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Abstract. Ranking-based loss functions, such as Average Precision Loss
and Rank&Sort Loss, outperform widely used score-based losses in object
detection. These loss functions better align with the evaluation criteria,
have fewer hyperparameters, and offer robustness against the imbalance
between positive and negative classes. However, they require pairwise
comparisons among P positive and N negative predictions, introduc-
ing a time complexity of O(PN), which is prohibitive since N is often
large (e.g., 108 in ATSS). Despite their advantages, the widespread adop-
tion of ranking-based losses has been hindered by their high time and
space complexities. In this paper, we focus on improving the efficiency of
ranking-based loss functions. To this end, we propose Bucketed Ranking-
based Losses which group negative predictions into B buckets (B ≪ N)
in order to reduce the number of pairwise comparisons so that time
complexity can be reduced. Our method enhances the time complexity,
reducing it to O(max(N log(N), P 2)). To validate our method and show
its generality, we conducted experiments on 2 different tasks, 3 different
datasets, 7 different detectors. We show that Bucketed Ranking-based
(BR) Losses yield the same accuracy with the unbucketed versions and
provide 2× faster training on average. We also train, for the first time,
transformer-based object detectors using ranking-based losses, thanks to
the efficiency of our BR. When we train CoDETR, a state-of-the-art
transformer-based object detector, using our BR Loss, we consistently
outperform its original results over several different backbones. Code
will be released.
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1 Introduction

Training an object detector incurs many challenges unique to object detection,
including (i) assigning dynamically a large number of object hypotheses with
the objects [2, 12, 13, 25, 29, 33, 34], (ii) sampling among these hypotheses to
ensure that the background class does not dominate training [19, 27, 29, 32] and
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Fig. 1: (a) Existing ranking-based losses (i.e., AP Loss [5, 6]) incur significant over-
head owing to pairwise comparisons between positives and negatives. (b) We propose
bucketing negatives to decrease the number of comparisons, and hence the complex-
ity. Under certain assumptions, our bucketing approach provides equal gradients with
conventional ranking-based losses such as AP Loss in (a). (c) Accuracy and efficiency
comparison. Our BRS formulation facilitates faster (between 1.9× and 6.0×) training
of visual detectors with similar AP.

(iii) minimizing a multi-task objective function [17,23,24,29]. While the choices
on assignment and sampling generally vary depending on the trained object
detector, it is very common to combine Cross Entropy or Focal Loss [17] with a
regression loss [30,36] as the multi-task loss function. Recently proposed ranking-
based loss functions [5,6,23,24] offer an alternative approach for addressing these
challenges by formulating the training objective based on the rank of positive
examples over negative examples.

Benefits of ranking-based losses. First, they are inherently robust to imbal-
ance [23] and hence, do not require any sampling mechanism under very chal-
lenging scenarios [24], e.g., even when the background-foreground ratio is 10K
for LVIS [9]. Second, they are shown to generalize over different detectors with
diverse architectures – with the exception of transformer-based ones [14,37,38],
since ranking-based losses further slow down the training of transformer-based
detectors, which we address in this paper. Such losses also offer significant per-
formance gain over their score-based counterparts, and having less hyperparam-
eters, they are much easier to tune [23,24].

The drawback of ranking-based losses. Compared to score-based losses,
ranking-based losses are more inefficient as the ranking operation inherently
requires each pair of object hypotheses to be compared against each other (Fig.
1(a)), inducing a quadratic complexity on the large number of object hypotheses
(e.g., 108 for ATSS [34] on COCO [18]). As a result, vectorized implementations
for parallel GPU processing are infeasible as such large matrices (e.g., with ∼
1016 entries for ATSS) do not fit into GPU memories. This has driven researchers
towards alternative ways of computing these matrices, which, in the end, saves
from the storage complexity but results in more inefficient algorithms [5, 6].
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Our approach. The main cause for the aforementioned complexity is the back-
ground class, i.e., negatives, forming up to 99.9% of the hypotheses [26]. Consid-
ering this, we introduce a novel bucketing approach (Fig. 1(b)) on these negatives
to address the main shortcoming of the ranking-based loss functions. Specifically,
we first sort all examples based on their scores and bucket the negatives located
between successive positives. The negatives within the same bucket are treated
as a single example and represented by their average score. We then incorporate
our bucketing approach into AP Loss [5,6] and RS Loss [24], and introduce novel
mechanisms for calculating the gradients correctly.
The significance of our approach. Theoretically, we prove that our buck-
eting approach provides the same gradients as the original ranking-based loss.
Practically, we show we can reduce loss computation time by up to ∼ 40× and
training time of a detector by up to 6× (Fig. 1(c)), addressing the main draw-
back of ranking-based loss functions. Hence, we show that the gap between the
score-based and ranking-based loss functions in terms of training time vanishes,
enabling us to train strong transformer-based object detectors such as Co-DETR
using our loss functions. As ranking-based loss functions now surpass score-based
ones or perform on par in every aspect such as accuracy, tuning simplicity, ro-
bustness to imbalance and training time, we believe that our work will make
their prevalence more dominant in the upcoming object detectors.
Contributions. Our contributions can be summarized as follows:

