSNR and
SSIM scores of the reconstructed images w.r.t. to the ground truth images, averaged
over all images. PSNR stands for Peak Signal-to-Noise ratio, a higher PSNR indicates
a better quality image or an image closer to the image to which it is being compared.
SSIM stands for Structural similarity [86]. A higher SSIM score corresponds to better
higher similarity between the reconstruction and the ground-truth image.

A.2 Semantic Segmentation

Here we describe the experimental setup for the segmentation task, the architectures
considered, the dataset considered and the training regime.
Architectures. We considered UNet [70] with encoder layers from ConvNeXt [54].
For the decoder, the baseline comparison is done with 2×2 kernels in the transposed
convolution layers and the commonly used ResNet [37] BasicBlock style layers for the
convolution layers in the decoder building blocks. In our experiments, we used larger
sized kernels, e.g. 7×7 and 11×11 in the transposed convolution while keeping the
rest of the architecture, including the convolution blocks in the decoder identical to
Sec. 5.2. When using kernels larger than 7×7 for transposed convolution we follow the
work of [17,51] and additionally include a parallel 3×3 kernel to keep the local context.
Usage of this parallel kernel is denoted by “+3×3" Further, we analyze the behavior of
a different block of convolution layers in the decoder, as explained in Sec. 4 and replace
the ResNet-style layers with ConvNeXt-style layers in Sec. 5.2.
Dataset. We considered the PASCAL VOC 2012 dataset [24] for the semantic seg-
mentation task. We follow the implementation of [92–94] and augment the training
examples with semantic contours from [36] as instructed by [75].
Training Regime. We follow a similar training regime as [92, 93], and train for 50
epochs, with an AdamW optimizer [57] and the learning rate was scheduled using
Cosine-Annealing [56]. In the implementation of [93], the authors slide over the images
using a window of size 473×473, however for computation reasons and for symmetry
we use a window of size 256×256. We use a starting learning rate of 10−4 and a weight
decay of 5× 10−2.

24 S. Agnihotri et al.

Evaluation Metrics. We report the mean Intersection over Union (mIoU) of the pre-
dicted and the ground truth segmentation mask, the mean accuracy over all pixels
(mAcc) and the mean accuracy over all classes (allAcc).

A.3 Disparity Estimation

Following, we describe the experimental setup for disparity estimation and occlusion
detection tasks.
Architectures. We consider the STTR-light [50] architecture for our work. To analyze
the influence of implementing larger kernels in transposed convolution as described in
Section 4 we alter the kernel sizes in the transposed convolution layers used for pixel-
wise upsampling in the “feature extractor" module of the architecture. We consider
the STTR-light architecture as proposed by [50] with 3×3 kernels in the transposed
convolution layers as our baseline.
Dataset. Similar to [50] we train and test our models on FlyingThings3D dataset [60].
Training Regime. We follow the training regime as implemented in [50].
Evaluation Metrics. We report the end-point-error (epe) and the 3-pixel error (3px) for
the disparity estimation w.r.t. the ground truth.

A.4 Adversarial Attacks

We consider the commonly used [34,59,67,88] FGSM attack [28] and a new segmentation-
specific SegPGD attack [34] for testing the robustness of the models against adversarial
attacks. For the semantic segmentation downstream task, each crop of the input was
perturbed with FGSM and SegPGD, while for the disparity estimation downstream task,
each of the left and right inputs were perturbed using FGSM.
For FGSM, we test our model against epsilons ϵ ∈ { 1

255 ,
8

255}. Where, we follow com-
mon practice and use 1

255 ≈0.004 and 8
255 ≈0.03 .

For SegPGD we follow the testing parameters as originally proposed in [34], with
ϵ ≈ 8

255 , α=0.01 and number of iterations ∈ {3, 5, 10, 20, 40, 100}. We use the same
scheduling for loss balancing term λ as suggested by the authors. We use SegPGD
for the semantic segmentation task as it is a stronger attack specifically designed for
segmentation. Thus providing more accurate insights into the models’ performance and
giving a better evaluation of the architectural design choices made.

For the Image Restoration task, we follow the evaluation method of [1], and eval-
uate against CosPGD [3] and PGD [49] adversarial attacks. For both attacks, we use
ϵ ≈ 8

255 , α=0.01 and test for number of attack iterations ∈ {5, 10, 20}.
For the Depth Estimation task, we use the PGD attack with ϵ ≈ 8

255 , α=0.01 and
test for number of attack iterations ∈ {5, 10, 20}.

A.5 Adversarial Training

Following, we describe the adversarial training setup employed in this work for adver-
sarially training models for semantic segmentation and image restoration.

Improving Feature Stability during Upsampling 25

Semantic Segmentation. We follow the commonly used [34] procedure and split the
batch into two 50%-50% mini-batches. One mini-batch is used to generate adversarial
examples using FGSM attack with ϵ ≈ 8

255 and PGD attack with 3 attack iterations and
with ϵ ≈ 8

255 and α=0.01 during training.

Image Restoration. We follow the training procedure used by [1]. We split each train-
ing batch into two equal 50%-50% mini-batches. We use one of the mini-batches to
generate adversarial samples using FGSM attack with ϵ ≈ 8

255 .

A.6 Frequency spectrum analysis

To analyze the images in the frequency domain, we use the Fast Fourier Transform
[9] (FFT) Xc = FFT (xc) for all channels c of feature maps x and aggregate a 2D
representation over frequencies w. We compute the mean over C channels of the FFT
of the difference between the prediction and the ground truth.

2D Frequency Spectra =
1

C

∑
c∈C

FFT (xpred
c − xgt

c) (4)

Here, xpred are the predictions from the model, xgt is the ground truth, and in Fig. 1
and Fig. 14 C=3 for the RGB channels. For better visualization, we plot the log of the
magnitude of the Discrete Fourier Transform.

Next, we describe, from the literature, the process of performing a Discrete Fourier
Transform.

Fast Fourier Transform (FFT) [9]. The discrete Fourier transform has been used
in this work to convert the images from the spatial domain to the frequency domain.

“ DFT is a linear operator (i.e. a matrix) that maps the data points in f to the
frequency domain f̂ ” [10]

Equation 2.26 in [10] shows the formula to perform DFT is:

f̂k =

n−1∑
j=0

fjϵ
−i2πjk/n (5)

where f̂k from each sample n contains the amplitude and phase (of the sine and cosine
components) information at frequency k. These are integer multiples of ϵ−2πj/n, the
fundamental frequency, short-handed as ωn [10]. Equation 2.29 in [10] shows the Dis-
crete Fourier transform matrix (in terms of ωn) that when multiplied by the samples in
f, converts the information in those samples to frequency domain (a basis transforma-
tion). FFT is an algorithm by [9] to perform Discrete Fourier transform in an efficient
manner. In Eq. (4), we use these frequencies w (referred to as k in Eq. (5)) from sample
xc obtained using an FFT() function that uses the FFT algorithm.

B Additional Experiments and Ablation

Here we provide detailed results from Sec. 5 and Sec. 5.2 and additional results as
mentioned in the main paper.

26 S. Agnihotri et al.

B.1 Semantic Segmentation

2×
2

3×
3

5×
5

7×
7

9×
9

11
×1

1

13
×1

3

15
×1

5

17
×1

7

19
×1

9

31
×3

1
kernel size

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

re
la

tiv
e

m
Io

U

2×
2

3×
3

5×
5

7×
7

9×
9

11
×1

1

13
×1

3

15
×1

5

17
×1

7

19
×1

9

31
×3

1

kernel size

0.8

0.9

1.0

1.1

1.2

1.3

re
la

tiv
e

m
Ac

c

2×
2

3×
3

5×
5

7×
7

9×
9

11
×1

1

13
×1

3

15
×1

5

17
×1

7

19
×1

9

31
×3

1

kernel size

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

re
la

tiv
e

al
lA

cc +3x3 Clean
+3x3 FGSM 1/255
+3x3 FGSM 8/255
+3x3 SegPGD 8/255 3 iterations
+3x3 SegPGD 8/255 5 iterations

Fig. 8: Comparison of performance of different sizes of transpose convolutions from standard
sizes like 2× 2 as well as very large 31× 31 kernels with ConvNeXt style 11×11 + 3×3 style in
the decoder building blocks. All have a parallel 3×3 kernel, as shown in Figure 4 (bottom left).

Table 7 and Table 8 provide all the results of empirical performance (across the
considered upsampling blocks) on clean inputs images and input images perturbed by
varying intensities of FGSM and SegPGD attacks respectively.

Limit of large kernels for Upsampling As discussed in Sec. 5.2, the performance of
large kernels begins to saturate at a point. We report results from Figure 7 in tabular
form in Table 9. In Table 9, we find that 13×13 appears to be the saturation point for
this setting and 31×31 kernels are beyond this saturation point. While 31×31 performs
worse or on-par with 17×17, it still performs significantly better than the baseline of
2×2. In Section 5.2 we explain the kernel size limit and that larger kernels are difficult
to train. We also find that these results further strengthen our Hypothesis 2. For
ease of understanding, we visualize the trends from Table 9 in Figure 8.

B.2 Choice of encoder

Following we aim to understand the importance of the encoder and its influence on
the quality of representations later decoded during the upsampling. Consequently, we
justify our choice of using ConvNeXt tiny encoder for the majority of our studies.

In Table 11 we compare different encoders: ResNet50, ConvNeXt tiny, and SLaK [51]
while fixing the decoder to the baseline implementation. All encoders are pre-trained
on the ImageNet-1k training dataset.

We observe that using ConvNeXt tiny and SLaK as the encoder backbone gives us
significantly better performance than using ResNet50 as the encoder. This observation
holds true for both clean and adversarially perturbed samples. We additionally observe
that SLaK gives us marginally better performance than ConvNeXt. As shown by [51],
SLaK is a significantly better encoder than ConvNeXt tiny as it provides significantly
more context than ConvNeXt by using kernel sizes up to 51×51 in the convolution lay-
ers during encoding. This proves that better encoding can be harnessed during decoding
which can lead to better upsampling.

However, in this work, we used the ConvNeXt tiny encoder since the SLaK encoder
takes significantly longer to train for only a marginal gain in performance. We report

Improving Feature Stability during Upsampling 27

the performance results in Table 12. We observe that given our computation budget and
the wall-clock time limit of 24 hours, we are unable to even compute the performance
of the model with the SLaK encoder at 100 attack iterations.

B.3 Ablation over small parallel kernel

Following we ablate over the use of a small (3×3) kernel in parallel to a large (≥7×7)
kernel for Large Context Transposed Convolutions. This concept is inspired by [17,51]
who use a small kernel in parallel with the large kernels to preserve local context when
downsampling. Similar behavior is observed while upsampling. Table 7 compares the
usage of this small parallel kernel. We observe, that while not using the small kernel
results in marginal better performance on clean images (for a fixed backbone style), it
lacks context and thus performs poorly (when compared to using a small parallel kernel)
against adversarial attacks.

