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Abstract. Learning to infer labels in an open world, i.e., in an environ-
ment where the target “labels” are unknown, is an important characteris-
tic for achieving autonomy. Foundation models, pre-trained on enormous
amounts of data, have shown remarkable generalization skills through
prompting, particularly in zero-shot inference. However, their perfor-
mance is restricted to the correctness of the target label’s search space,
i.e., candidate labels provided in the prompt. This target search space can
be unknown or exceptionally large in an open world, severely restrict-
ing their performance. To tackle this challenging problem, we propose
a two-step, neuro-symbolic framework called ALGO - Action Learning
with Grounded Object recognition that uses symbolic knowledge stored
in large-scale knowledge bases to infer activities in egocentric videos with
limited supervision. First, we propose a neuro-symbolic prompting ap-
proach that uses object-centric vision-language models as a noisy oracle
to ground objects in the video through evidence-based reasoning. Sec-
ond, driven by prior commonsense knowledge, we discover plausible ac-
tivities through an energy-based symbolic pattern theory framework and
learn to ground knowledge-based action (verb) concepts in the video. Ex-
tensive experiments on four publicly available datasets (EPIC-Kitchens,
GTEA Gaze, GTEA Gaze Plus, and Charades-Ego) demonstrate its per-
formance on open-world activity inference. ALGO can be extended to
zero-shot inference and demonstrate its competitive performance.

Keywords: Open-world Learning · Egocentric Activity Understanding
· Vision-Language Foundation Models

1 Introduction

Humans display a remarkable ability to recognize unseen concepts (actions, ob-
jects, etc.) by associating known concepts gained through prior experience and
reasoning over their attributes. Key to this ability is the notion of “grounded”
reasoning, where abstract concepts can be mapped to the perceived sensory sig-
nals to provide evidence to confirm or reject hypotheses. This work aims to
create a computational framework that tackles open-world egocentric activity
understanding. We define an activity as a complex structure whose semantics
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Fig. 1: Overall architecture of the proposed approach (ALGO) is illustrated here.
Using a two-step process, we first ground the objects within a gaze-driven ROI using
CLIP [47] as a noisy oracle before reasoning over the plausible activities performed in
the video. The inferred activity and action (verb) are grounded in prior knowledge and
visual features to refine the activity interpretations.

are expressed by a combination of actions (verbs) and objects (nouns). To recog-
nize an activity, one must be cognizant of the object label, action label, and the
possibility of any combination since not all actions are plausible for an object.
Supervised learning approaches [20,39,51,58] have been the dominant approach
to activity understanding but are trained in a “closed” world, where there is an
implicit assumption about the target labels. The videos during inference will
always belong to the label space seen during training. Zero-shot learning ap-
proaches [6, 36, 64, 65] relax this assumption by considering disjoint “seen” and
“unseen” label spaces where all labels are not necessarily represented in the train-
ing data. This setup is a known world, where the target labels are pre-defined
and aware during training. In this work, we define an open world to be one where
the target labels are unknown during both training and inference. The goal is to
recognize elementary concepts and infer the activity.

Foundation models [9], pre-trained on large amounts of data, have shown
tremendous performance on different problems such as question answering [18],
zero-shot object recognition [47], and action recognition [36]. Self-supervised pre-
training [20, 65] has helped improve their generalization. However, their ability
to perform open-world inference is constrained by two factors. First, the search
space (i.e., target label candidates) must be well-defined since their output is
constrained to what is presented to them (or “prompted”), which requires prior
knowledge about the environment. Second, their performance is dependent on
the span of their pre-training data. Models trained on third-person views may not
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generalize to egocentric videos due to the limited capability to ground semantics
in visual data and reason over object affordances. Learning these associations
during pre-training is challenging since it requires data from every possible com-
bination of concepts. We propose to tackle this problem using a neuro-symbolic
framework that leverages advances in multimodal foundation models to ground
concepts from symbolic knowledge bases, such as ConceptNet [54], in visual
data. The overall approach is shown in Figure 1. Using the energy-based pattern
theory formalism [2, 4, 25] to represent symbolic knowledge, we ground objects
(nouns) using CLIP [47] as a noisy oracle. Driven by prior knowledge, novel ac-
tivities (verb+noun) are inferred, and the associated action (verb) is grounded
in the video to learn visual-semantic associations for novel, unseen actions.

The contributions of this work are three-fold: (i) We present a neuro-
symbolic framework to leverage compositional properties of objects to prompt
CLIP for evidence-based grounding. (ii) We propose object-driven activity dis-
covery as a mechanism to reason over prior knowledge and provide action-object
affinities to constrain the search space. (iii) We demonstrate that the inferred
activities can be used to ground unseen actions (verbs) from symbolic knowledge
in egocentric videos, which can generalize to unseen and unknown action spaces.

