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1 Details of Patch-wise Consistent Loss

Normalization Cross Correlation (NCC). We can use NCC to measure the
difference between patches of source view and reference view at the feature level:

NCC(Fr(ŝ),Fs(ŝ
′)) = mean

(
Cov(Fr(ŝ),Fs(ŝ

′))√
Var(Fr(ŝ)Var(Fs(ŝ′)))

)
, (1)

Where Cov and Var represent feature covariance and variance, respectively. ŝ and
ŝ′ denote the centers of reference and projected source patches3, respectively. Fr

and Fs are the features of reference and source view. Finally, we average all
channel-wise feature correlations to the feature-level NCC.
Structural Similarity (SSIM) evaluates the local structural information in
the images by comparing small patches of pixels. SSIM can also be applied to
assess the difference between patches of the source view and reference view at
the feature level:

SSIM(Fr(ŝ),Fs(ŝ
′)) = mean

(
(2µFrµFs + c1)(2σFrFs + c2)

(µ2
Fr

+ µ2
Fs

+ c1)(σ2
Fr

+ σ2
Fs

+ c2)

)
, (2)

where µFr
, µFs

denote the mean of Fr(ŝ) and Fs(ŝ
′). σFr

, σFs
are the variance of

these features, respectively. σFrFs represents the covariance of Fr(ŝ) and Fs(ŝ
′).

The constants c1 and c2 are set to 0.01 and 0.03, respectively, as suggested in [8].
We average all channel-wise feature similarities as the SSIM.
Patch Similarity (PS). Similar to the pixel similarity, we use the average of
pixel similarity between corresponding elements in the two patches to represent
the similarity of two patches as:

PS(Fr(ŝ),Fs(ŝ
′)) = mean

(
Fr(ŝ)Fs(ŝ

′)

|Fr(ŝ)| |Fs(ŝ′)|

)
. (3)

3 For simplicity, we use ŝ and ŝ′ to present reference and projected source patches
centered at ŝ, ŝ′, i.e., these patches are warped by the zero-cross distance of the
related center points.
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Patch-wise Consistent Loss. For the patch-wise consistent loss, we dynami-
cally optimize each patch on 4 different source views with the lowest losses which
are selected from 10 candidates. This strategy is a simple yet effective way to
mitigate occlusion as:

Lpatch =

∑N
x=1

∑4
s=1 1−Dpatch(Fr(x),Fs(x

′))

4N
, (4)

where x and x′ denote the pixels and their corresponding pixels in the reference
and source patches centered at ŝ and ŝ′ respectively; and N is the number of
pixels in these patches. Besides, Dpatch can be represented as NCC, SSIM, and
PS. Additionally, we use 11× 11 patch size to compute the consistent loss.

Table 1: Quantitative results on the subset of DTU dataset. Features from pre-trained
models are based on the lowest resolution.

Model Resolution case24 case37 case106 Mean

MAE [9] 1024× 32× 48 1.21 1.32 1.37 1.30
ConvMAE [6] 768× 32× 48 0.98 2.05 0.86 1.29
CroCo [19] 768× 32× 48 1.19 2.05 0.82 1.35
Twins [4] 1024× 18× 24 1.00 2.40 0.87 1.42
ConvNeXt [15] 2048× 18× 24 1.22 2.30 1.48 1.66
SegFormer [20] 512× 18× 24 0.99 2.44 0.97 1.46
GLPN [11] 512× 18× 24 0.97 1.31 0.88 1.05
MiDaS [16] 2048× 16× 24 1.21 2.05 1.42 1.56
IGEV [21] 160× 18× 24 1.19 2.35 1.18 1.57
QuadTree [17] 256× 72× 96 0.74 1.39 0.67 0.93
CascadeMVS [7] 32× 256× 384 0.79 1.24 1.00 1.01
MVSFormer [2] 32× 256× 384 0.65 1.00 0.63 0.76
Baseline / 1.37 1.21 0.66 1.08

2 Implementation Details

For a fair comparison, we adopt the same architecture as the current works [3,
5,18]. The geometry network consists of an 8-layer MLP with 256 hidden units,
which is initialized using the geometric initialization proposed in [1]. And it out-
puts SDF and a 256-dimension feature vector which will be concatenated with
normal, view direction and 3D point to regress color. The radiance net has a
4-layer MLP with 256 hidden units, and positional encoding with 6 and 4 fre-
quencies is applied to encode the 3D position and view direction, respectively.
Additionally, we sample 512 rays per batch which follow the hierarchical sam-
pling strategy in NeuS [18] where each ray has 64 coarse and 64 fine sampled
points. Besides, the background image is modeled using 32 points outside the
unit sphere, following the approach of Nerf++ [22]. We train the network for
300k iterations costing 10 hours on a single A6000.
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Table 2: Quantitative results on the subset of DTU dataset. Features from pre-trained
models are based on the highest resolution.