This is further highlighted inTab. 8 when the performance is compared against
strong adversarial attacks. Moreover, we observe that from medium-sized kernels i.e. ,
the upsampling seems to lose local context, and adding a kernel in parallel helps the
model in getting this additional context. This effect can also be observed in the adver-
sarial performances of the respective models.

B.4 Drawbacks of interpolation

As discussed in Section 3, architecture designs that use interpolation for pixel-wise
upsampling suffer with over-smoothening of feature maps. This can be seen in the final
predictions, as shown in Fig. 9b compared to the ground truth segmentation mask in
Fig. 9a and prediction from a model with 11×11 + 3×3 transposed convolution kernel
in Fig. 9c.

In their work, [34] showed that PSPNet has considerably lower performance against
adversarial attacks, similar to the analysis made in Section 5.2. This is explained by H2.

B.5 Different Upsampling Methods

Following we compare different upsampling techniques thus justifying our advocacy for
using Transposed Convolution instead of other upsampling techniques like interpolation
and pixel shuffle.

We report the comparison in Table 5 and observe that both Pixel shuffle and Nearest
Neighbor interpolation perform better than the usually used Transposed Convolution
with a 2×2 kernel size. However, as we increase the kernel size for Transposed Con-
volution to 11×11 with a 3×3 small kernel in parallel, we observe that Large Context
Transposed Convolutions are strictly outperforming pixel shuffle, on both clean unper-
turbed images and under adversarial attacks, across all metrics used. Transposed Con-
volution with a large kernel is either outperforming or performing at par with Nearest
Neighbor interpolation as well. Thus we demonstrate the superior clean and adversarial
performance of large kernel-sized Transposed Convolution operation over other com-
monly used upsampling techniques.

28 S. Agnihotri et al.

(a) Ground truth segmentation mask
of the third image in the test set.

(b) Prediction from PSPNet with
ResNet 50 backbone as implemented
by the authors.

(c) Prediction when using LCTC
(11×11 + 3×3) and 3×3 convolu-
tion kernels in the decoder building
blocks of UNet.

Fig. 9: A comparison of differences in the sharpness of final predictions due to different upsam-
pling techniques. Fig. 9a is the ground truth segmentation mask with sharp and thin edges in the
rear fin and wing with protrusions in the wing of the aircraft. We observe that PSPNet with a
ResNet50 backbone as implemented by [93] is not able to accurately predict the thin edges and
the protrusions, and is simply smoothening them out. This is due to the interpolation operation
used in upsampling. However in comparison, as shown in Fig. 9c, when a transposed convolution
operation is used for pixel-wise upsampling, the thin edges are sharper and protrusions are more
accurately predicted.

There might be speculation if other downsampling techniques can utilize larger
convolution kernels in the decoder building blocks better than transposed convolution.
Thus, we additionally experiment using a ConvNeXt-like 7×7+3×3 kernel in the Con-
volution operations in the decoder building blocks that follow the upsampling operation.
We report these results in Table 13 and observe that similar to transposed convolution,
other upsampling methods also do not benefit from an increase in the kernel size in the
decoder building blocks.

B.6 Adversarial Training

Following, we present the results from adversarial training for semantic segmentation.
In Table 10, we report the performance of different transposed convolution kernel-sized
adversarially trained UNet on clean input and adversarially perturbed inputs. The ob-
served performance improvement when increasing the transposed convolution kernel
size during normal training also extends to adversarial training.

C Additional Results on Image Restoration

Following we provide additional results for the Image deblurring tasks, like the per-
formance of models after adversarial training and some visual results of the deblurring
for a better understanding of the impact of increased spatial context against different
adversarial attack methods and strengths.

Improving Feature Stability during Upsampling 29

C.1 Latency Study

As PixelShuffle, when downsampling with a factor of 2, reduces the channel dims by
a factor of 4, works [16, 89] use a 1×1 convolution layer before the PixelShuffle to
increase the number of channels by a factor of 4. This added complexity is not needed
for Transposed Convolution. Thus, in Table 14 we report the number of parameters in
the models from Figure 5 and report latencies (mean over 1000 runs) of the upsam-
pling operations, and show that these are comparable. In practice, these differences are
negligible as other unchanged operations are more costly.

C.2 Adversarial Training

In Table 15 we provide additional results for adversarially training image restoration
network NAFNet using FGSM attack on 50% of the training minibatch of the GoPro
dataset each iteration. The state-of-the-art Image Restoration models are significantly
larger w.r.t. the number of parameters, compared to the models considered for semantic
segmentation. Thus, they are significantly more difficult to train adversarially. They
require more training iterations. Due to the limited computing budget, we have only
trained them for the same iterations as clean (non-adversarial) training iterations. We
already observe the advantages of using a larger kernel for transposed convolution over
pixel-shuffle in these experiments.

C.3 Visual Results

Figure 10 shows reconstruction under PGD attack for Restormer [89] and NAFNet [16].
Figure 11 shows reconstruction under CosPGD attack for Restormer [89] and NAFNet [16].

C.4 Visualizing Kernel Weights

An increase in kernel size leads to an increase in context and since the context is in-
creased, the effect of uneven contributions of pixels is negated leading to reduced spec-
tral artifacts. This can be seen in Figure 12. Here we observe that the weights for 3×3
are high at the edges, causing the described grid effect, whereas for 11×11 kernels there
is a smooth fading towards the border of kernels, negating this effect.

C.5 Real World and Out-Of-Distribution (ODD) Generalization

Since LCTC leads to improved sampling that provides stability to feature maps learned
by the network (not merely defense), inspired by observations from [29], we hypothe-
size that the trends on adversarial attacks should translate to Real-World noise. We show
this in Table 16 by applying 2D common corruptions (CC) (severity=3) from [39] on
images from the GoPro dataset and using NAFNet models from Figure 5. Since the task
is deblurring, we consider all common corruptions but additional blurring and weather
corruptions, as these would have to be captured before blurring.

30 S. Agnihotri et al.

D Additional Results Disparity Estimation

Following we report additional results for Disparity Estimation using STTR-light. In
Table 17 we report the performance of STTR-light architecture on clean test images
and under PGD attack. Whereas in Figure 13, we present a visual comparison of depth
estimation predictions by a vanilla STTR-light as proposed by [50] and our proposed
modification of increasing the kernel size of the transposed convolution operation in the
“feature extractor” module of the architecture from 3×3 to Large Context Transposed
Convolutions with kernel sizes 7×7+3×3 and 11×11+3×3.

D.1 Disparity Estimation Discussion

In Figure 13 as shown by the region in the red circle, both vanilla architecture and
the architecture with our proposed change perform well compared to the ground truth
on clean images. However, under a 10 iteration PGD adversarial attack, we observe
small protrusion’s depth(shown by the red arrow) is incorrectly estimated by the vanilla
architecture. The architecture with 7×7+3×3 and 11×11+3×3 transposed convolution
kernels preserves the prediction of the disparity.

Additionally from Table 17, we observe the significance of the parallel 3×3 small
kernel with the large 7×7 and 11×11 kernels. The stability of the performance of the
large kernels without the small parallel kernel compared to the baseline is better. How-
ever, the stability of performance when only using larger kernels compared to larger
kernels with small parallel kernels is marginally worse.

E Nomenclature: What are Large Context Transposed
Convolutions?

In Section 4 we introduce the term “Large Context Transposed Convolutions (LCTC)”.
In this work, we use this to describe the Transposed Convolution layers in the decoder
with large kernel sizes and thus a large spatial context. However, terms like “large” are
subjective, this in the following we discuss our interpretation of a “large” kernel size.

Most previous works use kernel sizes of 2×2 or 3×3 for any convolution operation,
be it for downsampling [37,52] or be it for upsampling [70]. [54] introduced performing
downsampling using convolution operations with a large kernel size which in their case
was 7×7. This “larger” kernel size for downsampling was further extended by other
works like [17, 35] to 31×31 and even up to 51×51.

In Section 3, we show how increasing context during upsampling can reduce spec-
tral artifacts from a theoretical perspective. Theoretically, we would want an infinite-
sized kernel when performing upsampling. However, this is not practical, thus we used
Transposed Convolution with kernel sizes sufficiently large to give a good trade-off
between theorized context and practical trainability and compute requirements.

Thus, inspired by encoding literature [17,35,54] we use kernel sizes for upsampling
that are larger than those used by previous works. Given that previous works used kernel
sizes like 2×2 or 3×3, anything bigger than this already provides more spatial context.

Improving Feature Stability during Upsampling 31

Thus, even a kernel size of 5×5 would be an interesting exploration and thus we explore
this as well in Tab. 7 and Tab. 8.

However, given the theoretically ideal kernel size is infinity, a kernel size of 5×5
does not provide enough spatial context and thus we start calling transposed convolution
operations as Large Context Transposed Convolution only when their kernel sizes are
7×7 or larger.

F Additional visualizations of Upsampling Artifacts and their
Frequency Spectra

Following, we extend the example from Figure 1 to Figure 14 showing similar upsam-
pling artifacts but on different input images to demonstrate that our findings are not
limited to one example.

G Limitations

Current metrics for measuring performance do not completely account for spectral ar-
tifacts. Spectral artifacts begin affecting these metrics only when they become pro-
nounced such as under adversarial attacks, and here Large Context Transposed Con-
volutions consistently perform better across tasks and architectures. Ideally, we would
want infinitely large kernels, however, with increasing kernel size and task complexity,
training extremely large kernels can be challenging. Thus, in this work, while having
ablated over kernels as large as 31×31, we propose using kernels only as large as 7×7
to 11×11 for good practical trade-offs. Further improvements might be possible when
jointly optimizing the encoder and decoder of architectures.

In this work, we are focused on the reduction of spectral artifacts in upsampled
images and features introduced due to the theoretical limitations of upsampling oper-
ations. However, there might exist other factors that contribute to the introduction and
existence of spectral artifacts such as spatial bias. This might also present an interesting
avenue to explore.

32 S. Agnihotri et al.

Table 7: Complete comparison of performances against FGSM attack, of UNet with ConvNeXt
encoder and decoder with architectures along with different sized kernels in transposed convolu-
tion and different convolution blocks in the decoder for upscaling the feature maps.