2 Related Works

Egocentric video analysis has been extensively explored in computer vision
literature, having applications in virtual reality [27] and human-machine inter-
action. Various tasks have been proposed, such as question-answering [22], sum-
marization [38], gaze prediction [3, 23, 35], and action recognition [33], among
others. Success has been driven by the development of large-scale datasets such
as Ego-4D [24], Charade-Ego [51], GTEA Gaze [23], GTEA Gaze Plus [35], and
EPIC-Kitchens [16]. Supervised learning has been the predominant approach in
the context of egocentric activity recognition, which is the focus of this work. Re-
searchers have explored various techniques, such as modeling spatial-temporal
dynamics [56], using appearance and motion cues for recognition [39], hand-
object interaction [59, 66], and time series modeling of motion information [50],
to name a few. Some studies have addressed the data-intensive nature by ex-
ploring zero-shot learning [51, 64]. KGL [4] is one of the first works to address
the problem of open-world understanding. They represent knowledge ele-
ments derived from ConceptNet [54], using pattern theory [2, 25, 53]. However,
their method relies on an object detector to ground objects in a source domain
before mapping concepts to the target space using ConceptNet-based seman-
tic correspondences. This approach has limitations: (i) false alarms may occur
when the initial object detector fails to detect the object of interest, leading to
the use of the closest object to the gaze, and (ii) reliance on ConceptNet for
correspondences from the source domain to the target domain, resulting in ob-
jects being disregarded if corresponding probabilities are zero. Other efforts in
open-world learning have primarily focused on object-centric tasks, such as
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open-world object detection [19,21,26], which do not address the combinatorial
problems inherent in open-world activity recognition.

Vision-language modeling has gained significant attention in the commu-
nity, driven by the success of transformer models [57] in natural language process-
ing, such as BERT [18], RoBERTa [37], OpenAI’s GPT series [11,12,48,49], and
ELECTRA [14]. The development of object-centric foundation models has en-
abled impressive capabilities in zero-shot object recognition in images, as demon-
strated by CLIP [47], DeCLIP [34], and ALIGN [28]. These approaches rely on
large amounts of image-text pairs, often in the order of billions, to learn visual-
semantic representations using various forms of contrastive learning [13,31]. Re-
cent works, such as EGO-VLP [36], Hier-VL [6], LAVILLA [65], and CoCa [62]
have expanded the scope of multimodal foundation models to include egocen-
tric videos and have achieved impressive performance in zero-shot generaliza-
tion. However, these approaches require substantial curated pre-training data to
learn semantic associations among concepts for egocentric activity recognition.
Neuro-symbolic models [4,29,45,60] show promise in reducing the increasing
dependency on data. Our approach extends the idea of neuro-symbolic reasoning
to address egocentric, open-world activity recognition.

3 Proposed Framework: ALGO

Problem Formulation. We address the task of recognizing unknown activities
in egocentric videos within an open-world setting. Our objective is to develop
a framework that can learn to identify elementary concepts, establish semantic
associations, and systematically explore, evaluate, and reject combinations to
arrive at an interpretation that best describes the observed activity class. In
this context, we define the target classes as activities, which are composed of
elementary concepts such as actions (verbs) and objects (nouns). These activities
are formed by combining concepts from two distinct sets: an object search space
(Gobj) and an action search space (Gact). These sets define the pool of available
elementary concepts (objects and actions) that can be used to form an activity
(referred to as the “target label”).

Overview. We propose ALGO (Action Learning with Grounded Object
recognition), illustrated in Figure 1, to tackle the problem of discovering novel
actions in an open world. Given a search space of elementary concepts, we first
hypothesize the presence of plausible objects through evidence-based object
grounding (Section 3.1) by exploring prior knowledge from a symbolic knowl-
edge base. A noisy grounding model provides visual grounding to generate a
grounded object search space. We then use an energy-based inference mecha-
nism (Section 3.2) to discover the plausible actions that can be performed on the
ground object space, driven by prior knowledge from symbolic knowledge bases,
to recognize unseen and unknown activities (action-object combinations) with-
out supervision. A visual-semantic action grounding mechanism (Section 3.3)
then provides feedback to ground semantic concepts with video-based evidence
for discovering composite activities without explicit supervision. Although our
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framework is flexible to work with any noisy grounding model and knowledge
base, we use CLIP [47] and ConceptNet [54], respectively.