– We propose a novel bucketing approach to improve the efficiency of computa-
tionally-expensive ranking-based losses to train object detectors. Theoreti-
cally, our approach yields the same gradients with the original ranking-based
losses while decreasing their time complexity. Practically, we enable up to
6× faster training using our bucketing approach with no accuracy loss.

– For the first time, we incorporate ranking-based loss functions to transformer-
based detectors. Specifically, we construct BRS-DETR by replacing the train-
ing objective of the state-of-the-art transfomer-based object detector Co-
DETR [38] by our Bucketed RS (BRS) Loss.

– Our comprehensive experiments on detection and instance segmentation on
3 different challenging datasets, 5 backbones and 7 detectors show the effec-
tiveness and generalizability of our approach. Our BRS-DETR reaches 50.1
AP on COCO val set with only 12 epochs and ResNet-50 backbone, out-
performing all existing detectors using the same backbone and 300 queries.
BRS-DETR also outperforms CoDETR with Swin-T and Swin-L backbones,
reaching 57.2 AP on the COCO dataset.

2 Related Work

Although score-based loss functions, such as cross-entropy and focal loss, are
widely used to train both CNN-based [2, 17, 35] and transformer-based object
detectors [14, 37, 38], ranking-based losses for visual detection offer advantages.
The primary advantage is their robustness to class imbalance [23]. They yield
on par or better performance compared to score-based losses, without the need
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for extensive tuning of class weights or multistage sampling techniques. Another
advantage they offer is the ease of balancing losses among different tasks. In
AP Loss [5, 6], aLRP Loss [23] and RS Loss [24], the authors use the ratio of
classification and regression losses to balance these tasks. As a result, ranking-
based losses have much fewer hyperparameters during training, compared to
score-based ones.
Other Ranking-based Losses. The literature has explored other ranking-
based loss functions with different goals and assumptions. For example, DR
Loss [28] constrains a margin to be satisfied between positives and negatives, not
taking the recall into account. Smooth AP [1] introduces a smooth, differentiable
approximation of AP, with the assumption that |N | is not large. Several studies
focused on improving the efficiency of ranking-based losses for use in Support
Vector Machines (SVMs) [21, 22]. However, these solutions have been limited
to training linear SVMs and hence, problems that can be solved using linear
functions. In this paper, we focus on improving ranking-based loss functions
[5, 6, 24] that can be used for training complex deep networks such as object
detectors.
Comparative Summary. Ranking-based training objective for visual detectors
proved their superiority over score-based loss functions in visual detection tasks
[5, 6, 23, 24]. However, due to the requirement of pairwise ranking their time
complexity is higher than the score-based alternatives. Such a disadvantage of
ranking-based loss functions prevents their applicability to larger visual detectors
(i.e., transformer-based object detectors).

3 Background on Ranking-based Losses

Ranking-based losses for object detection rely on pairwise comparisons between
the scores of different detections to determine the rank of a detection among
positives and negatives. Denoting the score of the ith detection by si, we can
compare the scores of two detections i and j with a simple difference transform:
xij = sj − si. By counting the number of instances with xij > 0, we can deter-
mine ith detection’s rank among positives (P) and all detections (positives and
negatives: P ∪N ) as follows:

rank+(i) =
∑
j∈P

H̄(xij), and rank(i) =
∑

j∈P∪N
H̄(xij), (1)

where H̄(x) is one if x > 0 and zero otherwise. Since dH̄(x)/dx is either infinite
(at x = 0) or zero (for x ̸= 0), a smoothed version is used (δ: a hyper-parameter):

H(x) =


0 , x < −δ
x

2δ
+ 0.5 , −δ ≤ x ≤ δ

1 , δ < x

(2)
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3.1 Revisiting Average Precision (AP) Loss

Given the definitions in Eq. 1, AP Loss [5, 6] can be defined as:

LAP = 1−AP = 1− 1

|P|
∑
i∈P

precision(i) = 1− 1

|P|
∑
i∈P

rank+(i)

rank(i)
. (3)

Chen et al. [5,6] simplified Eq. 3 by rewriting it in terms of pairwise comparisons
between positive and negative detections:

LAP =
1

|P|
∑
i∈P

∑
j∈N

H(xij)

rank(i)
=

1

|P|
∑
i∈P

∑
j∈N

LAP
ij , (4)

where LAP
ij = H(xij)/rank(i) is called the primary term. Note that LAP

ij is non-
differentiable since the step function (H(·)) applied on xij is non-differentiable,
which will be discussed next.