Transposed Convolution
Kernels Backbone Style

Test Accuracy FGSM attack epsilon

mIoU mAcc allAcc
ϵ= 1

255
ϵ= 8

255

mIoU mAcc allAcc mIoU mAcc allAcc

2×2
ResNet Style 3×3 78.34 86.89 95.15 53.54 70.96 86.08 47.02 65.41 82.78

ConvNeXt style 7×7 77.17 86.86 94.81 77.42 86.24 94.94 42.04 64.86 79.08
ConvNeXt style 7×7 + 3×3 77.24 86.03 94.84 51.09 70.53 85.29 43.52 63.74 81.18

ConvNeXt style 11×11 77.68 86.42 94.97 50.73 69.78 84.88 42.33 61.80 80.36
ConvNeXt style 11×11 + 3×3 77.17 86.86 94.81 47.34 67.72 83.34 37.91 57.79 78.21

3×3
ResNet Style 3×3 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16

ConvNeXt style 7×7 77.70 86.89 94.99 52.30 71.56 85.73 44.80 65.38 81.99
ConvNeXt style 7×7 + 3×3 77.33 87.53 94.79 50.90 72.77 83.78 44.40 67.08 79.11

ConvNeXt style 11×11 77.86 86.75 94.99 51.30 70.39 85.33 42.78 62.76 81.08
ConvNeXt style 11×11 + 3×3 77.81 86.48 94.98 51.95 70.08 85.57 43.82 62.56 81.63

5×5 (Ours)
ResNet Style 3×3 79.19 87.62 95.36 55.57 73.51 86.65 48.96 67.97 83.41

ConvNeXt style 7×7 76.94 86.92 94.75 51.32 72.37 84.96 44.19 66.56 81.13
ConvNeXt style 7×7 + 3×3 78.52 87.39 95.13 54.4 72.48 86.29 46.33 65.65 82.0

ConvNeXt style 11×11 77.83 86.99 94.91 53.76 72.8 85.96 45.32 65.82 81.82
ConvNeXt style 11×11 + 3×3 77.92 86.92 95.02 48.67 68.11 83.96 38.88 58.13 78.96

5×5 + 3×3 (Ours)
ResNet Style 3×3 78.83 87.56 95.28 56.11 73.97 86.91 49.84 69.26 83.44

ConvNeXt style 7×7 78.11 86.90 95.01 53.17 71.55 86.0 45.98 66.05 82.18
ConvNeXt style 7×7 + 3×3 78.73 87.81 95.24 53.86 73.12 85.86 45.93 66.83 81.51

ConvNeXt style 11×11 77.83 86.57 95.07 52.12 70.29 85.79 44.05 63.11 81.63
ConvNeXt style 11×11 + 3×3 77.07 86.11 94.87 54.31 72.45 86.1 47.33 66.88 82.42

LCTC: 7×7 (Ours)
ResNet Style 3×3 78.92 88.06 95.23 56.02 74.13 86.45 49.24 68.89 82.87

ConvNeXt style 7×7 77.57 87.04 94.92 52.93 72.18 85.51 44.89 65.71 80.74
ConvNeXt style 7×7 + 3×3 77.88 87.0 95.05 51.63 70.74 85.37 43.15 62.74 80.83

ConvNeXt style 11×11 77.9 87.35 94.94 53.47 72.61 85.79 45.49 67.04 81.36
ConvNeXt style 11×11 + 3×3 77.99 87.86 94.96 51.61 73.01 84.85 43.93 66.22 80.73

LCTC: 7×7 + 3×3 (Ours)
ResNet Style 3×3 78.5 87.57 95.13 53.85 72.75 85.87 47.1 67.57 82.04

ConvNeXt style 7×7 78.09 87.14 95.04 52.42 71.88 85.59 43.43 65.39 80.88
ConvNeXt style 7×7 + 3×3 78.37 88.11 95.07 52.15 72.31 84.95 42.77 63.69 79.78

ConvNeXt style 11×11 77.71 87.22 94.97 52.47 73.22 85.55 44.07 65.84 81.31
ConvNeXt style 11×11 + 3×3 78.14 86.94 95.05 52.08 70.63 85.98 43.82 63.65 81.95

LCTC: 9×9 (Ours)
ResNet Style 3×3 78.36 86.88 95.18 55.62 72.62 86.9 49.5 67.03 83.9

ConvNeXt style 7×7 77.17 86.74 94.84 52.76 72.31 85.56 44.23 64.98 81.39
ConvNeXt style 7×7 + 3×3 77.93 86.97 95.04 51.01 70.59 84.87 41.93 61.63 80.18

ConvNeXt style 11×11 77.80 86.80 94.99 52.42 72.22 85.39 44.14 65.56 81.16
ConvNeXt style 11×11 + 3×3 78.25 86.71 95.07 54.59 72.04 86.48 46.88 65.56 82.73

LCTC: 9×9 + 3×3 (Ours)
ResNet Style 3×3 78.77 87.77 95.24 55.94 73.79 86.67 48.82 69.2 82.76

ConvNeXt style 7×7 77.79 86.65 94.92 52.6 70.51 85.75 43.3 62.16 80.89
ConvNeXt style 7×7 + 3×3 77.96 87.24 94.98 51.21 70.01 85.24 41.75 61.16 80.64

ConvNeXt style 11×11 77.92 86.82 95.03 52.71 71.17 86.02 44.33 63.26 82.2
ConvNeXt style 11×11 + 3×3 77.57 86.71 95.02 53.32 71.75 86.29 46.24 65.3 82.92

LCTC: 11×11 (Ours)
ResNet Style 3×3 79.11 87.06 95.36 56.18 72.11 87.27 49.51 66.15 84.12

ConvNeXt style 7×7 77.87 86.98 95.06 54.32 72.59 86.42 47.14 67.05 82.71
ConvNeXt style 7×7 + 3×3 78.34 87.06 95.07 51.93 71.19 85.54 41.77 62.31 80.8

ConvNeXt style 11×11 77.42 86.68 94.94 53.11 71.43 86.03 44.55 63.45 81.75
ConvNeXt style 11×11 + 3×3 77.75 86.83 95.01 52.88 71.47 85.93 43.55 62.75 81.4

LCTC: 11×11 + 3×3 (Ours)
ResNet Style 3×3 79.33 87.81 95.41 58.04 74.93 87.8 51.25 69.31 84.64

ConvNeXt style 7×7 78.32 86.98 95.09 53.31 72.45 86.16 44.89 65.18 82.03
ConvNeXt style 7×7 + 3×3 78.64 86.78 95.17 54.32 71.27 86.63 45.48 63.62 82.32

ConvNeXt style 11×11 77.15 85.93 94.87 51.19 69.72 85.45 42.02 61.09 81.1
ConvNeXt style 11×11 + 3×3 77.42 86.24 94.94 54.48 72.53 86.25 46.67 66.59 82.29

LCTC: 13×13 (Ours)
ResNet Style 3×3 79.41 88.18 95.36 56.89 74.71 87.36 51.06 70.39 84.48

ConvNeXt style 7×7 77.99 87.11 95.06 54.96 73.32 86.69 47.39 67.2 82.73
ConvNeXt style 7×7 + 3×3 78.44 87.22 95.13 54.21 72.18 86.34 47.27 65.72 82.95

ConvNeXt style 11×11 77.57 85.99 95.00 53.51 70.31 86.67 45.63 63.59 83.11
ConvNeXt style 11×11 + 3×3 77.40 86.53 94.89 53.16 71.62 86.12 45.09 64.23 82.39

LCTC: 13×13 + 3×3 (Ours)
ResNet Style 3×3 79.17 87.96 95.38 57.17 75.08 87.44 50.8 70.67 84.06

ConvNeXt style 7×7 78.05 86.73 95.02 53.41 71.62 86.12 45.07 65.04 81.76
ConvNeXt style 7×7 + 3×3 77.76 86.14 95.06 54.09 72.11 86.29 45.69 65.15 82.2

ConvNeXt style 11×11 77.81 87.43 95.01 51.71 71.77 85.25 41.97 62.61 80.66
ConvNeXt style 11×11 + 3×3 77.20 86.55 94.81 53.1 71.88 85.87 45.0 65.01 81.91

LCTC: 15×15 (Ours)
ResNet Style 3×3 79.17 87.68 95.28 58.08 73.56 87.58 51.11 67.94 84.36

ConvNeXt style 7×7 78.34 87.14 95.03 53.86 72.77 86.11 45.12 65.22 81.65
ConvNeXt style 7×7 + 3×3 77.39 86.40 94.95 51.2 69.42 85.27 42.65 60.88 81.24

ConvNeXt style 11×11 77.14 86.36 94.82 50.14 69.32 84.49 40.97 60.11 79.81
ConvNeXt style 11×11 + 3×3 77.67 86.78 94.90 54.44 72.74 86.54 46.37 66.24 82.29

LCTC: 15×15 + 3×3 (Ours)
ResNet Style 3×3 78.72 87.50 95.25 56.28 73.97 87.15 49.5 68.69 83.53

ConvNeXt style 7×7 77.56 87.01 94.93 53.28 72.15 85.78 45.51 64.84 81.57
ConvNeXt style 7×7 + 3×3 77.09 86.27 94.76 52.25 70.01 85.41 44.01 62.49 81.16

ConvNeXt style 11×11 77.40 86.39 94.92 53.59 71.49 86.21 45.48 64.37 82.28
ConvNeXt style 11×11 + 3×3 78.64 87.46 95.20 54.77 73.2 86.65 46.53 65.4 82.78

LCTC: 17×17 (Ours)
ResNet Style 3×3 79.22 87.77 95.37 56.5 73.3 87.27 50.1 68.23 84.11

ConvNeXt style 7×7 77.36 87.64 94.89 54.06 73.88 85.84 47.25 68.3 82.19
ConvNeXt style 7×7 + 3×3 78.03 87.56 95.01 52.75 72.0 85.65 44.32 64.16 81.54

ConvNeXt style 11×11 77.82 87.40 94.92 51.43 70.57 85.22 42.53 62.68 80.79
ConvNeXt style 11×11 + 3×3 77.74 86.69 94.99 51.31 69.71 85.53 41.58 60.43 80.83

LCTC: 17×17 + 3×3 (Ours)
ResNet Style 3×3 78.41 86.84 95.26 56.03 73.28 87.16 49.65 67.95 83.74

ConvNeXt style 7×7 78.14 86.99 94.98 53.44 72.34 86.01 45.02 65.35 81.85
ConvNeXt style 7×7 + 3×3 78.62 87.64 95.14 55.54 73.87 86.85 47.86 67.22 83.18

ConvNeXt style 11×11 77.59 87.73 94.84 52.84 74.14 84.63 44.1 67.34 79.57
ConvNeXt style 11×11 + 3×3 77.33 88.15 94.75 49.29 71.71 84.04 39.85 63.7 78.81

LCTC: 19×19 (Ours)
ResNet Style 3×3 78.54 87.64 95.12 56.63 74.09 87.25 50.02 68.73 83.99

ConvNeXt style 7×7 78.74 87.66 95.15 56.28 73.79 87.11 49.44 68.74 83.84
ConvNeXt style 7×7 + 3×3 77.05 86.33 94.89 54.47 72.38 86.78 45.63 64.94 82.81

