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Abstract. Pixel-wise predictions are required in a wide variety of tasks such as
image restoration, image segmentation, or disparity estimation. Common mod-
els involve several stages of data resampling, in which the resolution of feature
maps is first reduced to aggregate information and then increased to generate a
high-resolution output. Previous works have shown that resampling operations
are subject to artifacts such as aliasing. During downsampling, aliases have been
shown to compromise the prediction stability of image classifiers. During up-
sampling, they have been leveraged to detect generated content. Yet, the effect of
aliases during upsampling has not yet been discussed w.r.t. the stability and ro-
bustness of pixel-wise predictions. While falling under the same term (aliasing),
the challenges for correct upsampling in neural networks differ significantly from
those during downsampling: when downsampling, some high frequencies can not
be correctly represented and have to be removed to avoid aliases. However, when
upsampling for pixel-wise predictions, we actually require the model to restore
such high frequencies that can not be encoded in lower resolutions. The applica-
tion of findings from signal processing is therefore a necessary but not a sufficient
condition to achieve the desirable output. In contrast, we find that the availability
of large spatial context during upsampling allows to provide stable, high-quality
pixel-wise predictions, even when fully learning all filter weights.

1 Introduction

Most computer vision models addressing perceptual tasks such as image restoration [16,
89], semantic segmentation [7,35,70], optical flow estimation [20,43,83] and disparity
estimation [6, 11, 50] in realistic scenarios are required to behave in a stable way, at
least under mild corruptions. Interestingly, for the slightly simpler task of image clas-
sification, recent progress has shown that a model’s robustness does not only depend
on its training but also on its architecture [29–32, 41, 42, 45, 58, 91, 95]. Specifically,
aliasing, i.e. spectral artifacts that emerge from naïve image resampling, have shown to
compromise prediction stability, in particular in the context of classical convolutional
models [33, 37, 48, 52, 69, 80, 82] which predominantly use small filter kernels in com-
bination with severe data aggregation during downsampling [30, 58]. Principled cures
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Fig. 1: Image restoration example using NAFNet [16] variants on GoPro [63]. Upsampling tech-
niques like Pixel Shuffle [77] (first row) and transposed convolution [22] using small learnable
filters (2×2 or 3×3) (second row) are used by most prior art. Both lead to spectral artifacts for
which the model needs to compensate. The clean (in-domain) restored images look appealing -
while adversaries (here 5-step PGD [49] attack) can leverage aliases such that artifacts become
easily visible. When observed in the frequency domain, they manifest as repeating peaks all over
the spectra. Based on sampling theoretic considerations, we propose Large Context Transposed
Convolutions (7×7 or larger) (bottom row). They significantly increase the model’s stability dur-
ing upsampling, observable in the restored image under attack and the frequency spectrum.

usually refer to basic concepts from signal processing such as anti-aliasing by blur-
ring before downsampling [29, 91]. While this discussion on classifier (i.e. encoder)
networks is insightful, it does not provide a recipe to counteract aliases emerging dur-
ing upsampling for pixel-wise prediction tasks such as image restoration. Specifically,
naïve upsampling introduces artifacts in the feature representation, such as grid arti-
facts [4, 65] or ringing artifacts [62]. As shown in Fig. 1, these artifacts, an inherent
property of inadequate upsampling (refer Sec. 3) are not always visible to the human
eye, are accentuated under adversarial attack such that they can also be seen with a
human eye. We leverage this effect in our analysis. When observed in the frequency
domain, these artifacts are apparent as multiple peaks, i.e. aliases of the original data.

While for downsampling, signal processing laws basically prescribe which part of
the information can be retained at lower resolutions without aliases [76], “correct”,
alias-free upsampling can not restore the original high-resolution information. Thus,
learning to upsample feature maps such that the feature stability is not harmed is of
paramount importance. In this paper, we therefore first provide a synopsis of differ-
ent aliases that emerge from different upsampling techniques. Based on this work, we
propose a simple, transposed convolution-based upsampling block. We study our pro-
posed operation in the context of various models, from image restoration [16, 89] over
semantic segmentation [70] to disparity estimation [50].
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Our main contributions can be summarized as follows:

– Motivated by sampling theory [76], we study upsampling in models for diverse
pixel-wise prediction tasks. We find that the availability of large kernels in trans-
posed convolutions helps the feature stability and significantly improves over stan-
dard, small kernel transposed convolutions as well as pixel shuffle [77].

– While large kernels are required to allow for reduced aliasing and to provide the
necessary spatial context for increasing the resolution, additional small kernels can
add details and remain useful.

– We provide empirical evidence for our findings on diverse architectures (includ-
ing vision transformer-based architectures) and downstream tasks such as image
restoration, semantic segmentation, and depth estimation.

– We show empirically that our proposed upsampling operation complements other
feature stability-increasing approaches like adversarial training.

2 Related Work

In the following, we discuss recent challenges for neural networks regarding artifacts
introduced by spatial sampling methods [4, 62, 65]. Further, we review related work
on the most recent use of large kernels in CNNs. Finally, we provide an overview of
adversarial attacks to gauge the quality of representations learned by a network.