3.2 Revisiting Identity Update

Oksuz et al. [24] showed that various ranking-based losses (including AP Loss
in Eqs. 3 & 4) can be written in a general form as:

L =
1

Z

∑
i∈P∪N

(ℓ(i)− ℓ∗(i)), (5)

where ℓ(i) is the ranking-based error (e.g., precision error) computed on the
ith detection, ℓ∗(i) is the target ranking-based error (the lowest error possible)
and Z is the normalization constant. The loss in Eq. 5 can be computed and
optimized as follows [24]:
1. Computation of the Loss. First, each pair of logits (si and sj) are compared
by calculating their difference transforms as xij = sj−si. With the step function
H(·) (Eq. 2), the number of detections higher than si (and therefore its precision
error, ℓ(i)) can be easily calculated (see Sect. 3.1). Given xij , the loss can be re-
written and calculated in terms of primary terms Lij as L = 1

Z

∑
i∈P∪N

∑
j∈P∪N

Lij ,

by taking:

Lij = (ℓ(i)− ℓ∗(i)) p(j|i), (6)

where p(j|i) is a probability mass function (pmf) that distributes the error com-
puted on the ith example over the jth example in order to determine the pairwise
primary term Lij . p(j|i) is commonly taken as a uniform distribution [23,24].
2. Optimization of the Loss. The gradient of the primary term wrt. to the
difference transform (∂Lij/∂xij) is non-differentiable. Denoting this term by
∆xij , we have [5]:

∂L
∂si

=
∑
j,k

∂L
∂Ljk

∆xjk
∂xjk

∂si
=

1

Z

(∑
j

∆xji −
∑
j

∆xij

)
. (7)
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Therefore, optimizing a ranking-based loss function reduces to determining ∆xij .
Inspired by Chen et al. [5], Oksuz et al. [24] employ Perceptron Learning [31] and
show that ∆xij in Eq. 7 is simply the primary term itself: ∆xij = −(L∗

ij−Lij) =
−(0−Lij) = Lij , hence the name Identity Update. Plugging this into Eq. 7 yields
(see Oksuz et al. [24] for the steps of the derivation):

∂L
∂si

=
1

Z

(∑
j

Lji −
∑
j

Lij

)
. (8)

Therefore, both computing and optimizing the loss reduces determining the pri-
mary term Lij .

3.3 Revisiting AP Loss and RS Loss with Identity Update

AP Loss [5, 6]. For defining AP Loss with identity update, the errors in Eq.
5 can be derived as ℓR(i) = NFP(i)

rank(i) , ℓ∗R(i) = 0 and Z = |P|. Furthermore,

defining pR(j|i) as a uniform pmf, that is pR(j|i) =
H(xij)
NFP(i) , we can obtain the

primary terms of AP Loss using Identity Update, completing the derivation for
computation and optimization (Eq. 8):

LAP
ij =

{
(ℓR(i) − ℓ∗R(i)) pR(j|i), for i ∈ P, j ∈ N
0, otherwise,

(9)

RS Loss [24]. RS Loss includes an additional sorting objective (ℓS(i)) to promote
better-localized positives to be ranked higher than other positives:

LRS =
1

|P|
∑
i∈P

[(ℓR(i) − ℓ
∗
R(i))︸ ︷︷ ︸

ranking

+ (ℓS(i) − ℓ
∗
S(i))︸ ︷︷ ︸

sorting

]. (10)

The primary terms of RS Loss can be obtained in a similar manner to AP Loss
(see the Supp.Mat. for derivations), yielding:

LRS
ij =

{
(ℓR(i) − ℓ∗R(i)) pR(j|i), for i ∈ P, j ∈ N
(ℓS(i) − ℓ∗S(i)) pS(j|i), for i ∈ P, j ∈ P,

0, otherwise,

(11)

where pS(j|i) is the sorting pmf. Note that RS Loss has the same primary terms
with AP Loss for i ∈ P, j ∈ N . The primary terms for i ∈ P, j ∈ P directly
targets promoting the better-localized positives.

3.4 Complexity of Ranking-based Loss Functions

These loss functions originally have the space complexity of O((|P|+ |N |)2) [5,6]
as they need to compare each pair. This quadratic space complexity makes it
infeasible compute these loss functions using modern GPUs as the number of
logits in object detection is very large. To alleviate that, Chen et al. [5] intro-
duced two tricks at the expense of making the computation inefficient: (1) Loop
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on Positives: By implementing a loop over the positive examples, Chen et al.
managed to reduce the time complexity to O(|P|(|P|+ |N |)) ≈ O(|P||N |) since
N ≫ P and the space complexity to O(|P|+ |N |). (2) Discard Trivial Negatives:
AP Loss considers negative examples with lower rank than all positives as trivial
and disregards them.