Model Resolution case24 case37 case106 Mean

ConvMAE [6] 256× 128× 192 0.99 1.68 0.81 1.16
Twins [4] 128× 128× 192 0.89 1.52 0.87 1.09
ConvNeXt [15] 256× 128× 192 0.73 1.45 0.79 0.99
SegFormer [20] 64× 128× 192 0.83 1.25 0.88 0.98
GLPN [11] 64× 128× 192 0.90 1.32 0.81 1.01
IGEV [21] 96× 128× 192 0.88 1.23 0.76 0.95
RAFT-Stereo [14] 256× 128× 192 0.59 0.92 0.66 0.72
QuadTree [17] 128× 256× 384 0.48 0.85 0.55 0.62
CascadeMVS [7] 8× 512× 768 0.46 0.75 0.55 0.59
MVSFormer [2] 8× 512× 768 0.40 0.65 0.49 0.51
Baseline / 1.37 1.21 0.66 1.08

3 Detailed Quantitative Results for Different Pretext
Tasks

We evaluate models of various pretext tasks by applying pixel similarity as the
consistency loss on a subset of the DTU dataset including scan24, scan37, and
scan106. These objects are relatively challenging due to difficult lighting condi-
tions and occlusions. Tab. 1 and Tab. 2 show the lowest and highest features of
various models, respectively.

4 Additional Results of Feature Priors on Grid-Based
Representation

We incorporate feature priors into grid-based Neuralangelo [13] on DTU [10] and
Tanks&Temples [12] as in Tab. 3 and Fig. 1.

Table 3: Quantitative results of Neuralangelo with feature priors on DTU dataset.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
Neuralangelo 0.50 1.03 0.83 0.47 2.93 0.61 2.49 2.72 3.31 2.87 1.69 2.98 0.77 4.16 2.80 2.01
+ MVS Feat 0.52 0.82 0.46 0.38 1.60 0.63 1.15 1.56 1.89 0.85 0.70 0.61 0.30 1.23 0.85 0.90

4.1 Quantitative results of Feature Priors on DTU dataset

We train Neuralangelo with MVSFormer feature priors on the DTU dataset for
300k iterations. As indicated in Tab. 3, the integration of MVSFormer features
results in a reduction in errors.
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Fig. 1: Qualitative results of Neuralangelo with feature priors on Tanks&Temples
dataset.

4.2 Qualitative Results of Feature Priors on Outdoor Scenes

We train Neuralangelo with MVSFormer feature priors on the Tanks&Temples
dataset for 300k iterations. From Fig. 1, Neuralangelo with feature priors results
in a smoother surface and more accurate geometry.

4.3 Efficiency of Feature Priors

We present the outcomes of Neuralangelo incorporating feature priors on Scan37
across various training iterations in Fig. 2. Remarkably, the results achieved
by Neuralangelo with feature priors at 150k iterations surpass the accuracy of
Neuralangelo without feature priors even after 300k iterations. This underscores
the significant impact of feature priors in enhancing network convergence.
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Fig. 2: Qualitative results with feature priors Scan37 at different training iterations.
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Fig. 3: Qualitative results of NeuS with feature priors on ScanNet dataset.

5 Results of Feature Priors on Indoor Scenes

We provide more qualitative results on ScanNet of NeuS [18] with QuadTree [17]
Feature in Fig. 3. Notably, NeuS with match features can reconstruct more
accurate geometry than NeuS, verifying that our method can be also generalized
to indoor scenes.

6 More Analysis

6.1 GPU Memory Consumption

We show the GPU memory cost of our Match-NeuS and MVS-NeuS in Tab. 4. To
improve efficiency, we save all off-the-shelf features in the GPU at once, avoiding
costly GPU and CPU memory swappings. Compared with the baseline, this
strategy costs extra GPU memory consumption. But we should clarify that these
memory costs are optional to accelerate the training phase without frequently
loading features into the GPU devices.