Knowledge Representation. We use Grenander’s pattern theory formal-
ism [25] to represent the knowledge elements and build a contextualized activity
interpretation that integrates neural and symbolic elements in a unified, energy-
based representation. Pattern theory provides a flexible framework to help reason
over variables with varying underlying dependency structures by representing
them as compositions of simpler patterns. These structures, called configura-
tions, are composed of atomic elements called generators ({g1, g2, . . . gi} 2 Gs),
which connect through local connections called bonds ({�1,�2, . . .�i} 2 gi). The
collection of all generators is called the generator space (Gs), with each gener-
ator possessing an arbitrary set of bonds, defined by its arity. Bonds between
generators are constrained through local and global regularities, as defined by
an overarching graph structure. A probability structure over the representations
captures the diversity of patterns. We refer the reader to Aakur et al. [2] and de
Souza et al. [53] for a deeper exploration of pattern theory.

3.1 Evidence-based Object Grounding with Prior-driven Prompting

The first step in our framework is to assess the plausibility of each object con-
cept (represented as generators {go1, go2, . . . goi } 2 Gobj) by grounding them in
the input video Vi. We define grounding as gathering evidence from the input
data to support a concept’s presence (or absence) in the final interpretation.
While object-centric vision-language foundation models such as CLIP [47] have
shown impressive abilities in zero-shot object recognition in images, egocentric
videos provide additional challenges such as camera motion, lens distortion, and
out-of-distribution object labels. Follow-up work [41] has focused on addressing
them to a certain extent by probing CLIP for explainable object classification.
However, they do not consider compositional properties of objects and alterna-
tive labels for verifying their presence in the video. To address this issue, we
propose a neuro-symbolic evidence-based object grounding mechanism to com-
pute the likelihood of an object in a given frame. For each object generator (goi )
in the search space (Gobj), we first compute a set of compositional ungrounded
generators by constructing an ego-graph of each object label (Ego

i
) from Concept-

Net [54] and limiting edges to those that express compositional properties such
as IsA, UsedFor, HasProperty and SynonymOf. Given this set of ungrounded
generators ({ḡoi }8goi 2 Gobj), we then prompt CLIP to provide likelihoods for
each ungrounded generator p(ḡoi |It) to compute the evidence-based likelihood for
each grounded object generator go

i
as defined by the probability

p(go
i
|ḡoi , It,KCS) = p(go

i
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o
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i
) is the edge weight from the edge graph Ego

i
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a knowledge graph KCS) that acts as a prior for each ungrounded evidence
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generator ḡoi and p(ḡoi |It) is the likelihood from CLIP for its presence in each
frame It. Hence, the probability of the presence of a grounded object generator
is determined by (i) its image-based likelihood, (ii) the image-based likelihood
of its evidence generators, and (iii) support from prior knowledge for the pres-
ence of each evidence generator. Hence, we ground the object generators in each
video frame by constructing and evaluating the evidence to support each ground-
ing assertion and provide an interpretable interface to video object grounding.
Empirically, Section 4.2 shows that this evidence-based grounding outperforms
näive CLIP-based grounding. To navigate clutter and focus only on the object
involved in the activity (i.e., the packaging problem [40]), we use human gaze
to select a 200⇥ 200 region centered around the gaze position (from the human
user if available, else we approximate it with center bias [35]).

3.2 Object-driven Activity Discovery

The second step in our approach is to discover plausible activities performed
in the given video. We take an object affordance-based approach to activity in-
ference, constraining the activity label (verb + noun) to those that conform to
affordances defined in prior knowledge. We first construct an “action-object affin-
ity” function that provides a prior probability for the validity of an activity. The
probability of each action-object combination is computed by taking a weighted
sum of the edge weights (direct and indirect) along each path that connects them
in ConceptNet. An exponential decay function is applied to each term to avoid
generating excessively long paths that can introduce noise into the reasoning
process. Finally, we filter out paths that do not contain compositional assertions
(UsedFor, HasProperty, IsA) since generic assertions (such as RelatedTo) do
not explicitly capture object affordances. The probability of an activity (defined
by an action generator gai and a grounded object generator go

j
) is given by

p(gai , g
o
j
|KCS) = argmax

8E2KCS

X

(ḡm,ḡn)2E

wk ⇤KCS(ḡm, ḡn) (2)

where E is the collection of all paths between gai and go
j

in a commonsense
knowledge graph KCS , wk is a weight drawn from an exponential decay function
based on the distance of the node go

j
from gai . After filtering for compositional

properties, the path with the maximum weight is chosen with the optimal action-
object affinity. The process is repeated for all activities in the search space.

