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Overview

In this supplementary material, we further discuss the following content:

– The transformation between Plücker coordinates and orthogonal represen-
tation(Sec. 1).

– Jacobian derivation for RSL-BA(Sec. 2).
– The impact of the number of feature lines and points(Sec. 3).

− What is the optimal number of points to measure along a line?(Sec. 3.1).
− What is the optimal number of lines to employ for RSL-BA?(Sec. 3.2).

– Complete results on the TUM-RSVI and WHU-RSVI dataset(Sec. 4).
− Synthetic Images.(Sec. 4.1).
− Real Images.(Sec. 4.2).

1 The Transformation between Plücker Coordinates and
Orthogonal Representation

The Plücker coordinate of the line are defined as: L = (n⊤,a⊤)⊤ with the
orthogonal representation parameters τ = [ψ1, ψ2, ψ3, ϕ]

⊤. Where a ∈ R3 repre-
sents the direction vector of the line, n ∈ R3 represents the normal vector. We
have [2, 4]:

U = Exp([ψ1, ψ2, ψ3]
∧) =

[
n

∥n∥
a

∥a∥
n×a

∥n×a∥

]
(1)

The function Exp maps from so(3) to SO(3), and ψ = [ψ1, ψ2, ψ3]
⊤ repre-

sents the rotation angles from the camera coordinate system to the line coor-
dinate system around the x, y, and z axes, respectively. By utilizing equation
Eq. (1), we can obtain the first term of the orthogonal representation.
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W =

[
w1 −w2

w2 w1

]
=

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
=

1√
∥n∥2 + ∥a∥2

[
∥n∥ −∥a∥
∥a∥ ∥n∥

]
(2)

With Eq. (2), we can obtain the second term of the orthogonal representation.
The transformation from the orthogonal representation to Plücker coordi-

nates can be computed as follows:

L′ = [w1u
⊤
1 , w2u

⊤
2 ]

⊤ =
1√

∥n∥2 + ∥a∥2
L (3)

L′ and L differ by a scale factor, but represent the same line.

2 Jacobian Derivation for RSL-BA

Since lines in space only have four degrees of freedom, and Plücker coordinates
are over-parameterized, they cannot be directly used for unconstrained optimiza-
tion. Therefore, we often use Plücker coordinates for initialization and transfor-
mation, while employing an orthogonal representation for parameter optimiza-
tion. Let the representation of the space line L in the world coordinate system
be Lw = (n⊤

w ,a
⊤
w)

⊤, where nw and aw respectively denote the normal vector to
the line and the direction of the line from the camera center. The representation
of the line L in the camera coordinate system is Lc = (n⊤

c ,a
⊤
c )

⊤. The matrix
from the world coordinate system to the camera when the camera exposes the
v-th row of pixels is:

Tv
cw =

[
(I+ v[ω]×)Rcw tcw + vd

0 1

]
(4)

The transformation of Plücker line coordinates from the world coordinate
system to the camera coordinate system is denoted as Nv

cw:

Nv
cw =

[
(I+ v[ω]×)Rcw [tcw + vd]×(I+ v[ω]×)Rcw

0 (I+ v[ω]×)Rcw

]
(5)

We have:

Lvc = Nv
cwLw =

[
(I+ v[ω]×)Rcw [tcw + vd]×(I+ v[ω]×)Rcw

0 (I+ v[ω]×)Rcw

]
Lw (6)

Let the parametric equation of the curve under the aforementioned parame-
ters be:

l1v
3 + l2uv

2 + (l3 + l4)v
2 + l5uv + (l6 + l7)v + l8u+ l9 = 0 (7)
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Take a point q = [u v]⊤ from the projected curve. Next, we will com-
pute the Jacobian matrices of various error functions. Firstly, let’s consider the
perpendicular-distance error:

ed1 =
|l1v3 + l2uv

2 + (l3 + l4)v
2 + l5uv + (l6 + l7)v + l8u+ l9|√

(l8 + vl5 + v2l2)2 + (l6 + vl3 + v2l1)2
(8)

According to the chain rule for differentiation, the Jacobian matrix is repre-
sented as [2, 4]:

Jed1
=
∂ed1
∂sc

∂sc
Lvc

[
∂Lvc
∂δx

∂Lvc
∂Lw

∂Lw
∂δτ

] (9)

The first term represents the partial derivative of the error with respect to
the curve parameters, while the second term represents the partial derivative of
the curve parameters with respect to the line features in the camera coordinate
system. The last term in the matrix contains two parts: one is the derivative
of the rotation, translation, angular velocity and linear velocity with respect to
the line features in the camera coordinate system, and the other is the deriva-
tive of the four parameters increment with respect to the line in its orthogonal
representation.