Spectral Artifacts. Several prior works have studied the effect of downsampling oper-
ations on model robustness, e.g. [2,29,30,42,46,91,95]. Inspired by [30], [29] propose
an aliasing-free downsampling in the frequency domain which translates to an infinitely
large blurring filter before downsampling in the spatial domain. Thus, for image clas-
sification, using large filter kernels has been shown to remove artifacts from downsam-
pled representations and it leads to favorable robustness in all these cases [30, 42, 46].
However, all these works focus on improving the properties of encoder networks.

Models that use transposed convolutions in their decoders5 are widely used for tasks
like image generation [27,68] or segmentation [7,55,64,70]. However, in simple trans-
posed convolutions, the convolution kernels overlap based on the chosen stride and
kernel size. If the stride is smaller than the kernel size, this will cause overlaps in the
operation, leading to uneven contributions to different pixels in the upsampled feature
map and thus to grid-like artifacts [4,65]. Further, image resampling can lead to aliases
that become visible as ringing artifacts [76]. In the context of deepFake detection, im-
age generation, and deblurring, several works analyzed [14, 18, 21, 23, 38, 44, 47] and
improved upsampling techniques [26, 46, 78, 87] to reduce visual artifacts.

Some architectures like PSPNet [93], PSANet [94], or PSMNet [15] simply use
bilinear interpolation operations for upsampling the feature representations. While this
reduces grid artifacts as bilinear interpolation smoothens out the feature maps, it also
has major drawbacks as they sample incorrectly. These new artifacts are sometimes
visible as overly smooth predictions, in particular, apparent in the PSPNet segmentation
masks. The segmentation masks over-smoothen around edges and often miss out on thin

5 For more details on Transposed Convolutions refer to [22].
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details (predictions showing these are included in the Appendix B.4). This observation
already shows why image encoding and decoding have to be considered separately
when it comes to sampling artifacts. While during encoding, artifacts can be reduced by
blurring, the main purpose of decoder networks is reducing blur in many applications,
to create fine-granular, pixel-wise accurate outputs, which our approach facilitates.

Large Kernels. For image classification, [54] showed that using large kernels like 7×7
in the CNN convolution layer can outperform self-attention based vision transform-
ers [53, 84]. In [17, 33, 35, 51, 66], the receptive field of the convolution operations was
further expanded by using larger kernels, up to 31×31 and 51×51. These larger recep-
tive fields provide more context to the encoder, leading to better performance on clas-
sification, segmentation, or object detection tasks. [17,51] use a small kernel in parallel
to capture the local context along with the global context. In contrast to these works,
which are limited to exploring increased context only during encoding, we investigate
if larger kernels can benefit upsampling when considering pixel-wise prediction tasks
such as image restoration or segmentation.
Adversarial Attacks. The purpose of adversarial attacks is to reveal neural networks’
weaknesses [3, 30, 74, 81] by perturbing pixel values in the input image [12, 28, 49].
These perturbations should lead to a false prediction even though the changes are hardly
visible [28,61,81]. Especially attacks that have access to the network’s architecture and
weights, so-called white-box attacks, are a common approach to analyzing weaknesses
within the networks’ structure [12, 28]. They employ the gradient of the network to
optimize the perturbation, which is bounded within an ϵ-ball of the original image,
i.e. ϵ defines the strength of the attack. Most adversarial attacks are proposed to attack
classification networks like the one-step Fast Gradient Sign Method (FGSM) [28] or the
multi-step Projected Gradient Descent (PGD) attack [49]. However, they can be adapted
to other tasks as e.g. in [59, 67, 88]. Furthermore, there are dedicated methods like
SegPGD [34] for attacks on semantic segmentation models or PCFA [74] and [71, 73]
for optical flow models and CosPGD [3] and others [72] for other pixel-wise prediction
tasks. We evaluate the stability of upsampled features using adversarial attacks such as
PGD and CosPGD for image restoration and FGSM and SegPGD for segmentation.

3 Spectral Upsampling Artifacts and How They Can Be Reduced

Following, we first theoretically review artifacts that are caused during upsampling from
a signal processing aspect. We start by describing the spectral artifacts [76] induced by
the bed of nails interpolation, similar to the discussion in [23], and then extend the the-
oretical analysis to further upsampling schemes. Second, we derive from this analysis
two hypotheses for the prediction stability of encoder-decoder networks, depending on
their architecture. These hypotheses will motivate the remainder of the manuscript.

Consider, w.l.o.g., a one-dimensional signal I and its discrete Fourier Transform
F(I) with k being the index of discrete frequencies

F(I)k =

N−1∑
j=0

e−2πi· jkN · Ij , for k = 0, . . . , N − 1.
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During decoding, we need to upsample the spatial resolution of I to get Iup. For exam-
ple for an upsampling factor of 2 (often used in DNNs [1, 16, 19, 82, 89]) we have for
k̄ = 0, . . . , 2N − 1

F(I)up
k̄

=

2N−1∑
j=0

e−2πi· jk̄
2·N · Iupj =

N−1∑
j=0

e−2πi· 2·jk̄2·N Ij +

N−1∑
j=0

e−2πi· (2j+1)k̄
2·N Īj , (1)

where Īj = 0 in bed of nails interpolation. Therefore, the second term in (1) can be
dropped and the first term resembles the original F(I). Equivalently, we can rewrite
Eq. (1), for Īj = 0, using a Dirac impulse comb as