6.2 The Effect of Patch Size

In our paper, we use 11×11 patch size as default to compute the consistent loss.
Here we show the performance of NCC with different patch sizes on Scan37 of
the DTU dataset. The result in Tab. 5 shows that using NCC with patch sizes
that are too small results in poor performance. Conversely, using too large patch
sizes may lead to slightly inferior results. The best performance is achieved with
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Table 4: GPU memory consumption on DTU dataset. † denotes saving all features in
the GPU beforehand.

Model Pre-Trained Consistent Loss GPU Memory (MB) GPU Memory† (MB)

Baseline / / 7033 7033

Match-NeuS QuadTree [17]

Pixel Similarity 8415 18999
Patch Similarity 13823 24401

Patch NCC 14097 24683
Patch SSIM 14373 24955

MVS-NeuS MVSFormer [2]

Pixel Similarity 7443 10089
Patch Similarity 8126 10724

Patch NCC 8303 10951
Patch SSIM 8327 10949

7 × 7 and 11 × 11 patches. It is reasonable that a small patch size suffers from
the local minimum while too large patch sizes can’t capture detailed geometry
accurately.

Table 5: Quantitative results of NCC with different patch sizes on scan37 of DTU
Dataset.

Model Pre-Trained Patch Size Mean

Baseline / / 1.21

Match-NeuS QuadTree [17]

3× 3 0.906
7× 7 0.684

11× 11 0.671
15× 15 0.706
19× 19 0.713

Match-NeuS MVSFormer [2]

3× 3 0.828
7× 7 0.602

11× 11 0.631
15× 15 0.653
19× 19 0.678

6.3 NCC with Multi-Scale Features

We show additional quantitative results of NCC with multi-scale features on
scan37 of the DTU dataset in Tab. 7. Using multi-scale features leads to worse
results than only using the highest-resolution features.

6.4 Combination of MVS and Image Matching features

We show additional quantitative results of combining MVS and image matching
features as mixed features in Tab. 6. The method employing patch NCC with
these mixed features is denoted as MVS-Match-NeuS. From Tab. 6, we observe
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that the integration of MVS and image matching features does not consistently
enhance performance. Moreover, it incurs a higher memory cost to store all these
features in the GPU as illustrated in Sec. 6.1.

Table 6: Results of CD (mm) compared on DTU dataset (lower is better). The best
results are in bold.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

MVS-NeuS 0.37 0.63 0.31 0.32 0.79 0.51 0.50 1.12 0.87 0.62 0.46 0.64 0.29 0.38 0.41 0.548
Match-NeuS 0.39 0.67 0.32 0.33 0.79 0.51 0.49 1.21 0.87 0.63 0.48 0.71 0.29 0.38 0.41 0.565

MVS-Match-NeuS 0.37 0.63 0.33 0.32 0.80 0.52 0.46 1.16 0.90 0.60 0.45 0.74 0.29 0.40 0.42 0.560

Table 7: Quantitative results of NCC with multi-scale features on scan37 of DTU
Dataset.

Model Pre-Trained Multi-Scale Features Mean

Baseline / / 1.21

Match-NeuS QuadTree [17] × 0.671
✓ 0.753

MVS-NeuS MVSFormer [2] × 0.631
✓ 0.676

7 Additional Qualitative Results

We show additional qualitative results on the DTU dataset in Fig. 4, Fig. 5.

8 Limitation

As shown in Tab. 4, we need to save all off-the-shelf features in the GPU at once,
avoiding costly GPU and CPU memory swappings. This becomes particularly
crucial when utilizing NCC with high-resolution features, such as QuadTree,
which have large dimensions and require more GPU memory. Another limitation
is that our work is based on NeuS [18] and it is difficult to model transparent
surfaces.

9 Board Impact

Our work focuses on leveraging the wealth of 2D image data to learn and re-
construct the 3D geometry of the world. Our approach enables high-quality 3D
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Fig. 4: More qualitative results on the DTU dataset.
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Fig. 5: More qualitative results on the DTU dataset.
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reconstruction of objects using only standard images. The applications of our
algorithm are diverse and can be utilized in various fields where 3D information
is essential but only 2D images are available. This has the potential to benefit
areas such as manufacturing, virtual reality, surveillance, healthcare, and many
others.
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