4 Bucketed Ranking-based Loss Functions for Efficient
Optimisation of Object Detectors

Training object detectors with existing ranking losses has several advantages as
we presented before, however, they suffer from significantly large training time.
We now address this by our Bucketing Approach, and propose our Bucketed AP
and RS Losses.

4.1 Bucketing Negatives for Efficient Optimisation

Our main intuition is to bucket the sequential negative examples considering
that they will have very similar or equal gradients. Fig. 1(a) demonstrates this
phenomenon in which n1, n2 both are assigned equal gradients as well as each
negative among n3, n4, n5, n6 in the standard AP Loss. Formally, we sort all
given logits si ∈ P ∪N using a conventional sorting methods. Let us denote this
sorted permutation of the logits by ŝ1, ŝ2, ...., ŝ|P∪N|, i.e., ŝ1 > ŝ2 > .... > ŝ|S|.
Given these sorted logits and denoting the ith positive logit in the ordering by
ŝ+i , the buckets of negatives B1, ..., B|P+1| can be obtained by:

B1 > ŝ+1 > B2 > ŝ+2 > ... > ŝ+|P| > B|P+1|. (12)

We will denote the size of the ith negative bucket by bi. Having created the
buckets, we now determine a single logit value for each bucket, which we call
as the prototype logit as it is necessary while assigning the ranking error. We
denote the prototype logit for the ith bucket by sbi . Note that if δ = 0 in Eq. 2,
then any logit satisfying ŝ+i−1 > sbi > ŝ+i can be a prototype logit as the ranking
stays the same. However, in the case of δ > 0, the boundaries between the logits
are smoothed. That’s why, practically, we find it effective to use the mean logit
of a bucket as its prototype logit.

Note that this bucketing approach reduces the number of logits (positive and
prototype negative) to a maximum of 2|P| + 1. As a result, the pairwise errors
can now fit into the memory. Consequently, the loop in the red box of Alg. S1 (in
Suppl. Mat.) is no longer necessary, which gives rise to efficient ranking-based
loss functions which we discuss in the following.

4.2 Bucketed Ranking-based Loss Functions

Here, we introduce Bucketed versions of AP and RS Losses. Please refer to Alg.
S2 (in Suppl. Mat.) for the algorithm.
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Bucketed AP Loss Definition. To define Bucketed version of AP Loss, we
need to define current (ℓbR(i)) and target ranking errors (ℓb,∗R (i)) for the ith
positive. Similar to previous works [5, 6, 24], we use a target ranking error of 0,
i.e., ℓb,∗R (i) = 0. Defining the current ranking error, similar to Eq. 3, requires
rank(i) and NFP(i). These two quantities can easily be defined using the bucket
size bi and the prototype logit. Different from the conventional AP Loss, we
obtain the pairwise relation H(xb

ij) using the prototype logit sbi . Particularly,
with the ordering in Eq. 12, rank(i) =

∑i
j=1 H(xij) + H(xb

ij)bj and NFP(i) =∑i
j=1 H(xb

ij)bj where xb
ij = sbj − si. Then, the resulting ranking error computed

on ith positive is:

ℓbR(i) =
NFP(i)

rank(i)
=

∑i
j=1 H(xb

ij)bj∑i
j=1 H(xij) +H(xb

ij)bj
, i ∈ P. (13)

Optimisation. Here, we need to define the primary terms, as the product be-
tween the error and the pmf following Identity Update [24]. Unlike the previous
work, the weights of each prototype negative are not equal as a bucket includes
varying number of negatives. Therefore, we use a weighted pmf while distributing
the ranking error over negatives. Formally, if j is the jth prototype negative, then
we define the pmf as p(jb|i) = bj/NFP(i). The resulting primary term between
the ith positive and jbth negative is then:

Lb
ij =

∑i
j=1 H(xb

ij)bj∑i
j=1 H(xij) +H(xb

ij)bj
× bj

NFP(i)
, i ∈ P, j ∈ Ñ (14)

where Ñ is the set of prototype negatives. However, we need the primary terms
for the ith negative, not for the prototype ones. Given Lb

ij , the gradients of the
prototype negatives and actual negatives can easily be obtained following Iden-
tity Update. However, we still need to find the gradients of the actual negatives.
To do so, we simply normalise the prototype gradient by its bucket size bj and
distribute the gradients to actual negatives, completing our method. In Theorem
1, we establish that our Bucketed AP Loss provides exactly the same gradients
with AP Loss when δ = 0.