(1) =
2N−1∑
j=0

e−2πi· jk̄
2·N ·

∞∑
t=−∞

Iupj · δ(j − 2t). (2)

If we now apply the pointwise multiplication with the Dirac impulse comb as convolu-
tion in the Fourier domain (assuming periodicity) [25], it is

F(I)up
k̄

=
1

2

∞∑
t=−∞

 ∞∑
j=−∞

e−2πi· jk̄
2N Iupj

(
k̄ − t

2

)
(3)

(1)
=

1

2

∞∑
t=−∞

 ∞∑
j=−∞

e−2πi· jk̄N · Ij

(
k̄ − t

2

)
=

1

2

∞∑
t=−∞

F(I)k̄

(
k̄ − t

2

)
.

We can see that such upsampling creates high-frequency replica of the signal at t
2 for

t in −∞, . . . ,∞ in F(I)up and spatial frequencies apparent beyond array positions N
2

will be impacted by spectral artifacts if no appropriate countermeasures are taken.
A standard countermeasure is interpolation of the inserted values with Īj =

Ij−1+Ij
2

for linear interpolation in Eq. (1). Linear interpolation (and in consequence bi-linear
interpolation in 2D signals) corresponds to a convolution with a triangular impulse with
width 2, which can be represented as the convolution of two rectangle functions with
width 1. Accordingly, the Fourier response for frequency ℓ, Fℓ of the triangular impulse
is a squared sinc function (sinc2(ℓ)) with sinc(ℓ) = sin(πℓ)

πℓ . Since the output signal after
interpolation is still discrete, i.e. sampled with sampling rate 1

2 , a replica of the interpo-
lation function, the sinc2 function, will appear with rate 2 in the resulting spectrum (see
also Fig. 2). The resulting interpolated signal is not optimal for several reasons. Most
importantly, the spectrum of the interpolation function is not flat although the estimated
values appear overly smooth (see Fig. 3. ). This is arguably suboptimal for, for example,
image restoration or segmentation tasks, where fine structural details are supposed to
emerge in the upsampled data.

Note that, in Eq. (1), pixel shuffle [77] will set Īj to completely unrelated values of
a different feature map channel, leading to a highly non-smooth signal with frequencies
at the band limit. The resulting issues in the spectrum are similar to the ones caused by
the bed of nails interpolation. These spectral artifacts can be visually observed in Fig. 3.

Therefore, in transposed convolutions, the interpolation function is not fixed to a
predefined smoothing kernel but learned so that the resulting signal can represent fine
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Fig. 2: (Left) Linear interpolation (pink) of the samples (green) causes aliases. (Right) Optimal
signal reconstruction (pink) is achieved by sinc interpolation. In practice our spatial context is
limited and the interpolation function is discrete. Yet, increasing the kernel size enables the ap-
proximation of larger sinc-like structures.

Artifact-free Ground Truth Bicubic Interpolation Nearest Neighbor Interpolation Small(3×3) Transposed Conv

Zoomed-in Ground Truth Bilinear Interpolation Pixel Shuffle Large(7×7+3×3) Transposed Conv

Fig. 3: An image from GoPro [63] downsampled with 3×3 MaxPooling and then upsampled
using various upsampling techniques. The resulting artifacts are compared on zoomed-in red box
regions for better visibility. Bilinear interpolation causes over-smoothing. Bicubic interpolation
causes overestimation along image boundaries while Pixel Shuffle and Nearest Neighbor cause
strong grid artifacts along with discoloration. Small kernel transposed convolutions cause grid
artifacts, however, on increasing kernel size we start getting better upsampling.

details after the initial bed of nails interpolation and potentially learn to add fine details.
One issue is that the learned convolution kernels may overlap based on the chosen stride
and kernel size. If the stride is smaller than the kernel size, this will cause overlaps in the
operation, leading to uneven contributions to different pixels in the upsampled feature
map and thus to grid-like artifacts [4, 65]. Besides this rather technical aspect, trans-
posed convolutions, if sufficiently large (thus also containing more context), could in
principle learn to approximate correct upsampling functions. This can be understood
when again looking at the Fourier representation. When interpolating, we want to in-
crease the signal array size so that all the original information is preserved and the
model can easily learn additional details. Such upsampling to preserve the information
from the original low-resolution data is most easily achieved by transforming the signal
to the Fourier domain, then padding the missing high-frequency parts with zeros and
transforming the resulting array back to the spatial domain [79]. In the Fourier domain,
this padding operation can be understood as a point-wise multiplication of the desired
full spectrum with a rectangle function with width N (denoted rectN ). Conversely, this
operation corresponds to a convolution with F−1(rectN ) = 1

N sinc(xN) in the spatial
domain. While the sinc function drops off as x increases, it never drops to zero. When
applied for interpolation, its crests and the troughs cancel out the aliasing to a large
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extent as shown in Fig. 2. Thus, in order to allow the approximation of the optimal in-
terpolation function, the kernel size in transposed convolutions has to be chosen as large
as possible. This is, however, at odds with the “learnability” of suitable filter weights.
Note that for pixel-wise predictions, models not only need to correctly interpolate, but
they also need to “fill in” the missing details, which requires global as well as local
context. Therefore, we expect a trade-off on the kernel size of transposed convolutions,
where larger kernels improve the stability of the upsampled features and thus can reduce
artifacts while the absolute prediction quality can suffer from very large learnable ker-
nels. Sufficiently but not overly large kernels provide sufficient spatial context and are
appropriate to allow for the model to learn when to blur and when to preserve/sharpen
upsampled features. We illustrate this in Fig. 12 in Appendix C.4.