ConvNeXt style 11×11 77.66 86.61 95.00 51.58 71.51 84.83 42.48 63.44 79.58
ConvNeXt style 11×11 + 3×3 77.61 86.59 94.93 50.34 69.39 84.54 41.82 61.29 79.75

LCTC: 19×19 + 3×3 (Ours)
ResNet Style 3×3 78.78 87.34 95.28 56.53 74.59 86.97 50.6 69.95 83.98

ConvNeXt style 7×7 77.44 86.70 94.91 54.05 72.52 86.09 45.52 65.29 81.52
ConvNeXt style 7×7 + 3×3 78.14 87.14 95.02 55.82 74.54 86.96 48.97 69.98 83.3

ConvNeXt style 11×11 78.03 86.64 95.08 53.5 71.21 86.26 45.79 64.16 82.42
ConvNeXt style 11×11 + 3×3 77.42 86.61 94.91 53.83 72.54 86.17 46.29 66.94 82.22

LCTC: 31×31 (Ours)
ResNet Style 3×3 78.69 86.98 95.30 56.61 73.22 87.08 49.49 66.69 83.68

ConvNeXt style 7×7 77.54 87.30 94.84 52.36 72.27 85.14 43.56 65.14 8 .
ConvNeXt style 7×7 + 3×3 76.96 86.38 94.77 53.59 72.14 86.05 45.22 65.22 81.84

ConvNeXt style 11×11 76.84 86.72 94.71 50.74 70.53 84.61 41.62 61.96 79.96
ConvNeXt style 11×11 + 3×3 76.77 85.60 94.71 51.42 69.17 85.2 42.12 60.32 80.77

LCTC: 31×31 + 3×3 (Ours)
ResNet Style 3×3 78.47 87.26 95.16 56.27 73.39 87.22 49.66 68.81 83.92

ConvNeXt style 7×7 77.43 86.56 94.93 53.45 72.74 86.17 45.84 66.41 82.16
ConvNeXt style 7×7 + 3×3 78.43 87.07 95.17 56.72 73.65 87.6 49.56 68.15 84.22

ConvNeXt style 11×11 78.00 87.04 94.94 50.66 70.23 84.83 40.71 61.31 79.94
ConvNeXt style 11×11 + 3×3 77.73 86.54 94.93 53.94 71.65 86.39 44.04 62.19 81.8

Improving Feature Stability during Upsampling 33

Table 8: Comparison of performances against SegPGD attack, of UNet with ConvNeXt encoder
and decoder with architectures along with different sized kernels in transposed convolution and
different convolution blocks in the decoder for upscaling the feature maps.

Transposed Convolution
Kernels Backbone Style

SegPGD attack iterations
3 5 10 20 40 100

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

2×2
ResNet Style 3×3 23.06 46.51 60.04 14.43 35.50 45.30 08.12 24.67 29.88 05.54 18.79 23.72 04.39 14.98 23.70 03.50 11.61 27.93

ConvNeXt style 7×7 17.94 0.4481 47.96 10.64 33.63 30.64 05.47 21.74 15.8 03.2 14.73 09.81 02.04 0.1047 0.0641 01.35 07.57 04.3
ConvNeXt style 7×7 + 3×3 17.59 42.55 0.5168 09.88 30.41 0.3233 04.75 16.83 0.1431 02.65 09.46 0.0668 01.68 05.64 0.034 01.0 0.0316 01.94

ConvNeXt style 11×11 16.39 0.4013 0.485 09.37 28.66 29.63 03.97 14.16 11.41 01.56 06.11 03.56 00.59 02.61 01.31 00.23 00.99 00.51
ConvNeXt style 11×11 + 3×3 13.97 35.82 45.68 07.61 25.07 28.33 03.4 14.38 12.04 02.21 10.75 05.29 01.57 08.02 03.01 01.07 05.75 01.85

3×3
ResNet Style 3×3 23.37 46.33 60.78 15.26 38.0 46.51 09.26 29.64 31.9 06.78 24.18 26.95 05.71 20.39 28.69 05.02 16.11 33.12

ConvNeXt style 7×7 18.48 43.81 54.97 09.51 29.92 34.86 03.63 15.1 13.03 01.64 08.23 04.51 01.0 05.12 02.13 00.59 02.84 00.89
ConvNeXt style 7×7 + 3×3 19.08 46.97 47.74 11.15 34.6 29.9 05.96 22.62 15.67 03.61 15.04 09.33 02.17 09.18 05.86 01.29 06.02 03.55

ConvNeXt style 11×11 16.2 39.11 50.93 09.52 29.32 32.61 04.93 20.31 14.82 02.86 13.94 06.46 02.05 10.94 03.58 01.4 08.23 02.21
ConvNeXt style 11×11 + 3×3 18.54 41.34 55.56 10.25 30.11 36.0 04.8 19.25 13.94 02.41 11.87 04.56 01.59 07.78 02.11 01.11 04.21 01.09

5×5 (Ours)
ResNet Style 3×3 24.23 51.8 57.82 16.16 42.98 43.29 10.11 32.79 30.3 07.32 25.16 27.42 06.02 19.04 31.25 05.16 14.03 37.36

ConvNeXt style 7×7 17.59 43.57 51.41 09.9 30.84 33.14 04.74 18.3 14.55 02.23 09.47 05.21 01.47 06.03 02.32 00.97 03.64 01.28
ConvNeXt style 7×7 + 3×3 18.7 43.18 52.74 10.56 31.41 33.32 04.87 18.5 14.78 02.49 10.84 05.59 01.39 05.61 02.69 00.91 03.38 01.46

ConvNeXt style 11×11 18.96 44.79 53.09 09.85 29.77 32.88 03.89 14.94 12.6 01.94 08.29 04.58 01.03 04.72 01.86 00.48 02.63 00.75
ConvNeXt style 11×11 + 3×3 13.38 33.61 45.0 06.84 20.94 25.99 02.51 08.85 08.5 01.18 04.39 02.62 00.71 02.48 01.07 00.48 01.52 00.53

5×5 + 3×3 (Ours)
ResNet Style 3×3 25.03 53.96 58.89 16.61 45.8 42.18 10.79 37.16 27.34 08.0 29.62 21.71 06.16 21.69 22.25 04.83 13.87 28.97

ConvNeXt style 7×7 17.65 44.79 48.41 09.79 31.78 28.51 04.62 18.37 11.12 02.58 10.89 04.61 01.52 06.59 02.3 01.0 04.04 01.33
ConvNeXt style 7×7 + 3×3 18.31 42.75 49.26 09.89 28.58 30.02 03.78 12.49 11.08 01.34 04.76 03.54 00.48 02.13 01.45 00.19 00.88 00.76

ConvNeXt style 11×11 17.87 40.62 52.77 09.74 27.94 34.21 04.65 14.98 14.34 02.0 05.95 04.77 01.07 02.81 01.71 00.32 00.98 00.63
ConvNeXt style 11×11 + 3×3 20.84 46.95 53.91 11.86 33.96 34.86 05.65 19.8 16.66 02.83 10.73 08.2 01.59 06.21 04.68 01.11 04.2 02.62

LCTC: 7×7 (Ours)
ResNet Style 3×3 26.53 53.05 61.16 17.75 43.31 46.99 10.26 30.92 32.62 07.17 23.05 27.52 05.69 17.24 29.48 04.37 11.29 35.16

ConvNeXt style 7×7 17.64 43.32 47.8 09.95 30.43 28.02 04.21 15.08 10.07 01.86 07.18 03.55 00.99 03.52 01.42 00.68 01.89 00.74
ConvNeXt style 7×7 + 3×3 16.64 40.11 50.56 09.75 29.72 32.23 04.95 19.4 14.47 02.87 13.23 06.4 02.06 09.55 03.45 01.59 07.24 02.04

ConvNeXt style 11×11 17.37 45.07 47.32 08.86 30.03 26.48 03.47 14.22 07.94 01.53 06.55 02.45 00.93 03.9 01.2 00.61 02.3 00.64
ConvNeXt style 11×11 + 3×3 17.07 42.3 48.78 09.31 28.04 28.88 03.82 13.79 09.54 01.8 07.11 03.04 01.03 04.3 01.45 00.53 02.61 00.77

LCTC: 7×7 + 3×3 (Ours)
ResNet Style 3×3 24.03 52.08 57.43 16.21 43.38 43.01 09.99 32.77 30.22 07.38 26.16 26.11 06.31 22.42 28.32 05.35 17.41 33.09

ConvNeXt style 7×7 16.19 43.4 48.59 09.02 32.38 29.17 04.23 19.63 10.47 02.46 12.18 03.99 01.53 06.85 01.97 00.91 03.94 01.1
ConvNeXt style 7×7 + 3×3 16.04 39.67 48.16 08.94 27.45 30.33 03.81 14.69 12.79 01.91 09.17 04.63 01.2 06.16 01.95 00.84 03.96 00.95

ConvNeXt style 11×11 18.08 46.24 50.64 10.18 33.17 31.35 04.49 18.33 12.04 02.01 07.98 04.55 01.04 03.91 02.17 00.45 01.7 01.2
ConvNeXt style 11×11 + 3×3 15.31 37.02 52.08 07.62 24.44 32.35 03.3 15.04 12.35 01.92 10.24 05.12 01.32 07.37 02.63 00.91 05.07 01.39

LCTC: 9×9 (Ours)
ResNet Style 3×3 25.26 50.75 60.85 16.88 41.02 47.16 09.44 28.03 33.87 06.23 20.76 28.91 04.71 16.45 29.14 03.69 12.63 31.93

ConvNeXt style 7×7 18.11 44.53 50.69 10.46 31.69 32.26 04.92 18.52 14.48 02.86 12.13 06.36 02.1 09.3 03.51 01.5 06.59 01.9
ConvNeXt style 7×7 + 3×3 16.2 39.55 50.82 09.0 28.53 33.31 04.07 17.03 15.6 02.14 10.13 07.12 01.38 05.91 03.74 00.71 02.56 01.82

ConvNeXt style 11×11 17.02 43.01 48.45 08.92 28.35 28.13 03.64 14.36 10.06 01.17 06.28 03.11 00.55 04.04 01.35 00.32 02.76 00.77
ConvNeXt style 11×11 + 3×3 19.34 43.6 54.41 10.71 31.22 33.98 04.6 15.76 12.75 01.98 07.78 04.04 00.95 03.95 01.69 00.51 01.96 00.78

LCTC: 9×9 + 3×3 (Ours)
ResNet Style 3×3 24.87 55.04 57.35 17.0 46.34 42.08 10.88 36.04 28.55 07.91 28.17 22.86 06.02 21.13 22.87 04.63 14.45 27.39