Energy-based Activity Inference. To reason over the different activity
combinations, we assign an energy term to each activity label, represented as a
configuration. These are complex structures composed of individual generators
that combine through bonds dictated by their affinity functions. In our case, each
activity interpretation is a configuration composed of a grounded object genera-
tor (go

i
), its associated ungrounded evidence generators (ḡoj ), an action generator

(gak) and ungrounded generators from their affinity function, connected via an
underlying graph structure. This graph structure will vary for each configura-
tion depending on the presence of affinity-based bonds derived from ConceptNet.
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Hence, the energy of a configuration ci is given by

E(c) = �(p(go
i
|ḡoj , It,KCS)) + �(p(gak , g

o
i
|KCS)) + �(p(gak |It)) (3)

where the first term provides the energy of grounded object generators (from
Equation 1), the second term provides the energy from the affordance-based
affinity between the action and object generators (from Equation 2), and the
third term is the likelihood of an action generator. The probability of a configu-
ration c is given by p(c) / exp(�E(c)). Hence, the lower the energy, the higher
its probability. We initially set �(p(gak |It)) = 1 to reason over all possible ac-
tions for each object and later update this using a posterior refinement process
(Section 3.3). Hence, activity inference becomes an optimization over Equation 3
to find the configuration (or activity interpretation) with the least energy. For
tractable computation, we use the MCMC-based simulated annealing mechanism
proposed in KGL [4] to avoid an expensive brute-force search over all verb-noun
combinations. If action priors are available from video-centric foundation mod-
els [36, 65], �(p(gak |It)) can be initialized by prompting it with plausible action
labels. Empirically, in Section 4, we can show that leveraging vision-language
foundation models, if available, significantly improves the performance.

3.3 Visual-Semantic Action Grounding

The third step in our framework is the idea of visual-semantic action grounding,
where we aim to learn to ground the inferred actions (verbs) from the overall
activity interpretation. While CLIP provides a general purpose, if noisy, object
grounding method, a comparable approach for actions does not exist. Hence, we
learn an action grounding model by bootstrapping a simple function ( (gai , fV ))
to map clip-level visual features to the semantic embedding space associated with
ConceptNet, called ConceptNet Numberbatch [54]. The mapping function is a
simple linear projection to go from the symbolic generator space (gai 2 Gact) to
the semantic space (fa

i ), which is a 300-dimension (R1⇥300) vector representation
explicitly trained to capture concept-level attributes captured in ConceptNet.
While there can be many sophisticated mechanisms [6,36], including contrastive
loss-based training, we use the mean squared error (MSE) loss as the objective
function to train the mapping function since our goal is to provide a mechanism
to ground abstract concepts from the knowledge-base in the video data. We leave
the exploration of more sophisticated grounding mechanisms to future work.

Temporal Smoothing Since we predict frame-level activity interpretations
to account for gaze transitions, we first perform temporal smoothing to label
the entire video clip before training the mapping function  (gai , fV ) to reduce
noise in the learning process. For each frame in the video clip, we take the
five most common actions predicted at the activity level (considering the top-
10 predictions) and sum their energies to consolidate activity predictions and
account for erroneous predictions. We then repeat the process for the entire clip,
i.e., get the top-5 actions based on their frequency of occurrence at the frame
level and consolidated energies across frames. These five actions provide targets



8 S. Kundu et al.

for the mapping function  (gai , fV ), which is then trained with the MSE function.
We use the top-5 action labels as targets to limit the effect of frequency bias.

Posterior-based Activity Refinement. The final step in our framework is
an iterative refinement process that updates the action concept priors (the third
term in Equation 3) based on the predictions of the visual-semantic grounding
mechanism described in Section 3.3. Since our predictions are made on a per-
frame basis, it does not consider the clip’s overall temporal coherence and visual
dynamics. Hence, there can be contradicting predictions for the actions done
over time. Hence, we iteratively update the action priors for the energy com-
putation to re-rank the interpretations based on the clip-level visual dynamics.
We iteratively refine the activity labels and update the visual-semantic action
grounding modules simultaneously by alternating between posterior update and
action grounding until the generalization error (i.e., the performance on unseen
actions) saturates, which indicates overfitting.

Implementation Details. We use an S3D-G network pre-trained by Miech
et al. [42, 43] on Howto100M [43] as our visual feature extraction for visual-
semantic action grounding. We use a CLIP model with the ViT-B/32 [20] as its
backbone network. ConceptNet was used as our source of commonsense knowl-
edge for neuro-symbolic reasoning, and ConceptNet Numberbatch [54] was used
as the semantic representation for action grounding. The mapping function, de-
fined in Section 3.3, was a 1-layer feedforward network trained with the MSE
loss for 100 epochs with a batch size of 256 and learning rate of 10�3. General-
ization errors were used to pick the best model. Experiments were conducted on
a desktop with a 32-core AMD ThreadRipper and an NVIDIA TitanRTX.