From this theoretical analysis of common upsampling methods, we derive the fol-
lowing hypotheses that we deem relevant for encoder-decoder architectures:

Hypothesis 1 (H1): Large Context Transposed Convolutions (LCTC) i.e. Large ker-
nels in transposed convolution operations provide more context and reduce spectral
artifacts and can therefore be leveraged by the network to facilitate better and more
robust pixel-wise predictions.

Hypothesis 2 (H2, Null Hypothesis): To leverage prediction context and reduce spec-
tral artifacts, it is crucial to increase the size of the transposed convolution kernels (up-
sample using large filters). Increasing the size of normal (i.e. non-upsampling) decoder
convolutions does not have this effect.

In the following, we show the proposed, simple, and principled architecture changes
that allow for studying the above hypotheses and improving robustness by improving
feature stability.

4 Upsampling using Large Context Transposed Convolutions

Driven by the observations on upsampling artifacts, we investigate the advantage of
larger kernel sizes during upsampling, for applications such as semantic segmentation
or disparity estimation. Therefore, we keep the models’ encoder part fixed and exclu-
sively change operations in the architecture of the decoder part of the model. There,
we have two design choices: Upsampling – The kernel size for the transposed convo-
lution operations that learn upsampling, and Decoder Block – The kernel size in the
convolution operations of blocks that learn to decode the features. Probing options for
Upsampling works towards proving H1 while a combination of both options proves
H2, i.e. shows that a pure increase in the decoder parameters does not have the desired
effect. This is considered in our ablation study in Sec. 5.2.

Figure 4 summarizes the studied options for an abstract encoder-decoder architec-
ture like [70]. The model decoder is depicted in the green box. Operations that we
consider to be executed along the red upwards arrows (Upsampling Operators) are de-
tailed in the top right part of the figure (operations a) to c)). Operations that we consider
to be executed along the blue sideways arrows (Decoder Building Blocks) are depicted
in the bottom right (operations d) to f)).
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Fig. 4: Abstract representation of an encoder-decoder architecture. While for different tasks, the
implementation of the model encoder varies (including transformer-based encoders), our study
focuses on the model decoder (in green). The backbone for the decoder is commonly a ResNet-
like structure for feature extraction [7,70], additionally we also used a ConvNeXt-like [54] struc-
ture. We investigate variants of different upsampling operations (the operations along the red
arrows in the decoder) for fixed decoder blocks. We consider, as a probe for H1, the baseline
transposed deconvolution (a) in the top right), and for LCTC an increased convolution kernel size
(b) in the top right), and an increased convolution kernel with a second path using a small convo-
lution kernel (c) in the top right). To test whether the plain increase in parameters is responsible
for improved results (zero hypotheses, H2), we also ablate on the increase of convolution kernel
size in the decoder block (operations along the blue arrows in the green block), as shown on the
bottom right. We consider the common ResNet-like decoder building block structure (in d)) and
two ConvNext-like structured backbones for the decoder building block in e) and f), where f) has
an additional small convolution applied in parallel, analog to c).

Model Details. Here, we provide details on the studied models. All implementation
details are given in the Appendix A.
Transposed Convolution Kernels for Upsampling. The upsampling operation is typ-
ically performed with small kernels (2×2 or 3×3) in the transposed convolution op-
erations [8, 13, 70]. We aim to increase the spatial context during upsampling and to
reduce grid artifacts. Thus we use Large Context Transposed Convolutions (LCTC).
We either use 7×7 transposed convolutions or 11×11 transposed convolutions with a
parallel 3×3 transposed convolution. Adding a parallel 3×3 kernel is motivated by [17],
as large convolution kernels tend to lose local context, and thus adding a parallel small
kernel helps to overcome this potential drawback (see Appendix B.3).
Decoder Building Blocks. To verify that the measurable effects are due to the improved
upsampling and not due to merely increasing the decoder capacity, we ablate on decoder
convolution blocks similar to convolution blocks used in the ConvNeXt [54] basic block
for encoding. While the standard ConvNeXt block uses a 7×7 depth-wise convolution,
we consider 7×7 and 11×11 group-wise convolutions, followed by layers present in a
ConvNeXt basic block to analyze the importance of the receptive field within the block.



Improving Feature Stability during Upsampling 9
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Fig. 5: NAFNet, as proposed, uses Pixel Shuffle for upsampling. We modify only the upsampling
operations to transposed convolution with kernel size (3×3) and LCTC (Ours) for comparisons.
We observe, for example, under a 10-step PGD attack with ϵ ≈ 8

255
our proposed H1 gains

validity. More examples for [16, 89] using different attacks and budgets are in Appendix C.3.