Bucketed RS Loss Given that we obtained Bucketed AP Loss, converting
RS Loss into a bucketed form is more straightforward. This is because (i) the
primary term and its gradients of RS Loss are equal to those of AP Loss if i ∈ P,
j ∈ N and we simply use Lb

ij in such cases; and (ii) if i ∈ P, j ∈ P, then an
additional term is included in RS Loss to estimate the pairwise relations between
positives (Eq. 11), which is not affected by bucketing.

4.3 Theoretical Discussion

The first theorem ensures that the gradients provided by our loss functions are
identical with their conventional counterparts under certain circumstances. The
second states that our algorithm is theoretically faster than the conventional AP
and RS Losses.
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Theorem 1. Bucketed AP Loss and Bucketed RS Loss provide exactly the same
gradients with AP and RS Losses respectively when δ = 0.

Theorem 2. Bucketed RS and Bucketed AP Losses have O(max((|P|+|N |) log(|P|+
|N |), |P|2)) time complexity.

As a result, we observe the same performance empirically in less amount of time.
Proofs are provided in Supp. Mat.

5 Bucketed Rank-Sort (BRS) DETR

While transformer-based detectors [8,14,16,37,38] have been providing the best
performance in several object detection benchmarks, optimizing such detectors
using ranking-based losses based on performance measures has not been in-
vestigated. Here, we address this gap by incorporating our BRS Loss into Co-
DETR [38] as the current SOTA detector on the common COCO benchmark [18].

Co-DETR increases the number and variation of the positive examples in the
transformer head by leveraging one-to-many assignment strategies in anchor-
based detectors (such as ATSS [34] and Faster R-CNN [29]) as auxiliary heads.
As the number of proposals is large in such detectors, they can easily provide
more and diverse examples, resulting in better performance of the transformer
head. Co-DETR is originally supervised with the following loss function:

L∑
l=1

(
L̃Dec

l + λ1

K∑
k=1

L̃Aux
k,l + λ2

K∑
k=1

LAux
k,l

)
, (15)

where λ1 and λ2 weigh each loss component. The first two components, L̃Dec
l

and L̃Aux
k,l , are the losses of the lth decoder layer in the following form:

λclsLcls + λbboxLbbox + λIoULIoU , (16)

and Lcls, Lbbox and LIoU are Focal Loss, L1 Loss and GIoU Loss respectively [38].
L̃Dec
l and L̃Aux

k,l differ in their input queries. That is, while L̃Dec
l follows standard

DETR-based models [14, 37] with one-to-one matching of the queries, L̃Aux
k,l is

computed based on positive anchors of kth auxiliary head with one-to-many
assignment. And LAux

k,l is the conventional loss of the kth auxiliary head, e.g., the
weighted sum of classification, localisation and centerness losses for ATSS [34].

In order to align the training and evaluation objectives better, we replace
L̃Dec
l and L̃Aux

k,l in Eq. 16 by:

LBRS + λbboxLbbox + λIoULIoU , (17)

and set λbbox and λIoU dynamically during training to LBRS/Lbbox and LBRS/LIoU

to simplify the hyperparameter tuning following Oksuz et al. [24]. Similarly, we
replace the loss functions of the auxiliary ATSS [34] and Faster R-CNN [29]
heads (LAux

k,l in Eq. 15) by our BRS Loss. This modification also aligns with the
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objective of the auxiliary heads by the performance measure, hence results in
more accurate auxiliary heads [24]. Furthermore, as using BRS Loss with Faster
R-CNN does not require sampling thanks to its robustness to imbalance, no lim-
itation is imposed on the number of positives in Faster R-CNN. Hence, the main
aim of Co-DETR, that is to introduce more positive examples to the transformer
head, is corroborated. As a result, our BRS DETR enables significantly efficient
training compared to RS Loss also by improving the performance of Co-DETR.

6 Experiments

We analyze our contributions in three primary sections. First, we evaluate the
effectiveness of our bucketing approach by contrasting it with RS Loss and AP
Loss across different CNN-based visual detectors, on object detection and in-
stance segmentation tasks. Next, we thoroughly examine how our bucketed RS
Loss performs on transformer-based object detectors with different backbones.
This is the first time a ranking-based loss is applied to transformer-based ob-
ject detectors, thanks to the time-efficiency of our bucketing method. Finally,
we present comparisons with score-based loss functions and other ranking-based
loss functions in the literature. Our experiments clearly show that in terms of
training time, accuracy and ease of tuning, our BRS Loss is more preferable over
any existing loss function to train object detectors.
Dataset and Performance Measures. Unless otherwise noted, we train all
models on COCO trainval35k (115k images) and test them on minival (5k im-
ages). We use COCO-style Average Precision (AP) and also report AP50, AP75

as the APs at IoUs 0.50 and 0.75; and APS, APM and APL to present the
accuracy on small, medium and large objects.