ConvNeXt style 7×7 16.56 36.5 53.58 08.74 23.95 35.67 04.01 13.92 16.64 02.13 08.87 06.34 01.38 06.37 02.27 01.01 04.8 01.11
ConvNeXt style 7×7 + 3×3 16.03 36.92 51.5 08.8 25.53 33.15 03.64 13.95 12.25 01.61 06.02 04.08 00.83 02.72 01.83 00.37 01.13 00.87

ConvNeXt style 11×11 16.42 39.19 51.71 08.32 26.64 31.11 03.66 15.7 11.61 01.94 10.11 04.4 01.19 06.75 02.23 00.83 04.83 01.36
ConvNeXt style 11×11 + 3×3 18.72 41.83 55.48 10.38 29.7 36.72 04.74 18.16 17.44 02.49 11.2 07.18 01.69 08.21 03.56 01.24 06.07 01.93

LCTC: 11×11 (Ours)
ResNet Style 3×3 26.02 48.81 63.76 16.8 39.62 49.72 09.62 29.4 34.22 06.85 24.07 27.66 05.63 20.38 26.45 04.56 15.64 28.86

ConvNeXt style 7×7 19.04 45.39 52.63 10.17 32.3 32.46 04.58 20.16 13.36 02.44 13.63 05.33 01.74 10.13 03.04 01.21 07.07 01.7
ConvNeXt style 7×7 + 3×3 16.08 39.09 53.1 08.86 28.27 35.06 03.94 16.77 15.75 02.25 11.87 06.31 01.32 07.98 02.72 00.82 05.14 01.28

ConvNeXt style 11×11 18.09 40.72 53.7 09.93 29.6 34.68 04.55 18.22 14.17 02.21 10.51 05.2 01.38 06.35 02.34 00.96 03.84 01.28
ConvNeXt style 11×11 + 3×3 15.29 37.2 50.71 07.6 25.19 30.65 03.17 15.06 09.58 01.78 10.21 03.07 01.3 07.74 01.39 01.0 05.6 00.88

LCTC: 11×11 + 3×3 (Ours)
ResNet Style 3×3 27.49 53.08 64.13 18.15 43.51 49.36 10.29 31.12 33.17 07.08 23.3 26.82 05.14 16.14 27.32 03.77 09.6 31.61

ConvNeXt style 7×7 16.14 40.65 50.39 08.08 27.2 31.4 03.34 15.36 12.29 01.93 09.35 03.9 01.36 05.77 01.76 00.92 03.51 00.83
ConvNeXt style 7×7 + 3×3 17.7 39.71 54.64 09.71 26.92 35.8 04.32 13.93 15.8 02.37 08.49 06.7 01.59 05.85 03.43 01.09 03.87 01.83

ConvNeXt style 11×11 14.62 34.73 49.37 07.26 22.21 29.37 02.76 12.24 10.69 01.23 07.06 04.16 00.71 04.71 01.96 00.63 03.65 00.96
ConvNeXt style 11×11 + 3×3 18.76 44.6 51.49 10.07 31.15 30.26 04.4 17.02 10.56 02.31 08.7 03.5 01.34 04.85 01.66 00.73 02.56 00.81

LCTC: 13×13 (Ours)
ResNet Style 3×3 28.51 57.18 63.94 19.71 48.99 50.08 11.99 37.69 33.26 08.31 28.29 26.23 06.17 21.38 25.65 04.83 15.34 29.52

ConvNeXt style 7×7 20.9 46.62 55.13 12.32 34.21 35.91 06.14 21.39 16.39 03.15 13.44 07.51 02.16 10.21 04.3 01.41 06.61 02.54
ConvNeXt style 7×7 + 3×3 20.13 42.92 57.7 11.38 29.96 39.57 04.85 15.81 19.37 02.54 09.48 09.47 01.65 06.45 05.61 00.86 03.83 03.0

ConvNeXt style 11×11 18.65 39.48 56.4 10.02 27.46 38.02 04.69 17.27 19.03 02.47 11.35 08.76 01.39 07.95 04.12 00.9 06.02 02.11
ConvNeXt style 11×11 + 3×3 18.95 42.88 55.82 10.68 31.21 35.69 04.92 18.29 12.63 02.35 09.29 03.78 01.26 05.02 01.6 00.79 02.56 00.72

LCTC: 13×13 + 3×3 (Ours)
ResNet Style 3×3 28.08 58.22 63.4 19.4 50.01 48.89 12.04 39.2 32.11 08.77 31.09 24.9 06.46 22.51 23.98 04.34 13.59 28.41

ConvNeXt style 7×7 18.42 43.52 51.26 10.23 30.56 30.5 04.37 16.41 11.29 02.08 09.09 04.39 01.35 06.65 02.49 00.86 04.28 01.37
ConvNeXt style 7×7 + 3×3 16.7 41.09 50.56 08.54 26.94 30.39 03.31 13.44 11.22 01.53 06.72 04.13 01.02 04.01 02.01 00.56 02.07 01.03

ConvNeXt style 11×11 14.1 36.4 47.79 07.01 23.32 27.54 02.87 12.05 10.26 01.51 06.85 04.56 01.13 05.21 03.2 01.13 05.21 03.2
ConvNeXt style 11×11 + 3×3 18.14 43.14 52.31 09.55 28.16 32.41 03.54 12.57 11.22 01.52 06.19 03.35 00.97 03.66 01.52 00.65 02.11 00.84

LCTC: 15×15 (Ours)
ResNet Style 3×3 29.41 51.54 66.7 19.96 41.26 55.14 11.51 29.26 41.04 07.17 20.8 31.7 05.13 15.79 28.53 03.9 11.59 29.37

ConvNeXt style 7×7 18.62 44.42 51.51 10.55 32.47 32.54 04.69 18.66 12.4 02.64 11.81 04.44 01.67 07.93 02.02 01.29 05.26 01.21
ConvNeXt style 7×7 + 3×3 17.63 37.55 55.52 09.13 23.28 37.06 03.46 09.05 15.8 01.41 03.5 06.96 00.77 01.62 04.02 00.51 01.04 02.48

ConvNeXt style 11×11 15.24 36.62 49.45 08.05 24.89 31.93 03.68 14.62 13.68 02.03 07.68 05.66 01.26 04.48 03.25 00.61 02.51 01.87
ConvNeXt style 11×11 + 3×3 19.01 44.78 52.74 10.35 31.98 32.35 04.38 19.15 12.42 02.31 12.1 04.84 01.53 07.72 02.24 01.06 04.86 01.17

LCTC: 15×15 + 3×3 (Ours)
ResNet Style 3×3 26.38 53.79 61.59 17.9 45.03 47.36 10.79 33.9 31.75 07.14 25.02 25.01 05.43 18.97 25.39 04.18 13.25 30.47

ConvNeXt style 7×7 19.81 42.18 53.73 11.14 28.25 37.03 04.72 13.45 17.41 01.92 05.27 07.64 01.06 03.07 04.37 00.7 01.97 02.61
ConvNeXt style 7×7 + 3×3 17.53 39.4 54.39 09.51 26.67 35.52 03.73 12.39 13.27 00.93 04.2 03.22 00.44 02.14 01.01 00.16 00.94 00.36

ConvNeXt style 11×11 16.69 39.29 52.18 08.78 27.55 32.8 03.72 17.08 12.37 02.06 11.89 03.94 01.38 08.59 02.0 00.99 06.41 01.24
ConvNeXt style 11×11 + 3×3 19.15 41.08 55.96 10.71 29.12 37.58 05.28 19.35 18.54 02.88 13.69 08.43 02.0 11.2 04.47 01.41 09.0 02.39

LCTC: 17×17 (Ours)
ResNet Style 3×3 27.74 53.24 64.48 18.51 43.47 51.02 10.72 32.21 36.08 07.43 25.5 28.78 05.85 20.69 28.85 04.93 16.94 32.03

ConvNeXt style 7×7 19.82 46.01 54.48 11.09 32.71 36.79 05.35 19.1 17.49 02.67 10.25 07.1 01.87 07.1 02.98 01.25 04.64 01.33
ConvNeXt style 7×7 + 3×3 16.96 38.94 54.19 09.23 26.92 36.22 04.47 16.8 16.9 02.45 11.16 07.09 01.61 08.12 03.53 01.03 05.47 01.95

ConvNeXt style 11×11 13.72 34.03 48.09 06.57 20.94 26.93 02.32 09.22 07.84 01.08 04.61 02.28 00.63 02.55 01.0 00.35 01.33 00.47
ConvNeXt style 11×11 + 3×3 14.47 33.55 52.16 07.33 20.91 32.91 02.82 09.75 13.11 01.28 04.95 04.96 00.79 03.01 02.52 00.47 01.55 01.32

LCTC: 17×17 + 3×3 (Ours)
ResNet Style 3×3 26.97 54.13 62.04 18.41 45.5 47.66 11.05 34.55 32.01 07.43 25.65 24.78 05.07 17.38 24.12 03.51 10.48 27.4

ConvNeXt style 7×7 17.96 41.81 54.93 09.08 27.73 35.7 03.85 15.38 15.51 01.95 09.2 05.76 01.17 05.74 02.35 00.86 03.99 01.25
ConvNeXt style 7×7 + 3×3 19.86 42.55 56.89 10.29 28.26 37.83 04.43 15.77 16.52 01.93 08.45 06.36 01.0 05.27 02.61 00.68 03.7 01.31

ConvNeXt style 11×11 16.84 44.91 45.35 09.41 31.25 26.04 03.8 14.79 09.08 01.4 05.56 02.83 00.47 02.05 01.03 00.17 01.1 00.54
ConvNeXt style 11×11 + 3×3 14.06 38.28 46.37 06.95 24.78 27.4 02.92 14.65 10.36 01.55 09.22 03.9 00.96 06.21 02.04 00.68 04.61 01.29

LCTC: 19×19 (Ours)
ResNet Style 3×3 27.64 52.62 64.53 18.46 42.79 51.19 10.49 30.27 36.37 06.92 22.02 28.21 05.17 17.07 26.09 03.99 12.16 27.92

ConvNeXt style 7×7 20.28 46.96 56.75 10.06 30.29 36.2 03.5 13.07 14.56 01.51 06.13 05.64 00.72 03.24 02.4 00.64 02.2 01.4
ConvNeXt style 7×7 + 3×3 18.14 39.86 56.98 09.34 26.13 37.16 03.5 13.58 14.24 01.52 07.79 04.4 00.83 05.76 01.83 00.54 03.82 00.93

ConvNeXt style 11×11 15.85 40.55 46.13 08.33 28.21 25.47 03.27 15.94 07.52 01.8 10.44 02.95 01.3 07.65 01.81 00.97 05.34 01.22
ConvNeXt style 11×11 + 3×3 16.17 37.68 50.29 08.47 25.22 31.86 03.84 14.74 13.88 01.93 08.84 06.27 01.2 05.41 03.28 00.79 03.68 02.02