Table 1: Comparison of performances of different upsampling methods in SotA Image Restora-
tion Networks on the GoPro dataset. The architectures use Pixel Shuffle for Upsampling, we
propose replacing the Pixel Shuffle with Large Context Transposed Convolutions (LCTC). We
report additional results using adversarial training in Tab. 15. Note, that some trade-off between
clean performance and robustness is expected [85, 90].

Network Upsampling Method
Test Accuracy CosPGD (ϵ ≈ 8

255
) attack iterations PGD (ϵ ≈ 8

255
) attack iterations

5 10 20 5 10 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer

Pixel Shuffle 31.99 0.9635 11.36 0.3236 9.05 0.2242 7.59 0.1548 11.41 0.3256 9.04 0.2234 7.58 0.1543
Transposed Conv 3×3 9.68 0.095 8.24 0.0452 8.53 0.0628 8.44 0.0631 7.66 0.0464 7.72 0.0577 8.64 0.0527

LCTC: 7×7 + 3 ×3 (Ours) 29.51 0.9337 13.69 0.4186 11.53 0.3136 10.16 0.2484 13.69 0.4183 11.54 0.3137 10.16 0.2483
LCTC: 11×11 + 3×3 (Ours) 29.44 0.9324 14.65 0.4251 12.83 0.3438 11.48 0.29 14.65 0.4253 12.84 0.3445 11.48 0.2893

NAFNet

Pixel Shuffle 32.87 0.9606 8.67 0.2264 6.68 0.1127 5.81 0.0617 10.27 0.3179 8.66 0.2282 5.95 0.0714
Transposed Conv 3×3 31.02 0.9422 6.15 0.0332 5.95 0.0258 5.87 0.0233 6.15 0.0332 5.95 0.0258 5.87 0.0234

LCTC: 7×7 + 3 ×3 (Ours) 31.12 0.9430 14.54 0.4827 11.05 0.3220 9.06 0.2213 14.53 0.4823 11.03 0.3201 9.08 0.2224
LCTC: 11×11 + 3×3 (Ours) 30.77 0.9392 14.34 0.4492 11.41 0.3244 9.54 0.2411 14.34 0.45 11.4 0.3236 9.55 0.2398

Figure 4 (bottom right e) and f)) shows the structure of a ConvNeXt-style building
block used in our work. First, a group-wise convolution is performed, followed by a
LayerNorm [5] and two 1×1 convolutions which, similar to [54], creates an inverted
bottleneck by first increasing the channel dimension and after a GELU [40] activation
compressing the channel dimension again. We consider the ResNet-style building block
(Figure 4, d)), with 3×3 convolution, yet without skip connection, as our baseline when
studying this architectural design choice.

5 Experiments

In the following, we evaluate the effect of the considered upsampling operators in sev-
eral applications. We start by evaluating the effect on the upsampled feature stability
of recent state-of-the-art (SotA) image restoration models [16,89], then provide results
on semantic segmentation using more generic convolutional architectures that allow us
to provide compulsory ablations. Last, we show that our results also extend to disparity
estimation [50]. We provide details on the used adversarial attacks, datasets, reported
metrics, and other experimental details in Appendix A.
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In all cases, we observe that Large Context Transposed Convolutions (LCTC) im-
prove the results of the respective pixel-wise prediction task in terms of stability under
attack, showing that H1 holds. Further, our extensive ablation on image segmentation
shows that increasing the convolution kernel in the decoder building blocks does not
have this beneficial effect, providing experimental evidence for our hypothesis H2 and
confirming the impact of spectral artifacts on pixel-wise predictions.

5.1 Image Restoration

For image restoration, we consider the Vision Transformer-based Restormer [89] and
NAFNet [16]. Both originally use the Pixel Shuffle [77] for upsampling. Here, we com-
pare the reconstructions from these proposed architectures to their variants using the
proposed operators with large transposed convolution filters. We use the same metrics
as [16,89], Peak Signal-to-Noise Ratio (PSNR), and structural similarity index measure
(SSIM) [86]. We perform our experiments on the GoPro [63] image deblurring dataset,
following the experimental setup in [1].

Results on Image Restoration. We first consider qualitative results on NAFNet [16]
in Figure 5 and Restormer [89] in Fig. 10, Fig. 11(in Appendix C.3), where we see that
the proposed upsampling operators allow for visually good results in image deblurring
on clean data (similar to pixel shuffle). Yet, in contrast to pixel shuffle and the baseline
small transposed convolution filters, the proposed Large Context Transposed Convolu-
tions (LCTC) significantly reduces artifacts that arise on attacked images (in this case,
10-step PGD with ϵ ≈ 8

255 ). attacks with varying numbers of steps.
In Table 1, we report the average PSNR and SSIM values of the reconstructed im-

ages from the GoPro test set. These results confirm that at filter size 3×3, the perfor-
mance of the transposed convolution variant of both the considered networks is sig-
nificantly worse than the originally proposed Pixel Shuffle variant, justifying the com-
munity’s extensive use of Pixel Shuffle. However, we observe on increasing context
by increasing the kernel size to 7×7 that the performance of the transposed convolu-
tion variants significantly improves, especially making the networks more stable when
facing adversarial attacks. This boost in performance is further accentuated by increas-
ing the kernel size to 11×11 (both with parallel small kernels). These results provide
evidence for Hypothesis 1.