4 Experimental Evaluation

Data. To evaluate the open-world inference capabilities, we evaluate the ap-
proach on GTEA Gaze [23], GTEA GazePlus [35], and EPIC-Kitchens-100 [15,
17] datasets, which contain egocentric, multi-subject videos of meal preparation
activities. GTEA Gaze and GazePlus have frame-level gaze information and ac-
tivity labels, providing an ideal test bed for our setup. EPIC-Kitchens-100 is a
much larger dataset and does not have gaze information, offering a much more
challenging evaluation of the approach. We also evaluate on Charades-Ego [51],
a larger egocentric video dataset focused on activities of daily living, to evaluate
on the zero-shot setting. The evaluation datasets, under an open-world setting,
offer a significant challenge with an increasingly larger search space. The GTEA
Gaze dataset has 10 verbs and 38 nouns (search space of 380 activities), while
GTEA GazePlus has 15 verbs and 27 nouns (search space of 405), Charades-
Ego has 33 verbs and 38 nouns (search space of 1254), and Epic-Kitchens has
97 verbs and 300 nouns (search space of 29100).

Evaluation Metrics. Following prior work in open-world activity recogni-
tion [2, 4], we use accuracy to evaluate action and object recognition and use
word-level accuracy for evaluating the activity (verb+noun) recognition perfor-
mance. It provides a less-constrained measurement to measure the quality of pre-
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Approach Search VLM?
GTEA Gaze GTEA GazePlus

Space Object Action Activity Object Action Activity

Two-Stream CNN [52] Closed 7 38.05 59.54 53.08 61.87 58.65 44.89
IDT [58] Closed 7 45.07 75.55 40.41 53.45 66.74 51.26

Action Decomposition [64] Closed 7 60.01 79.39 55.67 65.62 75.07 57.79

Random Known 7 3.22 7.69 2.50 3.70 4.55 2.28
Action Decomposition ZSL* [64] Known 7 65.81 89.17 68.70 53.40 32.48 29.19

ALGO ZSL (Ours) Known 7 49.47 74.74 27.34 47.67 29.31 16.68

KGL [4] Open 7 5.12 8.04 4.91 14.78 6.73 10.87
KGL+CLIP [4] Open 7 10.36 8.15 9.21 20.49 9.23 14.86
ALGO (Ours) Open 7 13.07 17.05 15.05 26.23 11.44 18.84

EgoVLP [36] Open 3 10.17 8.45 9.31 29.43 17.17 23.30
LaViLa [65] Open 3 6.07 23.07 14.57 28.27 25.47 26.87

ALGO+LaViLa Open 3 17.50 26.60 22.05 30.74 27.00 28.87

Table 1: Open-world activity recognition performance on the GTEA Gaze and
GTEA Gaze Plus datasets. Accuracy is reported for predicted objects, actions, and
activities. VLM: Vision-Language Model pre-trained on egocentric video data. * in-
dicates training on “seen” classes from the same dataset(s) and leave-one-action-out
evaluation.

dictions beyond accuracy by considering all units without distinguishing between
insertions, deletions, or misclassifications. This helps quantify the performance
without penalizing semantically similar interpretations. We use class-wise mAP
to evaluate ALGO in the zero-shot learning setup on Charades-Ego.

Baselines. We compare against different egocentric action recognition ap-
proaches, including those with a closed-world learning setup. For open-world
inference, we compare it against Knowledge Guided Learning (KGL) [4], which
introduced the notion of open-world egocentric action recognition. We also create
a baseline called “KGL+CLIP” by augmenting KGL with CLIP-based grounding
by including CLIP’s similarity score for establishing semantic correspondences.
We compare with supervised learning models such as Action Decomposition [64],
IDT [58], and Two-Stream CNN [52], with a strong closed-world assumption
and a dependency on labeled training data. We compare it against the zero-
shot version of Action Decomposition, designed for a known world where the
final activity labels are known. Note that this is not a fair comparison since it
is evaluated under a leave-one-action-out zero-shot learning setting trained on
examples from the corresponding dataset for “seen” actions. We report it for
completeness. We also compare against large vision-language models, such as
EGO-VLP [36], HierVL [6], and LAVILA [65] in both zero-shot and open-world
settings (by prompting with all possible verb+noun combinations).