LCTC: 19×19 + 3×3 (Ours)
ResNet Style 3×3 28.62 56.15 63.93 19.19 47.17 48.9 10.96 34.41 31.54 07.15 25.67 23.6 05.25 19.32 21.84 04.24 15.12 24.17

ConvNeXt style 7×7 17.45 40.44 51.24 09.13 27.29 31.41 03.56 13.76 10.77 01.61 06.83 03.35 00.94 04.0 01.37 00.56 02.22 00.54
ConvNeXt style 7×7 + 3×3 20.9 48.61 54.54 11.59 35.05 33.3 04.6 18.94 11.57 02.05 10.9 03.51 01.42 07.83 01.63 00.9 05.28 00.88

ConvNeXt style 11×11 19.01 41.41 55.17 10.56 28.9 37.54 05.23 19.35 17.13 02.92 12.99 07.27 02.05 09.7 03.82 01.42 07.14 02.18
ConvNeXt style 11×11 + 3×3 17.98 44.39 52.86 09.44 30.77 32.15 03.36 14.64 09.76 01.14 05.22 02.06 00.48 02.49 00.6 00.17 01.16 00.26

LCTC: 31×31 (Ours)
ResNet Style 3×3 26.44 50.1 63.1 17.8 39.96 50.81 10.44 29.22 36.6 06.67 21.09 28.13 04.91 16.07 23.92 03.65 10.93 23.02

ConvNeXt style 7×7 17.75 41.69 51.94 09.26 27.63 32.32 03.52 12.48 11.73 01.37 04.95 04.18 00.62 02.57 01.93 00.37 01.68 01.02
ConvNeXt style 7×7 + 3×3 16.53 40.82 50.9 08.0 25.9 30.59 02.79 11.15 10.24 01.24 05.19 03.11 00.56 02.42 01.12 00.34 01.4 00.53

ConvNeXt style 11×11 13.08 31.95 45.87 05.85 17.71 25.83 02.06 07.35 08.65 00.88 03.15 02.74 00.39 01.55 01.05 00.26 01.15 00.55
ConvNeXt style 11×11 + 3×3 15.42 35.92 51.53 07.44 21.84 31.72 02.43 09.33 10.18 00.85 03.85 02.59 00.41 01.79 01.04 00.22 00.99 00.56

LCTC: 31×31 + 3×3 (Ours)
ResNet Style 3×3 27.41 54.28 64.15 18.27 44.66 49.97 11.02 33.64 34.65 07.24 25.06 26.54 05.39 18.81 22.82 04.3 14.03 22.46

ConvNeXt style 7×7 18.76 40.98 55.63 10.33 28.32 38.72 04.95 18.11 19.82 02.74 12.53 08.41 01.69 08.6 03.73 01.03 05.94 01.75
ConvNeXt style 7×7 + 3×3 20.55 44.15 58.99 10.65 30.05 40.0 04.69 17.49 18.07 02.65 11.74 07.33 01.6 08.05 03.37 01.09 05.88 01.79

ConvNeXt style 11×11 14.47 36.3 49.11 07.12 22.87 29.65 02.57 11.14 10.67 01.24 06.52 03.69 00.9 05.06 01.68 00.63 03.65 00.96
ConvNeXt style 11×11 + 3×3 13.59 32.71 49.91 06.09 18.39 29.59 01.96 06.7 08.76 00.79 02.53 02.11 00.4 01.47 00.89 00.12 00.65 00.45

34 S. Agnihotri et al.

Table 9: Comparison of performance of Large Context Transposed Convolutions (LCTC) with
very large: 31×31 kernels in transposed convolution to large (7×7 to 17×17) kernels. All have
a parallel 3×3 kernel, as shown in Figure 4 (bottom left). Here we observe the saturation of
performance for very large kernels for upsampling. This comparison is for the same encoder
(ConvNeXt) and same ResNet-like building blocks in the decoder (our baseline). The complete
table is provided in Appendix B.1.

Transposed
Convolution Kernels

Test Accuracy FGSM attack epsilon SegPGD attack iterations

mIoU mAcc allAcc
1

255
8

255
20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

7×7 78.50 87.57 95.13 53.85 72.75 85.87 47.10 67.57 82.04 7.38 26.16 26.11
11×11 79.33 87.81 95.41 58.04 74.93 87.80 51.25 69.31 84.64 7.08 23.30 26.82
15×15 78.72 87.50 95.25 56.28 73.97 87.15 49.50 68.69 83.53 7.14 25.02 25.01
17×17 78.41 86.84 95.26 56.03 73.28 87.16 49.65 67.95 83.74 7.43 25.65 24.78
19×19 78.78 87.34 95.28 56.53 74.59 86.97 50.60 69.95 83.98 7.15 25.67 23.60
31×31 78.47 87.26 95.16 56.27 73.39 87.22 49.66 68.81 83.92 7.24 25.06 26.54

Table 10: Adversarially trained models using FGSM and PGD from Table 2 tested against ad-
versarial attacks on UNet with ConvNeXt encoder and decoder with different sized kernels in the
transposed convolution for upscaling, while keeping rest of the architecture identical.

Transposed
Convolution Kernels

Clean Test Accuracy FGSM attack epsilon SegPGD attack iterations
1

255
8

255
3 20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

FGSM training

2×2 (baseline) 78.57 86.68 95.23 54.28 70.80 86.91 52.45 68.38 86.26 26.59 48.99 67.71 7.6 24.06 31.37
LCTC: 7×7 (Ours) 78.41 86.22 95.20 56.87 72.92 87.70 51.31 68.4 85.17 28.11 53.39 66.30 8.36 28.54 28.13
LCTC: 11×11 + 3×3
(Ours)

79.57 88.1 95.3 57.90 74.64 87.61 52.15 70.23 84.96 30.37 55.54 68.3 9.4 29.79 32.37

PGD training with 3 attack iterations

2×2 (baseline) 75.33 84.66 94.39 53.87 72.17 86.58 58.57 73.93 89.01 29.38 57.82 66.67 9.39 33.15 28.11
LCTC: 7×7 (Ours) 75.79 84.89 94.38 54.82 72.31 86.80 61.29 74.33 89.96 31.12 58.36 68.58 10.24 33.99 31.14
LCTC: 11×11 + 3×3
(Ours)

75.90 86.60 94.30 56.27 75.66 86.68 63.02 76.17 90.42 33.50 58.34 71.50 10.77 32.23 37.36

Table 11: Comparison of performances of different encoders in the UNet-like architecture. All
architectures here have the baseline 2×2 transposed convolution kernel for upsampling followed
by 3×3 convolution kernels in the decoder blocks. For more results please refer to Table 12.

Encoder
Test Accuracy FGSM attack epsilon SegPGD attack iterations

1
255

8
255

20
mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

ResNet50 67.69 79.04 92.80 36.78 58.41 78.16 32.60 52.63 74.56 4.98 19.28 21.07
ConvNeXt tiny 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 5.54 18.79 23.72
SLaK tiny 78.82 87.01 95.17 55.22 71.72 86.97 48.69 66.45 83.57 8.45 25.42 32.37

Table 12: Comparison of performances of different encoders in the UNet-like architecture. All
architectures here have the baseline 2×2 transposed convolution kernel followed by 3×3 convo-
lution kernels in the decoder block.

Encoder
Test Accuracy FGSM attack epsilon SegPGD attack iterations

1
255

8
255

3 5 10 20 40 100
mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

ResNet50 67.69 79.04 92.80 36.78 58.41 78.16 32.60 52.63 74.56 16.18 37.46 50.04 11.32 30.59 38.98 7.21 23.76 27.58 4.98 19.28 21.07 3.95 16.49 18.35 3.09 13.87 15.87

ConvNeXt tiny 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 23.06 46.51 60.04 14.43 35.50 45.30 8.12 24.67 29.88 5.54 18.79 23.72 4.39 14.98 23.70 3.50 11.61 27.93

SLaK tiny 78.82 87.01 95.17 55.22 71.72 86.97 48.69 66.45 83.57 26.71 50.92 64.04 19.28 43.51 52.88 12.24 33.65 39.78 8.45 25.42 32.37 6.22 19.58 29.06 - - -

Improving Feature Stability during Upsampling 35

Table 13: Comparison of performances of different upsampling methods in the UNet-like archi-
tecture. All architectures here have the baseline i.e. ConvNeXt encoder and a ResNet style 3×3
or ConvNext style 7 ×7+3×3 convolution kernels in the decoder block.

Upsampling Method Convolution Kernel in
Decoder blocks

Test Accuracy FGSM attack epsilon SegPGD attack iterations
1

255
8

255
3 5 10 20 40 100

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

Pixel Shuffle
ResNet Style 3×3 78.54 87.32 95.18 53.82 71.58 85.88 46.67 65.03 81.71 23.08 48.18 56.54 15.06 38.85 41.71 9.17 29.43 28.17 6.69 23.43 24.05 5.69 19.61 25.71 4.80 15.53 32.10

ConvNeXt Style 7×7+3×3 77.10 85.90 94.88 51.78 69.68 85.44 43.80 62.24 81.06 17.52 40.16 50.31 9.43 27.37 30.37 3.53 12.25 10.93 1.41 5.42 3.74 0.78 3.04 1.55 0.52 1.96 0.93

Nearest Neighbour
Interpolation

ResNet Style 3×3 78.40 88.16 95.09 52.68 73.51 84.55 46.08 67.96 80.22 22.82 53.16 51.75 15.34 44.53 36.21 10.02 34.83 23.84 7.65 27.89 20.48 6.43 23.23 21.48 5.40 17.34 28.05
ConvNeXt Style 7×7+3×3 77.86 86.92 94.97 50.71 71.21 84.45 41.97 64.92 78.89 15.77 44.36 42.09 8.56 30.25 23.74 2.96 12.56 7.19 1.27 5.70 2.10 0.52 2.08 0.75 0.17 0.85 0.35

Transposed Convolution
2×2

ResNet Style 3×3 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 23.06 46.51 60.04 14.43 35.50 45.30 8.12 24.67 29.88 5.54 18.79 23.72 4.39 14.98 23.70 3.50 11.61 27.93
ConvNeXt Style 7×7+3×3 77.24 86.03 94.84 51.09 70.53 85.29 43.52 63.74 81.18 17.59 42.55 51.68 9.88 30.41 32.33 4.75 16.83 14.31 2.65 9.46 6.68 1.68 5.64 3.4 1.0 3.16 1.94

LCTC: 11×11+3×3
(Ours)

ResNet Style 3×3 79.33 87.81 95.41 58.04 74.93 87.8 51.25 69.31 84.64 27.49 53.08 64.13 18.15 43.51 49.36 10.29 31.12 33.17 7.08 23.3 26.82 5.14 16.14 27.32 3.77 9.6 31.61
ConvNeXt Style 7×7+3×3 78.64 86.78 95.17 54.32 71.27 86.63 45.48 63.62 82.32 17.7 39.71 54.64 9.71 26.92 35.8 4.32 13.93 15.8 2.37 8.49 6.7 1.59 5.85 3.43 1.09 3.87 1.83

Table 14: Comparing latency and number of parameters for models from Figure 5.