Note that the slightly reduced performance on clean images, seen in Table 1, is
expected to some degree: here, we only investigate sampling in the decoder, while
pixel unshuffle is used in the encoder, potentially causing a mismatch. Further, pre-
vious works have shown that there exists a trade-off between adversarial robustness and
clean performance [85, 90]. However, we do not observe this trade-off for matching
encoder-decoder architectures, e.g. in semantic segmentation.

5.2 Semantic Segmentation

As baseline architecture for semantic segmentation, we consider a UNet-like architec-
ture [70] with encoder backbone layers from ConvNeXt [54] (see Appendix B.2 on the
choice of encoder). This generic architecture facilitates providing a thorough ablation
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Fig. 6: A comparison of semantic segmentation mask predictions for the shown input images.
The row labeled “Prediction Difference” shows the difference in predictions between the base-
line model and the model with Large Context Transposed Convolutions (11×11+3× 3 kernels).
On white pixels, both models agree. Red pixels indicate that the baseline model predicts correctly
but our modified model predicts incorrectly. Green pixels indicate that our modified model pre-
dicts correctly but the baseline does not. The ground truth segmentation boundaries are drawn in
black. Our modification improves the segmentation result along object boundaries, which can be
attributed to spectral artifact removal, but also in more extended regions, where the context plays
a more crucial role.

Table 2: Semantic Segmentation performance on the PASCAL VOC2012 validation set for UNet
with ConvNeXt encoder, and the baseline UNet decoder (see Figure 4) with differently sized
kernels in transposed convolution for feature map upscaling while keeping rest of the architecture
fixed. Additional results are provided in Tab. 7 and Tab. 8 in Appendix B.1.

Transposed
Convolution Kernels

Clean FGSM attack epsilon SegPGD (ϵ ≈ 8
255

) attack iterations
Test Accuracy 1

255
8

255
3 20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

2×2 (baseline) 78.34 86.89 95.15 53.54 70.96 86.08 47.02 65.41 82.78 23.06 46.51 45.30 5.54 18.79 23.72
LCTC: 7×7 (Ours) 78.92 88.06 95.23 56.02 74.13 86.45 49.24 68.89 82.87 26.53 53.05 61.16 7.17 23.05 27.52
LCTC: 11×11 + 3×3 (Ours) 79.33 87.81 95.41 58.04 74.93 87.80 51.25 69.31 84.64 27.49 53.08 64.13 7.08 23.30 26.82

on all considered blocks in the decoder network. Our experiments are conducted on the
PASCAL VOC 2012 dataset [24]. We report the mean Intersection over Union (mIoU)
of the predicted and ground truth segmentation mask, the mean accuracy over all pixels
(mAcc), and the mean accuracy over all classes (allAcc).

Results on Semantic Segmentation. We first discuss the results for different upsam-
pling operations. The remaining architecture is kept identical, with ResNet-style build-
ing blocks in the decoder, throughout these experiments. The clean test accuracies are
shown in Table 2. We see that as we increase the kernel size of the transposed convo-
lution layers, there is a slight increase across all three evaluation metrics. Moreover,
Figure 6 visually demonstrates that, as we increase the size of the kernels in transposed
convolution from 2×2 (baseline) to 11×11, the segmentations of the thin end and pro-
trusions, for example, in the wing of the aircraft sample image are improving. The
baseline model with small transposed convolution kernels could not predict these de-
tails. As hypothesized in H1, we observe that increasing the context can reduce spectral
artifacts caused when representation and images are upsampled using LCTC.

Further, in Table 2, we evaluate the performance of the segmentation models against
FGSM [28] and the multi-step attack SegPGD [34] adversarial attacks for the indicated
ϵ values. As expected, with the increasing intensity of the attack, the performance of all
models drops. Yet, even at high attack intensities, the larger kernels perform better than
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Table 3: Adversarially trained models using FGSM (ϵ ≈ 8
255

) from Table 2 tested against
SegPGD adversarial attacks (ϵ ≈ 8

255
) on UNet with ConvNeXt encoder and decoder with

different sized kernels in the transposed convolution for upsampling, while keeping rest of the
architecture identical. See Tab. 10 in Appendix B.6 for more evaluations including PGD training.

Transposed
Convolution Kernels

Clean SegPGD attack iterations
Test Data 3 20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

2×2 78.57 86.68 95.23 26.59 48.99 67.71 7.6 24.06 31.37
LCTC: 7×7 (Ours) 78.41 86.22 95.20 28.11 53.39 66.30 8.36 28.54 28.13
LCTC: 11×11 + 3×3 (Ours) 79.57 88.1 95.3 30.37 55.54 68.3 9.4 29.79 32.37

Table 4: Empirical evaluations for H2 using a UNet with ConvNeXt encoder. We observe that
across different-sized kernels in transposed convolution, for a fixed kernel size, increasing the
context in the decoder building blocks by using larger kernels causes performance deterioration.
These observations for image decoding contrast the findings on image encoding by [17, 51, 54].