6.1 Efficiency and Effectiveness of Bucketed Ranking Losses

To comprehensively analyze the effectiveness of our bucketing method, we design
experiments on real-world data as well as synthetic data. For the former, we aim
to present that our method significantly decreases the training time of the de-
tection and segmentation methods (up to ∼ 5×). As training the entire detector
does not isolate the runtime of the loss function, on which our main contribution
is, we also design an experiment with synthetic data. This set of experiments
show that our bucketing approach, in fact, decreases the loss function runtime
by up to 40×, thereby resulting in shorter training time of the detectors.
Experimental Setup. We follow the experimental setup used in RSLoss [24]
only by replacing the loss function by our bucketed loss function to ensure com-
parability and consistency of results. We report our findings on efficiency and
accuracy using the models trained on 4 Tesla A100 GPUs with a batch size of 16,
i.e., 4 images/GPU. Unless stated otherwise, we train the models for 12 epochs
and test them on images with a size of 1333×800 following the common conven-
tion [12, 24, 34]. In order to comprehensively demonstrate the efficiency of our
approach, we use five different detectors: Faster R-CNN [29], Cascade R-CNN [2],
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Table 1: Bucketed Losses (BRS, BAP) vs. RS & AP Losses on COCO object detection
for object detectors. R-X: ResNet-X. Models with R-101 are trained 36 epochs.

Method Detector BB L Time Accuracy
Titer(s) ↓ AP ↑ AP50 ↑ AP75 ↑

Multi Stage
Faster R-CNN

R-50 RS 0.50 39.4 59.5 43.0
BRS 0.17 3.0x ↓ 39.5 59.5 42.8

R-101 RS 0.75 47.3 67.4 51.2
BRS 0.38 2.0x ↓ 47.7 67.8 51.5

Cascade R-CNN R-50 RS 1.28 41.1 58.7 44.1
BRS 0.24 5.3x ↓ 41.1 58.8 44.2

One Stage

ATSS

R-50

AP 0.32 38.1 58.2 41.0
BAP 0.15 2.1x ↓ 38.5 58.6 41.3
RS 0.36 39.8 58.9 42.6

BRS 0.15 2.4x ↓ 39.8 58.8 42.9

PAA

AP 0.45 37.3 54.3 41.2
BAP 0.30 1.5x ↓ 37.2 56.2 40.2
RS 0.57 40.8 58.8 44.6

BRS 0.30 1.9x ↓ 40.9 59.0 44.4

ATSS [34] and PAA [12] for object detection as well as Mask R-CNN [10] for
instance segmentation.

Bucketed Ranking Based Losses Significantly Decrease the Training
Time with Similar Accuracy. Multi-stage detectors: Among multi-stage de-
tectors, we train the commonly-used Faster R-CNN and Cascade R-CNN with
RS Loss and BRS Loss, and present average iteration time as well as AP of
the trained models. In order to evaluate our contribution comprehensively, we
train Faster R-CNN also with a stronger setting, in which, we use ResNet-101,
train it for 36 epochs using multi-scale training similar to [24]. The results are
presented in Table 1, in which we can clearly see that BRS Loss consistently
reduces the training time of all three detectors as well as preserves (or slightly
improve) their performance. Especially for Cascade R-CNN, which is still a very
popular and strong object detector along with its variants such as HTC [4], the
training time decreases by 5.3×. This is because the loss function is applied to
the logits for three times based on the cascaded nature of this detector, and
therefore, our contribution can be easily noticed. Moreover, it might seem that
the efficiency gain decreases once the size of the backbone increases from R-50
to R-101 in Faster R-CNN. However, this is an expected result as the overall
feature extraction time increases due to the larger number of parameters in the
backbone, and hence, as we will discuss in the synthetic experiments, this is
independent from our bucketing approach, operating on the loss function after
the feature extraction.

One-stage detectors: To show that our gains generalize to one-stage detectors
and to AP Loss, we train the common ATSS and PAA detectors with our BAP
and BRS Losses, and compare them with AP and RS Losses respectively. Table
1 validates our previous claims: Our bucketed losses obtain similar performance
in around half of the training time required for AP and RS Losses.
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Table 2: Comparison with RS Loss on
instance segmentation task on COCO val
using Mask R-CNN. BB: Backbone.