4.1 Open World Activity Recognition

Table 1 summarizes the evaluation results under the open-world inference set-
ting. Top-1 prediction results are reported for all approaches. As can be seen,
CLIP-based grounding significantly improves object recognition performance for
KGL, as opposed to the originally proposed, prior-only correspondence function.
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Approach VLM? Action Object Activity

Random 7 1.03 0.33 0.68
KGL [4] 7 3.89 2.56 3.23

KGL+CLIP [4] 7 5.32 4.67 4.99
ALGO (Ours) 7 10.21 6.76 8.48

EgoVLP [36] 3 10.77 19.51 15.14
LaViLa [65] 3 11.16 23.25 17.21

ALGO+LaViLa 3 12.54 22.84 17.69

Table 2: Evaluation on the EPIC-Kitchens-100 dataset. VLM: Vision-Language pre-
training on egocentric data. Accuracy for actions, objects, and activity are reported.

However, our neuro-symbolic grounding mechanism (Section 3.1) improves it fur-
ther, achieving an object recognition performance of 13.07% on Gaze and 26.23%
on Gaze Plus. It is interesting to note that naïvely adding CLIP as a mechanism
for grounding objects, while effective, does not provide significant gains in the
overall action recognition performance (an average of 2% across Gaze and Gaze
Plus). We attribute it to the fact that the inherent camera motion in egocentric
videos introduces occlusions and visual variations that make it hard to recognize
actions consistently. Evidence-based grounding, as proposed in ALGO, makes it
more robust to such changes and improves object and action recognition per-
formance. Similarly, the posterior-based action refinement module (Section 3.3)
helps achieve a top-1 action recognition performance of 17.05% on Gaze and
11.44% on Gaze Plus, outperforming KGL (8.04% and 6.73%). Adding action
priors from LaViLa (�(p(gak |It)) in Equation 3) allows us to improve the per-
formance further, as indicated by ALGO+LaViLa. We see that LaVila’s perfor-
mance is consistently improved on all metrics. Note that we outperform LaViLa
on GTEA Gaze even without the action priors and offer competitive performance
on GazePlus without pre-training on egocentric videos.

We also evaluate our approach on the Epic-Kitchens-100 dataset, a larger-
scale dataset with a significantly higher number of concepts (actions, verbs, and
activities). Table 2 summarizes the results. We significantly outperform non-
VLM models while offering competitive performance to the VLM-based models.
We see that even without any video-based training data, we achieve an action
accuracy of 10.21% and object accuracy of 6.76%, indicating that we can learn
affordance-based relationships for discovering and grounding novel actions in
egocentric data. Adding action priors from LaViLa further improves the perfor-
mance. Interestingly, the action (verb) prediction performance of both LaViLa
is improved, although it is at the cost of reduced object accuracy. Note that the
predictions for verbs and nouns are not separate but computed from the pre-
dicted activity. These are remarkable results, considering that the search space
is open, i.e., the verb+noun combination is unknown and can be large (380 for
Gaze, 405 for Gaze Plus, and 29100 on EPIC-Kitchens).

To evaluate the generalization capabilities of ALGO, we presented videos
with unseen actions, i.e., actions not in the original training domain, and an open
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Approach Visual Backbone Pre-Training?
Pre-Training Data

mAP
Ego? Source Size

EGO-VLP w/o EgoNCE [36] TimeSformer [8] VisLang 7 Howto100M [43] 136M 9.2
EGO-VLP w/o EgoNCE [36] TimeSformer [8] VisLang 7 CC3M+WebVid-2m 5.5M 20.9
EGO-VLP + EgoNCE [36] TimeSformer [8] VisLang 3 EgoClip [36] 3.8M 23.6

HierVL [6] FrozenInTime [7] VisLang 3 EgoClip [36] 3.8M 26.0
LAVILA [65] TimeSformer [8] VisLang 3 Ego4D [24] 4M 26.8

ALGO (Ours) S3D-G [43] Vision Only 7 Howto100M [43] 136M 17.3

ALGO (Ours) S3D [61] Vision Only 7 Kinetics-400 [30] 240K 16.8

Table 3: Evaluation of ALGO under zero-shot learning settings on Charades-Ego
where the search space is constrained to ground truth activity semantics. VisLang:
Vision Language Pre-Training.

search action space, i.e., not derived from the dataset annotations. We prompted
GPT-4 [12] using the ChatGPT interface to provide 100 everyday actions and
objects that can be performed in the kitchen to construct our open-world search
space and evaluated on GTEA Gaze and GazePlus. The performance was com-
petitive on unseen actions and unknown search space, achieving an accuracy
of 9.87% on Gaze and 8.45% on Gaze Plus. These results are encouraging, as
they significantly reduce the gap between closed-world learning (supervised),
known-world learning (zero-shot), and open-world learning.