Transposed Convolution
Kernels Decoder Building Block Style

Test Accuracy FGSM attack epsilon SegPGD (ϵ ≈ 8
255

) attack iterations

mIoU / mAcc / allAcc
1

255
8

255
3 20

mIoU / mAcc / allAcc mIoU / mAcc / allAcc mIoU / mAcc / allAcc mIoU / mAcc / allAcc

2×2
ResNet Style 3×3 78.34 / 86.89 / 95.15 53.54 / 70.96 / 86.08 47.02 / 65.41 / 82.78 23.06 / 46.51 / 60.04 5.54 / 18.79 / 23.72

ConvNeXt style 7×7 77.17 / 86.86 / 94.81 49.98 / 72.22 / 83.93 42.04 / 64.86 / 79.08 17.94 / 44.81 / 47.96 3.20 / 14.73 / 9.81
ConvNeXt style 11×11 + 3×3 77.17 / 86.86 / 94.81 47.34 / 67.72 / 83.34 37.91 / 57.79 / 78.21 13.97 / 35.82 / 45.68 2.21 / 10.75 / 5.29

LCTC: 7×7 (Ours)
ResNet Style 3×3 78.92 / 88.06 / 95.23 56.02 / 74.13 / 86.45 49.24 / 68.89 / 82.87 26.53 / 53.05 / 61.16 7.17 / 23.05 / 27.52

ConvNeXt style 7×7 77.57 / 87.04 / 94.92 52.93 / 72.18 / 85.51 44.89 / 65.71 / 80.74 17.64 / 43.32 / 47.80 1.86 / 7.18 / 3.55
ConvNeXt style 11×11 + 3×3 77.99 / 87.86 / 94.96 51.61 / 73.01 / 84.85 43.93 / 66.22 / 80.73 17.07 / 42.30 / 48.78 1.80 / 7.11 / 3.04

LCTC: 11×11 +3×3 (Ours)
ResNet Style 3×3 79.33 / 87.81 / 95.41 58.04 / 74.93 / 87.80 51.25 / 69.31 / 84.64 27.49 / 53.08 / 64.13 7.08 / 23.30 / 26.82

ConvNeXt style 7×7 78.32 / 86.98 / 95.09 53.31 / 72.45 / 86.16 44.89 / 65.18 / 82.03 16.14 / 40.65 / 50.39 1.93 / 9.35 / 3.90
ConvNeXt style 11×11 + 3×3 77.42 / 86.24 / 94.94 54.48 / 72.53 / 86.25 46.67 / 66.59 / 82.29 18.76 / 44.60 / 51.49 2.31 / 8.70 / 3.50

the small ones, and we see a trend of improvement in performance as we increase the
kernel size, providing more evidence for Hypothesis 1.

Ablation Study. In the following, we first consider the effects of additional adversar-
ial training, then ablate on the impact of other decoder building blocks and the filter
size. Variations of the model encoder are ablated in the Appendix B.2, the impact of
using small parallel kernels in addition to large kernels is ablated and discussed in Ap-
pendix B.3, and competing upsampling techniques are ablated in Appendix B.5.

Adversarial Training. In Table 3, we report results for FGSM adversarially trained
models under SegPGD attack, with attacks as in Table 2. While the overall perfor-
mance under attack is improved as expected, the trend of LCTC providing better results
persists. More results for FGSM attack and SegPGD attacks with different numbers of
iterations are given in Tab. 7 and Tab. 8 in the Appendix. In Table 15, we additionally
evaluate image restoration models under adversarial training.

Change in the decoder backbone architecture. While all previous experiments fo-
cused on the upsampling using transposed convolutions in the decoder, we now eval-
uate the influence of the convolutional kernel size within the decoder which does not
upsample (see Section 4). For these experiments, we use a UNet-like architecture with
a ConvNeXt backbone in the encoder and the PASCAL VOC 2012 dataset.

In Table 4 we observe, for a fixed transposed convolution kernel size, as we increase
the size of the convolution kernel in the decoder building blocks, the performance of
the model decreases. This phenomenon extends to the performance of the architectures
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Fig. 7: Performance comparison on PASCAL VOC2012 using UNet with ConvNeXt encoder for
different LCTC sizes from 2 × 2 (small) to 31 × 31 (LCTC) kernels. All, besides the baseline
with 2 × 2 and 3 × 3, have a parallel 3×3 kernel, as shown in Figure 4 (bottom left). For the
decoder building block backbone, a ResNet Style 3× 3 style is used. See Tab. 9 for the values.

Table 5: Comparison of performances of different upsampling methods in the UNet-like archi-
tecture. All architectures use the baseline (ConvNeXt) encoder and 3×3 convolution kernels in
the decoder block. Please refer to Table 13 in Appendix B.5 for more evaluations and discussion,
including those with ConvNeXt style 7×7+3×3 Convolution kernels in the decoder blocks.