BB L Efficiency Accuracy
Titer(s) ↓ AP ↑ AP50 ↑ AP75 ↑

R-50 RS 0.56 36.3 57.2 38.8
BRS 0.24 2.3x ↓ 36.2 57.2 38.8

R-101 RS 0.59 40.2 61.8 43.5
BRS 0.27 2.2x ↓ 40.3 62.0 43.8

Table 3: Comparison on different inst.
segm. datasets using Mask R-CNN. AP75

is N/A as it is not used for Cityscapes.

Dataset L Efficiency Accuracy
Titer(s) ↓ AP ↑ AP50 ↑ AP75 ↑

Cityscapes RS 0.43 43.5 68.1 N/A
BRS 0.19 2.3x ↓ 43.3 67.7 N/A

LVIS RS 0.87 25.6 39.2 27.3
BRS 0.35 2.5x ↓ 25.8 39.6 27.4

Table 4: BRS Loss further improves performance with similar training budget. We
report mask AP for instance segmentation

Task Detector L AP ↑ AP50 ↑ AP75 ↑

Object Det. C. R-CNN RS 41.1 58.7 44.1
BRS 42.3 +1.2 60.2 45.2

Inst. Seg. M. R-CNN RS 36.3 57.2 38.8
BRS 37.3 +1.0 58.4 40.2

Instance Segmentation: Given that our loss functions is efficient in object
detectors, one simple extension is to see their generalization to instance segmen-
tation methods. To show that, we train Mask R-CNN, a common baseline, with
our BRS Loss on three different dataset from various domains: (i) COCO (Table
2), (ii) Cityscapes [7] as an autonomous driving dataset (Table 3) and LVIS [9]
a long-tailed dataset with more than 1K classes (Table 3). The results confirm
our previous finding that our BRS Loss decreases the training time significantly
by up to ∼ 2.5× compared to RS Loss by preserving its accuracy.
Given Similar Training Budget, Bucketed Ranking Based Loss Func-
tions Significantly Improve the Accuracy. There might be several benefits
of reducing the training time of the detector as more GPU time is saved. Here,
we show a use-case in which we ask the following question: what would hap-
pen if we allocate the similar amount of training time to both bucketed and
non-bucketed losses? To answer that, we train Cascade R-CNN, a detector, and
Mask R-CNN, an instance segmentation method, using our BRS Loss. Consid-
ering our speed-ups on these models (6.0× and 2.3×), we simply increased their
training epochs from 12 to 36 and 27 respectively. Note that, for Cascade R-
CNN, we still spend significantly less amount of training time. Table 4 shows
that models trained with the BRS Loss outperform (with +1.2 and 1.0 AP) their
counterparts trained with the RS Loss in both cases.
Experiments on Synthetic Data. Up to now, to measure any speed-up, we
considered the entire pipeline and did not decouple the loss computation step.
However, we only improve the loss computation step. Hence, an analysis fo-
cusing only on this part can reveal our contribution more clearly. Therefore,
we design a simple experiment using synthetic data. Particularly, we randomly
generate L logits such that m% of these logits are positive (see Supp.Mat. for
data generation details). To cover the wide range of existing detectors, we set
L ∈ {10K, 100K, 1M} and m ∈ {0.1, 1.0, 2.0, 5.0}. Different choices for L and m
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Table 5: Comparison of our BRS-DETR
with Co-DETR (trained with its original
loss function) on different backbones on
COCO val set.

Backbone Detector AP AP50 AP75 APs APm APl

ResNet50 Co-DETR 49.3 67.2 54.0 32.1 52.6 63.8
BRS-DETR 50.1 67.4 54.6 31.9 53.9 65.0

Swin-T Co-DETR 51.7 69.6 56.4 34.4 54.9 66.8
BRS-DETR 52.3 69.5 57.1 34.6 55.7 68.0

Swin-L Co-DETR 56.9 75.5 62.6 40.1 61.2 73.3
BRS-DETR 57.2 75.0 62.5 39.4 61.7 74.1

Table 6: Comparison of our BRS-DETR
with DETR variants (trained with their
original loss functions) w ResNet-50 on
COCO val set. Qu: Queries. Ep: Epochs.

Detector Qu Ep AP AP50 AP75 APs APm APl

DETR [14] 100 300 42.0 62.4 44.2 20.5 45.8 61.1

DN-DETR [15] 300 50 48.6 67.4 52.7 31.0 52.0 63.7

DINO [3] 900 12 49.4 66.9 53.8 32.3 52.5 63.9

H-DETR [11] 300 12 48.7 66.4 52.9 31.2 51.5 63.5

Co-DETR [38] 300 12 49.3 67.2 54.0 32.1 52.6 63.8

BRS-DETR 300 12 50.1 67.4 54.6 31.9 53.9 65.0

correspond to the logit distributions of common object detectors. We compute
BAP and AP Loss on this synthetic data and compare their runtime to focus on
loss computation time. We observed that our BAP Loss has a significant, up to
∼ 40×, speed-up compared to AP Loss. The speed-up becomes more pronounced
with increasing number of logits. Supp. Mat. presents detailed results.