Extension to Zero-Shot Egocentric Activity Recognition Open-world
learning involves combinatorial searching for plausible combinations of elemen-
tary concepts. For activity recognition, this involves discovering the action-object
(verb-noun) combinations that make up an activity. However, in many applica-
tions, such as zero-shot recognition, the search space is known, and there is a
need to predict pre-specified labels. To compare our approach with such foun-
dation models, we evaluate ALGO on the Charades-Ego dataset and summarize
the results in Table 3. We consider the top-10 interpretations made for each clip
and perform a nearest neighbor search using ConceptNet Numberbatch embed-
ding to the set of ground-truth labels and pick the one with the least distance. It
provides a simple yet effective mechanism to extend our approach to zero-shot
settings. We achieve an mAP score of 16.8% using an S3D [61] model pre-trained
on Kinetics-400 [30] and an S3D-G [42] model pre-trained on Howto100M [43].
This significantly outperforms a comparable TimeSFormer [8] model pre-trained
with a vision-language alignment objective function and provides competitive
performance to state-of-the-art vision-language models with significantly lower
training requirements - both data and time. We observe a similar performance
in the Gaze and GazePlus datasets as shown in Table 1. We obtain 27.34% on
Gaze and 16.69% on Gaze Plus, performing competitively with the zero-shot
approaches. These results are obtained without large amounts of paired text-
video pairs and a simple visual-semantic grounding approach. Note that the
performance for zero-shot ActionDecomposition is reported for leave-one-class
cross-validation, while our approach treats all classes as unseen classes.
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(a) (b) (c) (d)

Fig. 2: Ablation studies showing the impact of (a) the quality of object grounding
techniques, (b) posterior-based action refinement, (c) iterative action refinement on
generalization capabilities, and (d) the choice of visual and semantic representations.

4.2 Ablation Studies

We systematically examine the impact of the individual components on the over-
all performance of the approach. Specifically, we focus on three aspects: (i) the
impact of object grounding, (ii) the impact of posterior-based action refinement,
and (iii) the generalization of learned models with refinement, and (iv) the choice
of visual and semantic features. We experiment on the GTEA Gaze dataset and
present results in Figure 2 and discuss the results below.

Quality and Impact of Object Grounding. First, we evaluate the object
recognition performance of different object grounding techniques and present re-
sults in Figure 2(a). We consider 5 different techniques: the prior-based approach
proposed in KGL, updating the prior with CLIP-based likelihood (KGL+CLIP),
näively using CLIP to recognize the object in the gaze-based ROI (CLIP Only),
the proposed evidence-based object grounding (CLIP+Evidence), and using ev-
idence only without checking object-level likelihood (Evidence Only). As can
be seen, using CLIP improves performance significantly across the different ap-
proaches while using evidence provides gains over the näive CLIP Only method.
KGL+CLIP and the proposed CLIP+Evidence approaches perform similarly,
with KGL+CLIP being slightly better when considering more than the top-5
recognized objects. However, this does not always transfer to better action recog-
nition because the object probabilities are much closer in KGL+CLIP than in
the proposed CLIP+Evidence. We also evaluated CLIP+Evidence on an un-
known search space by prompting GPT-4 to provide a list of 100 objects com-
monly found in the kitchen. The Top-3 performance is excellent, reaching 45%,
which is remarkable considering that the unknown search space with possibly
unseen objects. We anticipate using visual commonsense priors, such as from
scene graphs [32], can help disambiguate between visually similar objects.

Impact of Posterior-based Action Refinement. One of the major con-
tributions of ALGO is the use of continuous posterior-based action refinement,
where the energy of the action generator is refined based on an updated prior
from the visual-semantic action grounding to improve the activity recognition
performance. One key question is how many iterations of such refinements are
ideal before overfitting occurs. Figure 2(b) visualizes the activity recognition per-
formance with different levels of iteration, along with the results of a constrained
search space (zero-shot) approach. As can be seen, the first two iterations signif-
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icantly improved the performance, while the third iteration provided negligible
improvement, indicating overfitting. Constraining the search space in the zero-
shot setting significantly improves the performance.

Generalization of Visual-Semantic Action Grounding. To evaluate
the impact of the posterior-based refinement on the generalization capabilities,
we evaluated the trained models at different iterations on the GTEA Gaze Plus
dataset. As seen from Figure 2, each iteration improves the model’s performance
before the performance starts to stagnate (at the third iteration). These results
indicate that while iterative refinement is useful, it can lead to overfitting to
the domain-specific semantics and can hurt the generalization capabilities of
the approach. To this end, we keep the termination criteria for the iterative
posterior-based refinement based on the generalization performance of the action
grounding model on unseen actions.