Upsampling Method
Test Accuracy FGSM attack epsilon SegPGD (ϵ ≈ 8

255
) attack iterations

1
255

8
255

5 20
mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

Pixel Shuffle 78.54 87.32 95.18 53.82 71.58 85.88 46.67 65.03 81.71 15.06 38.85 41.71 6.69 23.43 24.05
Nearest Neighbour Interpolation 78.40 88.16 95.09 52.68 73.51 84.55 46.08 67.96 80.22 15.34 44.53 36.21 7.65 27.89 20.48
Transposed Convolution 2×2 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 14.43 35.50 45.30 5.54 18.79 23.72
LCTC: 11×11+3×3 (Ours) 79.33 87.81 95.41 58.04 74.93 87.80 51.25 69.31 84.64 18.15 43.51 49.36 7.08 23.30 26.82

under adversarial attacks, showing that a mere increase in parameters in the model
decoder does not have a positive effect on model performance or on its stability. This
proves the validity of hypothesis H2. An explanation for this phenomenon could be
that we only need to increase context during the actual upsampling step, increasing
context in the consequent decoder building blocks has a negligible effect on the quality
of representations learned. However, the increase in the number of parameters makes
the architecture more susceptible to adversarial attacks.
Ablation on filter size saturation. After proving H1 one could argue that networks will
consistently improve with increased kernel size for Large Context Transposed Convolu-
tions. Hence, we test larger kernel sizes of 15×15, 17×17, 19×19 and 31×31 kernels.
Yet, as seen in Figure 7, the effect of the kernel size appears to saturate: the perfor-
mance after 13×13 and the performance of 31×31 kernels is not better than for 11×11
kernels. Yet, they are significantly better than the baseline’s performance.
Ablation on different Upsampling Methods. Following, we compare different upsam-
pling techniques thus justifying our advocacy for using LCTC instead of other upsam-
pling techniques like interpolation and pixel shuffle in the real world.

We report the comparison in Table 5 and observe that both Pixel shuffle and Near-
est Neighbor interpolation perform better than the usually used Transposed Convolu-
tion with a 2×2 kernel size. However, as we increase the kernel size for Transposed
Convolution to 11×11 with a 3×3 small kernel in parallel, we observe that LCTC is
strictly outperforming Pixel Shuffle, on both clean unperturbed images and under ad-
versarial attacks, across all metrics used. Large Context Transposed Convolutions are
either outperforming or performing at par with Nearest Neighbor interpolation. Thus
we demonstrate the superior clean and adversarial performance of Large Context Trans-
posed Convolutions operation over other commonly used techniques.
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5.3 Disparity Estimation

To show that the observations extend from image restorations and segmentation to
other tasks, we conduct additional experiments for disparity estimation. We consider
the STTR-light [50] architecture, built from STTR, which is a recent state-of-the-art
vision-transformer based model for disparity estimation and occlusion detection. To
implement the proposed modification, we alter the kernel sizes in the transposed con-
volution layers used for pixel-wise upsampling in the “feature extractor” module of the
architecture from 3×3 kernels to larger kernels. We conduct evaluations on FlyingTh-
ings3D [60] and keep all other details as implemented in [50].

Table 6: Comparison of performance of STTR-light
architecture with different sized kernels in transposed
convolution for upsampling the feature maps in the fea-
ture extractor (lower is better). The entire set of results
is provided as Tab. 17 in Appendix D.1.
Transposed
Convolution Kernels

Test Accuracy 3-Step PGD attack
epe↓ 3px error↓ epe↓ 3px error↓

STTR-light [50] reported 0.5 1.54 - -

3×3 [50] reproduced 0.4927 1.54 4.05 18.5
LCTC: 7×7 + 3×3 (Ours) 0.4788 1.50 4.02 18.3

In Table 6, we report the im-
provements in performance due to
our architecture modification of in-
creasing the size of the transposed
convolution kernels used for up-
sampling, from the 3×3 in the
baseline model to 7×7 (LCTC).
Similar to previous applications,
the increased kernel sizes with par-
allel 3×3 kernels further facilitate
to stabilize the model when attacked, as evaluated here for 3 attack iterations using
PGD with ϵ ≈ 8

255 on the disparity loss. Indicating that larger kernels in the transposed
convolutions can better decode learned representations from the encoder regardless of
the specific downstream task. We provide visual results in Appendix D.1.

6 Conclusion

We provide conclusive reasoning and empirical evidence for our hypotheses on the
importance of context during upsampling. While increasing the size of convolutions
during upsampling (LCTC) increases prediction stability, increasing the size of those
convolution layers without upsampling does not benefit the network. This indicates that
observations made for increased context during encoding do not translate to decoding.
Further, we show that our simple LCTC can be directly incorporated into recent models,
yielding better stability even in ViT-based architectures like Restormer, NAFNet, and
STTR-light as well as in classical CNNs. Our observations are consistent across several
architectures and downstream tasks.
Limitations. Current metrics for measuring performance do not completely account
for spectral artifacts. Spectral artifacts begin affecting these metrics only when they
become pronounced such as under adversarial attacks, and here LCTC consistently per-
forms better across tasks and architectures. Ideally, we would want infinitely large ker-
nels, however, with increasing kernel size and task complexity, training extremely large
kernels can be challenging. Thus, in this work, while having ablated over kernels as
large as 31×31, we propose using kernels only as large as 7×7 to 11×11 for good
practical trade-offs. Further improvements might be possible when jointly optimizing
the encoder and decoder. Moreover, there might exist other factors that contribute to the
introduction and existence of spectral artifacts such as spatial bias.
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