6.2 The Effectiveness of Our BRS-DETR

While we incorporate our BRS Loss into Co-DETR, we use all original settings
unless otherwise noted. Please refer to Supp.Mat. for the details.
BRS-DETR Outperforms Existing Transformer-based Detectors Con-
sistently. Here, we first employ ResNet-50 backbone as it has been used by many
detectors, enabling us to compare our method with many different DETR-based
manner in a consistent manner. In this fair comparison setting, our BRS-DETR
outperforms all existing DETR variants reaching 50.1 AP as shown in Table
6. For example, our BRS DETR outperforms DN-DETR by 1.5AP with less
training epochs and improves Co-DETR as we discuss next.
Training Co-DETR with RS Loss takes 6x less time compared to using
RS Loss. Finally, we also compare the training efficiencies of BRS Loss and RS
Loss on Co-DETR. We observe that our BRS Loss decreases the training time
of Co-DETR by 6.0× (from 4.14s per iteration to 0.69s) in comparison to RS
Loss. We note that this is the largest training time gain of our BRS Loss. This
is because Co-DETR consists of multiple transformer-based as well as auxiliary
heads, requiring multiple loss estimations.
BRS-DETR Improves Co-DETR over Different Backbones Consis-
tently. In order to show the effectiveness of our BRS Loss, we compare our
results with Co-DETR in Table 5 using different backbones. We note that we
improve the baseline Co-DETR consistently in all settings. For example, our im-
provement on ResNet-50 is 0.8AP, which is a notable improvement. However, as
the backbone gets larger (e.g., Swin-L [20]), our gains decrease, which is expected
and commonly observed in the literature, e.g., [12].
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Table 7: Comparison with the score-
based losses. CE: Cross-entropy. #H:
Number of hyperparameters. Ours has
very similar Titer(s) also by being more
accurate and simple-to-tune.

Detector L Titer(s) ↓ AP ↑ #H

Faster R-CNN
CE+L1 0.14 37.6 9

RS 0.50 39.4 3
BRS (Ours) 0.17 39.5 3

ATSS
Focal L.+GIoU 0.14 39.3 5

RS 0.36 39.8 1
BRS (Ours) 0.15 39.8 1

Table 8: Comparison with other ranking-
based losses. Our approach performs bet-
ter on both accuracy and efficiency.

Detector L Titer(s) ↓ AP ↑ #H

Faster R-CNN aLRP [23] 0.28 37.4 3
BRS (Ours) 0.17 39.5 3

ATSS

AP [5] 0.32 38.1 5
DR [28] 0.20 38.1 5

aLRP [23] 0.32 37.7 1
BRS (Ours) 0.15 39.8 1

RetinaNet DR [28] 0.29 37.4 5
BRS (Ours) 0.23 38.3 1

6.3 Comparison with Score-based and Other Ranking-based Losses

In previous sections, we showed the efficiency of our loss functions compared to
AP and RS Losses as their counterparts. Here, we compare our bucketed losses
with the score based losses, i.e., Cross-entropy and Focal Loss, and other ranking
based losses including DR Loss [28] and aLRP Loss [23]. To do so, in Tables 7
and 8, we report average training time, AP for accuracy and number of hyper-
parameters to capture the tuning simplicity of the loss functions. Compared to
score-based loss functions in Table 7, our BRS Loss improves performance of
both approaches, is significantly simpler-to-tune with a low number of hyperpa-
rameters and has similar training iteration time. Hence, our BRS Loss is either
superior or on par with existing score-based losses. As for other ranking-based
losses in Table 8, our BRS Loss is the most efficient and accurate ranking-based
loss function for all three detectors. As an example, compared to ATSS trained
with DR Loss, our BRS Loss yields 1.8AP better accuracy with 25% less training
time and significantly less number of hyperparameters. Therefore, our bucketed
loss functions are now promising alternatives to train object detectors.

7 Conclusion

In this paper, we introduced a novel method to improve the efficiency of ranking-
based loss functions by binning negatives into buckets and implementing positive-
negative pairwise comparisons between positives and buckets of negatives. We
showed that this method improves the computational complexity to a level where
pairwise comparisons can be stored as a matrix in memory and running time be-
comes very close to that of score-based loss functions. Also, for the first time, we
integrated a ranking-based loss to Co-DETR, a DETR-based detector, which was
possible thanks to our method’s lower complexity, and reported improvements
on different backbones. Our comprehensive experiments comprising 2 different
tasks, 3 different dataset and 7 different detectors – all with positive outcomes
– show the general applicability of our approach.
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