Upsampling Method Latency (ms) No. of Params

Pixel Shuffle 0.26 17.11 M
Trans. Conv. 3×3 0.27 16.43 M

LCTC 11×11+3×3 0.38 16.54 M

Table 15: Comparison of performances of adversarially trained SotA Image Restoration Net-
works. The considered architectures use Pixel Shuffle for Upsampling, we propose replacing the
Pixel Shuffle with Transposed Convolution operations using the large filter. Testing for image
deblurring on GoPro dataset.

Network Upsampling Method
Test Accuracy PGD attack iterations

5 10 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NAFNet + ADV

Pixel Shuffle 29.91 0.9291 15.76 0.5228 13.91 0.4445 12.73 0.3859
Transposed Conv 3×3 31.26 0.9448 15.89 0.5390 13.43 0.4627 11.62 0.4098

LCTC: 7×7 + 3 ×3 (Ours) 31.21 0.9446 16.46 0.5061 14.55 0.4211 13.31 0.3688
LCTC: 11×11 + 3×3 (Ours) 30.70 0.9390 13.68 0.4857 11.91 0.4085 10.92 0.3604

Table 16: Performance of different upsampling methods in NAFNet in real-world ODD setting
by applying 2D common corruption [39] (severity=3) on GoPro dataset. We use all common
corruptions from [39] GitHub repository except weather conditions (ideally these should happen
before the motion blurring) and blurring (since the images are already motion blurred). Here
“Mean” is performance over all the considered corruptions:

Common Corruption
Upsampling Method

Pixel Shuffle Trans. Conv. 3×3 LCTC 11×11+3×3
PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian Noise 4.8501 0.0104 8.7346 0.1014 13.6475 0.1523
Shot Noise 4.8616 0.0127 8.9524 0.0984 13.2464 0.1564

Impulse Noise 5.0154 0.0214 9.2451 0.1065 14.8425 0.187
Brightness 32.3199 0.9576 30.676 0.9394 30.4098 0.9361
Contrast 26.5941 0.7759 25.9743 0.7561 25.8733 0.7525

Elastic Transform 17.944 0.6392 19.7686 0.703 19.7672 0.702
Pixelate 4.4977 0.246 4.4999 0.246 4.4958 0.246

JPEG Compression 25.2767 0.8095 25.1014 0.8032 25.3788 0.8104
Speckle Noise 4.8287 0.0158 9.2336 0.1044 14.6622 0.2473

Saturate 32.1969 0.958 30.5904 0.9399 30.3005 0.9365
Mean 15.8385 0.4447 17.2776 0.4798 19.262 0.5127

36 S. Agnihotri et al.

MODEL NO ATTACK 5 iterations 10 iterations 20 iterations

R
es

to
rm

er
w

ith
Pi

xe
lS

hu
ffl

e

R
es

to
rm

er
w

ith
Tr

an
sp

os
ed

C
on

v

3×
3

R
es

to
rm

er
L

C
T

C
w

ith

7×
7

+
3×

3

R
es

to
rm

er
L

C
T

C
w

ith

11
×

11
+

3×
3

N
A

FN
et

w
ith

Pi
xe

lS
hu

ffl
e

N
A

FN
et

w
ith

Tr
an

sp
os

ed
C

on
v

3×
3

N
A

FN
et

L
C

T
C

w
ith

7×
7

+
3×

3

N
A

FN
et

L
C

T
C

w
ith

11
×

11
+

3×
3

Fig. 10: Comparing images reconstructed by all models after PGD attack on variants of Upsam-
pling.

Improving Feature Stability during Upsampling 37

MODEL NO ATTACK 5 iterations 10 iterations 20 iterations
R

es
to

rm
er

w
ith

Pi
xe

lS
hu

ffl
e

R
es

to
rm

er
w

ith
Tr

an
sp

os
ed

C
on

v

3×
3

R
es

to
rm

er
L

C
T

C
w

ith

7×
7

+
3×

3

R
es

to
rm

er
L

C
T

C
w

ith

11
×

11
+

3×
3

N
A

FN
et

w
ith

Pi
xe

lS
hu

ffl
e

N
A

FN
et

w
ith

Tr
an

sp
os

ed
C

on
v

3×
3

N
A

FN
et

L
C

T
C

w
ith

7×
7

+
3×

3

N
A

FN
et

L
C

T
C

w
ith

11
×

11
+

3×
3

Fig. 11: Comparing images reconstructed by the considered variants of the SotA models after
CosPGD attack [3]. We observe that the originally proposed Restormer and NAFNet architec-
tures that use Pixel Shuffle for upsampling perform considerably well under no adversarial attack
but even a small perturbation of ϵ= 8

255
causes ringing and other spectral artifacts to occur in

the deblurred images to the extent that the images are unrecognizable. However, on replacing
the Pixel Shuffle operation in these architectures with a Transposed Convolution operation with
a large kernel (11×11+3×3), we observe a significant reduction in the spectral artifacts in the
images restored under adversarial attack while the image restored under no attack are very com-
parable to those restored by the original architectures.

38 S. Agnihotri et al.

1st Upsampling Step 1st Upsampling Step2nd Upsampling Step

Upsampling StepUpsampling Step

2nd Upsampling Step

3rd

3rd Upsampling Step

0 1 2

4th

4th Upsampling Step

0 2 4 6 8 10

0
2

4
6

8
1

0

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
1

0

1

LCTC 11 x 11NAFNet - kernelsTrans. Conv. 3 x 3

0 1 2

0
1

2
0

1
2

Fig. 12: Normalized kernel weights from a random channel each for the models from Figure 5.

Table 17: Comparison of performance of STTR-light architecture with different sized kernels in
transposed convolution for upscaling the feature maps in the feature extractor.

Transposed Convolution Kernels
Test Accuracy PGD Attack

3 Iterations 5 Iterations 10 Iterations
epe↓ 3px error↓ epe↓ 3px error↓ epe↓ 3px error↓ epe↓ 3px error↓

STTR-light [50] reported 0.5 1.54

3×3 [50] reproduced 0.4927 1.54 4.05 18.46 4.07 18.59 4.08 18.6
LCTC: 7×7 (Ours) 0.487 1.52 4.26 19.09 4.289 19.21 4.294 19.23
LCTC: 7×7 + 3×3 (Ours) 0.4788 1.50 4.02 18.3 4.0474 18.43 4.05 18.45
LCTC: 9×9 (Ours) 0.4983 1.50 4.36 18.02 4.386 18.14 4.39 18.16
LCTC: 11×11 +3×3 (Ours) 0.5124 1.57 4.004 18.29 4.028 18.42 4.032 18.44

Fig. 13: Visual comparison of Disparity Estimation predictions by a vanilla STTR-light as pro-
posed by [50] and our proposed modification of increasing the kernel size of the transposed
convolution operation in the “feature extractor” module of the architecture from 3×3 to LCTC
with 7×7+3×3 and 11×11+3×3 sized kernels. As shown by the region in the red circle, both
vanilla architecture and the architecture with our proposed change perform well compared to the
ground truth on clean images. However, under 10 iteration PGD adversarial attack, we observe
small protrusion’s depth(shown by the red arrow) is incorrectly estimated by the vanilla architec-
ture, however, the architectures with LCTC preserve the prediction of the disparity.

Improving Feature Stability during Upsampling 39

Clean - within domain Attacked 2D Frequency Spectra

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 1

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 2

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 3

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 4

Fig. 14: This is extension to Fig. 1, here we observe the same artifacts both in the spatial and fre-
quency domain as that observed in Fig. 1. Here we perform Image restoration using NAFNet [16]
variants on GoPro [63]. Normal Transposed Convolution uses 3×3 sized kernels. Large Context
Transposed Convolution uses kernels of size 7×7+3×3 for upsampling. LCTC significantly in-
creases the model’s stability during upsampling, observable in the restored image under attack
and the frequency spectrum. The procedure for obtaining the 2D Frequency Spectra has been
explained in Appendix A.6.

Improving Feature Stability during Upsampling 15

Acknowledgements.

Margret Keuper acknowledges funding by the DFG Research Unit 5336 - Learning to
Sense. The OMNI cluster of the University of Siegen was used for some of the initial
computations. Additionally, Shashank Agnihotri would like to thank Dr. Bin Zhao for
his help in translating [75].

References

1. Agnihotri, S., Gandikota, K.V., Grabinski, J., Chandramouli, P., Keuper, M.: On the unrea-
sonable vulnerability of transformers for image restoration-and an easy fix. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 3707–3717 (2023)

2. Agnihotri, S., Grabinski, J., Keuper, J., Keuper, M.: Beware of aliases–signal preservation is
crucial for robust image restoration. arXiv preprint arXiv:2406.07435 (2024)

3. Agnihotri, S., Jung, S., Keuper, M.: CosPGD: A unified white-box adversarial attack for
pixel-wise prediction tasks. In: International Conference on Machine Learning (2024)

4. Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z., Shi, W.: Checkerboard artifact free
sub-pixel convolution: A note on sub-pixel convolution, resize convolution and convolution
resize. arXiv preprint arXiv:1707.02937 (2017)

5. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450
(2016)

6. Badki, A., Troccoli, A., Kim, K., Kautz, J., Sen, P., Gallo, O.: Bi3D: Stereo depth estima-
tion via binary classifications. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2020)

7. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions on pattern analysis and machine in-
telligence 39(12), 2481–2495 (2017)

8. Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., Babenko, A.: Label-efficient seman-
tic segmentation with diffusion models (2021)

9. Brigham, E.O., Morrow, R.: The fast fourier transform. IEEE spectrum 4(12), 63–70 (1967)
10. Brunton, S.L., Kutz, J.N.: Data-driven science and engineering: Machine learning, dynamical

systems, and control. Cambridge University Press (2022)
11. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end

object detection with transformers. In: European conference on computer vision. pp. 213–
229. Springer (2020)

12. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 ieee
symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

13. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learn-
ing of visual features by contrasting cluster assignments. Advances in neural information
processing systems 33, 9912–9924 (2020)

14. Chandrasegaran, K., Tran, N.T., Cheung, N.M.: A closer look at fourier spectrum discrep-
ancies for cnn-generated images detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 7200–7209 (June 2021)

15. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5410–5418 (2018)

16. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In: European
Conference on Computer Vision. pp. 17–33. Springer (2022)

17. Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31x31: Revisiting large
kernel design in cnns. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11963–11975 (2022)

16 S. Agnihotri et al.

18. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on
deep networks. Advances in neural information processing systems 29 (2016)

19. Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4829–
4837 (2016)

20. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt,
P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional networks. In:
Proceedings of the IEEE international conference on computer vision. pp. 2758–2766 (2015)

21. Dosovitskiy, A., Springenberg, J.T., Tatarchenko, M., Brox, T.: Learning to generate chairs,
tables and cars with convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39(4), 692–705 (2017)

22. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285 (2016)

23. Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: Cnn based generative
deep neural networks are failing to reproduce spectral distributions. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 7890–7899 (2020)

24. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html (2012)

25. Forsyth, D.A., Ponce, J.: Computer vision: a modern approach. Prentice Hall professional
technical reference (2002)

26. Gal, R., Hochberg, D.C., Bermano, A., Cohen-Or, D.: SWAGAN: A style-based wavelet-
driven generative model. ACM Transactions on Graphics (TOG) 40(4), 1–11 (2021)

27. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial networks. Communications of the ACM 63(11), 139–
144 (2020)

28. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014)

29. Grabinski, J., Jung, S., Keuper, J., Keuper, M.: Frequencylowcut pooling-plug and play
against catastrophic overfitting. In: European Conference on Computer Vision. pp. 36–57.
Springer (2022)

30. Grabinski, J., Keuper, J., Keuper, M.: Aliasing and adversarial robust generalization of cnns.
Machine Learning pp. 1–27 (2022)

31. Grabinski, J., Keuper, J., Keuper, M.: Aliasing coincides with cnns vulnerability towards ad-
versarial attacks. In: The AAAI-22 Workshop on Adversarial Machine Learning and Beyond.
pp. 1–5 (2022)

32. Grabinski, J., Keuper, J., Keuper, M.: Fix your downsampling asap! be natively more robust
via aliasing and spectral artifact free pooling (2023)

33. Grabinski, J., Keuper, J., Keuper, M.: As large as it gets – studying infinitely large con-
volutions via neural implicit frequency filters. Transactions on Machine Learning Research
(2024), https://openreview.net/forum?id=xRy1YRcHWj, featured Certifica-
tion

34. Gu, J., Zhao, H., Tresp, V., Torr, P.H.: Segpgd: An effective and efficient adversarial attack
for evaluating and boosting segmentation robustness. In: European Conference on Computer
Vision. pp. 308–325. Springer (2022)

35. Guo, M.H., Lu, C.Z., Hou, Q., Liu, Z., Cheng, M.M., Hu, S.M.: Segnext: Rethinking con-
volutional attention design for semantic segmentation. Advances in Neural Information Pro-
cessing Systems 35, 1140–1156 (2022)

36. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse
detectors. In: 2011 international conference on computer vision. pp. 991–998. IEEE (2011)

https://openreview.net/forum?id=xRy1YRcHWj

Improving Feature Stability during Upsampling 17

37. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
(2016)

38. He, Y., Yu, N., Keuper, M., Fritz, M.: Beyond the spectrum: Detecting deepfakes via re-
synthesis. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21. pp. 2534–2541. International Joint Conferences on Ar-
tificial Intelligence Organization (8 2021), main Track

39. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Represen-
tations (2019)

40. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

41. Hoffmann, J., Agnihotri, S., Saikia, T., Brox, T.: Towards improving robustness of com-
pressed cnns. In: ICML Workshop on Uncertainty and Robustness in Deep Learning (UDL)
(2021)

42. Hossain, M.T., Teng, S.W., Lu, G., Rahman, M.A., Sohel, F.: Anti-aliasing deep image clas-
sifiers using novel depth adaptive blurring and activation function. Neurocomputing 536,
164–174 (2023)

43. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution
of optical flow estimation with deep networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2462–2470 (2017)

44. Jung, S., Keuper, M.: Spectral distribution aware image generation. In: Proceedings of the
AAAI conference on artificial intelligence. vol. 35, pp. 1734–1742 (2021)

45. Jung, S., Lukasik, J., Keuper, M.: Neural architecture design and robustness: A dataset. In:
Eleventh International Conference on Learning Representations. OpenReview.net (2023)

46. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.: Alias-free
generative adversarial networks. Advances in Neural Information Processing Systems 34,
852–863 (2021)

47. Khayatkhoei, M., Elgammal, A.: Spatial frequency bias in convolutional generative adver-
sarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36,
pp. 7152–7159 (2022)

48. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems 25 (2012)

49. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. In: Interna-
tional Conference on Learning Representations (2017), https://openreview.net/
forum?id=BJm4T4Kgx

50. Li, Z., Liu, X., Drenkow, N., Ding, A., Creighton, F.X., Taylor, R.H., Unberath, M.: Revisit-
ing stereo depth estimation from a sequence-to-sequence perspective with transformers. In:
Proceedings of the IEEE/CVF international conference on computer vision. pp. 6197–6206
(2021)

51. Liu, S., Chen, T., Chen, X., Chen, X., Xiao, Q., Wu, B., Kärkkäinen, T., Pechenizkiy, M.,
Mocanu, D., Wang, Z.: More convnets in the 2020s: Scaling up kernels beyond 51x51 using
sparsity. arXiv preprint arXiv:2207.03620 (2022)

52. Liu, S., Deng, W.: Very deep convolutional neural network based image classification us-
ing small training sample size. In: 2015 3rd IAPR Asian conference on pattern recognition
(ACPR). pp. 730–734. IEEE (2015)

53. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer:
Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=BJm4T4Kgx

18 S. Agnihotri et al.

54. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 11976–11986 (2022)

55. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
3431–3440 (2015)

56. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. In: Interna-
tional Conference on Learning Representations (2017), https://openreview.net/
forum?id=Skq89Scxx

57. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Confer-
ence on Learning Representations (2019), https://openreview.net/forum?id=
Bkg6RiCqY7

58. Maiya, S.R., Ehrlich, M., Agarwal, V., Lim, S.N., Goldstein, T., Shrivastava, A.: A frequency
perspective of adversarial robustness (2021)

59. Mathew, A., Patra, A., Mathew, J.: Monocular depth estimators: Vulnerabilities and attacks.
ArXiv abs/2005.14302 (2020)

60. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
4040–4048 (2016)

61. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to
fool deep neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2574–2582 (2016)

62. Mosleh, A., Langlois, J.M.P., Green, P.: Image deconvolution ringing artifact detection and
removal via psf frequency analysis. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
Computer Vision – ECCV 2014. pp. 247–262. Springer International Publishing, Cham
(2014)

63. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic
scene deblurring. In: CVPR (July 2017)

64. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In:
Proceedings of the IEEE international conference on computer vision. pp. 1520–1528 (2015)

65. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10),
e3 (2016)

66. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters – improve semantic
segmentation by global convolutional network. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (July 2017)

67. Pervin, M., Tao, L., Huq, A., He, Z., Huo, L., et al.: Adversarial attack driven data augmen-
tation for accurate and robust medical image segmentation. arXiv preprint arXiv:2105.12106
(2021)

68. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convo-
lutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

69. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollar, P.: Designing network de-
sign spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2020)

70. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18. pp. 234–241. Springer (2015)

71. Scheurer, E., Schmalfuss, J., Lis, A., Bruhn, A.: Detection defenses: An empty promise
against adversarial patch attacks on optical flow. arXiv preprint arXiv:2310.17403 (2023)

https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Improving Feature Stability during Upsampling 19

72. Schmalfuss, J., Mehl, L., Bruhn, A.: Attacking motion estimation with adversarial snow.
arXiv preprint arXiv:2210.11242 (2022)

73. Schmalfuss, J., Mehl, L., Bruhn, A.: Distracting downpour: Adversarial weather attacks for
motion estimation (2023)

74. Schmalfuss, J., Scholze, P., Bruhn, A.: A perturbation-constrained adversarial attack for eval-
uating the robustness of optical flow (2022)

75. segcv: segcv/pspnet. https://github.com/segcv/PSPNet/blob/master/
Train.md (2021)

76. Shannon, C.E.: Communication in the presence of noise. Proceedings of the IRE 37(1), 10–
21 (1949)

77. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.:
Real-time single image and video super-resolution using an efficient sub-pixel convolutional
neural network (2016)

78. Si-Yao, L., Ren, D., Yin, Q.: Understanding kernel size in blind deconvolution. In: 2019
IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 2068–2076.
IEEE (2019)

79. Smith III, J.O.: Physical audio signal processing: For virtual musical instruments and audio
effects. (No Title) (2010)

80. Sommerhoff, H., Agnihotri, S., Saleh, M., Moeller, M., Keuper, M., Kolb, A.: Differentiable
sensor layouts for end-to-end learning of task-specific camera parameters. arXiv preprint
arXiv:2304.14736 (2023)

81. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

82. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: International confer-
ence on machine learning. pp. 10096–10106. PMLR (2021)

83. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part II 16. pp. 402–419. Springer (2020)

84. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-
efficient image transformers & distillation through attention. In: International conference on
machine learning. pp. 10347–10357. PMLR (2021)

85. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds
with accuracy. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=SyxAb30cY7

86. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from er-
ror visibility to structural similarity. IEEE transactions on image processing 13(4), 600–612
(2004)

87. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution.
Advances in neural information processing systems 27 (2014)

88. Yamanaka, K., Matsumoto, R., Takahashi, K., Fujii, T.: Adversarial patch attacks on monoc-
ular depth estimation networks. IEEE Access 8, 179094–179104 (2020)

89. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: Efficient
transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. pp. 5728–5739 (2022)

90. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled
trade-off between robustness and accuracy. In: ICML (2019)

91. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)
92. Zhao, H.: semseg. https://github.com/hszhao/semseg (2019)
93. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. pp. 2881–2890 (2017)

https://github.com/segcv/PSPNet/blob/master/Train.md
https://github.com/segcv/PSPNet/blob/master/Train.md
https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7
https://github.com/hszhao/semseg

20 S. Agnihotri et al.

94. Zhao, H., Zhang, Y., Liu, S., Shi, J., Loy, C.C., Lin, D., Jia, J.: PSANet: Point-wise spatial
attention network for scene parsing. In: ECCV (2018)

95. Zou, X., Xiao, F., Yu, Z., Lee, Y.J.: Delving deeper into anti-aliasing in convnets. In: BMVC
(2020)

	Improving Feature Stability during Upsampling – Spectral Artifacts and the Importance of Spatial Context
	f231f7c7-29f2-4de0-b797-abf5847de727.pdf
	Improving Feature Stability during Upsampling – Spectral Artifacts and the Importance of Spatial Context