Impact of Visual-Semantic Features. Finally, we evaluate ALGO with
different visual and semantic features and visualize the results in Figure 2 (d).
We see that using ConceptNet Numberbatch (NB) considerably improves the
performance of the approach as opposed to using GloVe embeddings [46]. The
choice of visual features (S3DG vs. S3D) does not impact the performance much.
We hypothesize that the NB’s ability to capture semantic attributes [55] allows
it to generalize better than GloVe. Custom training of embedding vectors using
contextualized, ConceptNet-based pattern theory interpretations could lead to
better generalization capabilities.

4.3 Generalization of Learned Actions to Unknown Vocabulary

To measure the generalization capability of the approach to unknown actions,
we use the word similarity score (NB-WS) to measure the semantic similar-
ity between the predicted and ground truth actions. NB-WS has demonstrated
the ability to capture attribute-based representations when computing similarity
[55]. We evaluate ALGO’s ability to recognize actions from outside of its train-
ing distribution by presenting videos from datasets with unseen actions and an
unknown search space. Specifically, we refer to actions not in the original train-
ing domains as “unseen” actions, following convention from zero-shot learning.
Similarly, in an unknown search space, i.e., completely open world inference, the
search space is not pre-specified but inferred from general-purpose knowledge
sources. For these experiments, we prompted GPT-4 [12] using the ChatGPT
interface to provide 100 everyday actions that can be performed in the kitchen
to construct our search space. The results are summarized in Table 4, where we
present the verb accuracy and the ConceptNet Numberbatch Word Similarity
(NB-WS) score. ALGO generalizes consistently across datasets. Of particular
interest is the generalization from Gaze and Gaze Plus to Charades-Ego, where
there is a significantly higher number of unseen and unknown actions. Models
trained on GTEA Gaze, which has more variation in camera quality and actions,
generalize better than those from Gaze Plus. With unseen actions and unknown
search space, the performance was competitive, achieving an accuracy of 9.87%
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Training Data Evaluation Data
Unknown Search Accuracy NB-WS

Dataset # Verbs Dataset # Verbs Verbs? Space

Gaze 10 Gaze 10 7 K 14.11 27.24
Gaze Plus 15 Gaze Plus 15 7 K 11.44 24.45

Charades-Ego 33 Charades-Ego 33 7 K 11.92 36.02

Gaze 10 Charades-Ego 33 3 K 13.55 34.83
Gaze Plus 15 Charades-Ego 33 3 K 10.24 31.11

Gaze Plus 15 Gaze 10 3 K 5.27 29.68
Charades-Ego 33 Gaze 10 3 K 10.17 32.65

Gaze 10 Gaze Plus 15 3 K 10.37 23.55
Charades-Ego 33 Gaze Plus 15 3 K 11.22 24.25

Gaze 10 Gaze 10 3 U 9.87 14.51
Gaze Plus 15 Gaze Plus 15 3 U 8.45 11.78

Table 4: Generalization studies on the action recognition performance in an open-
world setting. The models are evaluated in domains containing possible unknown and
unseen actions. NB-WS: ConceptNet Numberbatch Word Similarity

on Gaze and 8.45% on Gaze Plus. NB-WS was higher, indicating better agree-
ment with the ground truth, i.e., the predicted verbs were similar to the ground
truth. While there is room for improvement, these results present a significant
step towards truly open-world learning without any constraints.

5 Discussion, Limitations, and Future Work

In this work, we proposed ALGO, a neuro-symbolic framework for open-world
egocentric activity recognition that aims to learn novel action and activity classes
without explicit supervision. We reduce the need for labeled data to learn se-
mantic associations among elementary concepts by grounding objects and using
an object-centered, knowledge-based approach to activity inference. We demon-
strate that the open-world learning paradigm is an effective inference mechanism
to distill commonsense knowledge from symbolic knowledge bases for grounded
action understanding. While showing competitive performance, there are two
key limitations: (i) it is restricted to egocentric videos due to the need to navi-
gate clutter by using human attention as a contextual cue for object grounding,
and (ii) it requires a knowledge base such as ConceptNet to learn associations
between actions and objects and hence is restricted to its vocabulary. While we
demonstrated its performance on an unknown search space, much work remains
to effectively build a search space (both action and object) to move towards a
truly open-world learning paradigm. We aim to explore the use of attention-based
mechanisms [1,44] to extend the framework to third-person videos and using ab-
ductive reasoning [5, 63] and neural knowledgebase completion approaches [10]
to integrate visual commonsense into the reasoning while moving beyond the
vocabulary encoded in symbolic knowledgebases.
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