The first term:
∂ed1
∂sc

= [
∂ed1
∂l1

∂ed1
∂l2

∂ed1
∂l3

∂ed1
∂l4

∂ed1
∂l5

∂ed1
∂l6

∂ed1
∂l7

∂ed1
∂l8

∂ed1
∂l9

]1×9

(10)

The second term:

∂sc
∂Lvc

= [
∂sc
∂nc

∂sc
∂ac

] =


∂l1
∂n1

∂l1
∂n2

... ∂l1∂a3
∂l2
∂n1

∂l2
∂n2

... ∂l2∂a3
......
∂l9
∂n1

∂l9
∂n2

... ∂l9∂a3


9×6

(11)

The first term in the parentheses:

Lvc =

[
(I+ v[ω]×)Rcw [tcw + vd]×(I+ v[ω]×)Rcw

0 (I+ v[ω]×)Rcw

]
Lw

=

[
(I+ v[ω]×)Rcwnw + [tcw + vd]×(I+ v[ω]×)Rcwaw

(I+ v[ω]×)Rcwaw

] (12)

We first differentiate with respect to rotation:

∂Lvc
∂δθ

=

[
(I+v[ω]×)(I+[δθ]×)Rcwnw+[tcw+vd]×(I+v[ω]×)(I+[δθ]×)Rcwaw

∂δθ
(I+v[ω]×)(I+[δθ]×)Rcwaw

∂δθ

]
(13)

We observe that all of them have the form ∂(A[δθ]×b)
∂δθ , where A is a 3 × 3

matrix, and b is a 3× 1 matrix:

A =

A1 A2 A3

A4 A5 A6

A7 A8 A9

 , [δθ]× =

 0 −δθ3 δθ2
δθ3 0 −δθ1
−δθ2 δθ1 0

 ,b =

b1b2
b3

 (14)



4 Y. Zhang, B. Liao et al.

Expanding ∂(A[δθ]×b)
∂δθ , we get:

∂(A[δθ]×b)

∂δθ
=

(A3b2 −A2b3) (A1b3 −A3b1) (A2b1 −A1b2)
(A6b2 −A5b3) (A4b3 −A6b1) (A5b1 −A4b2)
(A9b2 −A8b3) (A7b3 −A9b1) (A8b1 −A7b2)

 (15)

Differentiate with respect to translation:

∂Lvc
∂tcw

=

[
∂((I+v[ω]×)Rcwnw+[tcw+vd]×(I+v[ω]×)Rcwaw)

∂tcw
∂((I+v[ω]×)Rcwaw)

∂tcw

]

=

[
∂([tcw]×(I+v[ω]×)Rcwaw)

∂tcw
0

]
= −

[
[(I+ v[ω]×)Rcwaw]×

0

]
6×3

(16)

Differentiate with respect to angular velocity:

∂Lvc
∂ω

=

[
∂((I+v[ω]×)Rcwnw+[tcw+vd]×(I+v[ω]×)Rcwaw)

∂ω
∂((I+v[ω]×)Rcwaw)

∂ω

]
(17)

There are two forms: [ω]×b and A[ω]×b. The forms in the differentiation
with respect to rotation and translation are the same. Here we will not expand
it in detail.

Differentiate with respect to linear velocity:

∂Lvc
∂d

=

[
∂((I+v[ω]×)Rcwnw+[tcw+vd]×(I+v[ω]×)Rcwaw)

∂d
∂((I+v[ω]×)Rcwaw)

∂d

]

=

[
∂(v[d]×(I+v[ω]×)Rcwaw)

∂d
0

]
=

[
[v(I+ v[ω]×)Rcwaw]×

0

]
6×3

(18)

The second term in the parentheses:

Lvc =

[
nc
ac

]
= Nv

cwLw =

[
(I+ v[ω]×)Rcw [tcw + vd]×(I+ v[ω]×)Rcw

0 (I+ v[ω]×)Rcw

]
Lw (19)

So we have:
∂Lvc
∂Lw

= Nv
cw (20)

The last term:

∂Lw
∂δτ

=
[
∂Lw

∂ψ1

∂Lw

∂ψ2

∂Lw

∂ψ3

∂Lw

∂ϕ

]
=

[
0 −W1U3 W1U2 −W2U1

W2U3 0 −W2U1 W1U2

]
6×4

(21)

The derivation of the Jacobian matrices for the remaining error functions is
similar to this one, except for the differentiation of the first term Eq. (10) with
respect to the curve parameters.
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Fig. 1: The impact of the number of points on the curve on the accuracy and time of
bundle adjustment.

3 The impact of the number of feature lines and points.

In Sec 3.1, we explore the impact of the number of sampling points on the curve
on the optimization results. In Sec 3.2, we verify the effect of the number of
sampling lines on the error.

3.1 What is the optimal number of points to measure along a line?

In this section, we investigate the influence of the number of points taken on the
curves on the accuracy of our algorithm. Firstly, we establish a predetermined
number of lines in space and then conduct experiments by sequentially taking
2 to 10 points on the curve. We iterate this procedure 50 times and draw box
plots of the empirical outcomes using varying quantities of points. We perform
three sets of tests using constant numbers of lines in space: 4, 8, and 12. The
results are displayed in Fig. 1. As the number of points sampled on the lines
rises, the precision of the experimental results progressively enhances, albeit at
the cost of increased time consumption. However, after the number of points on
the lines reaches approximately 5, the enhancement in accuracy becomes less
notable while the time consumption steadily increases. The reason for this is
that the curve expression has only 9 unknowns, and each point can impose two
constraints: slope and distance. Therefore, the line constraints can be maximally
effective when there are about 5 points on the line. Hence, we recommend using
4 to 6 points on the curves as constraints.

3.2 What is the optimal number of lines to employ for RSL-BA?

Within this section, we shall examine the impact of the quantity of lines in 3D
space on the accuracy of our algorithm. We fix the number of points taken on
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Fig. 2: The impact of the number of 3D lines in space on the accuracy and time of
bundle adjustment.

Table 1: The median absolute trajectory error (ATE) of different methods on WHU-
RSVI [3] dataset, the best results are highlighted by bold font.

WHU-RSVI1 WHU-RSVI2 WHU-RSVI3 WHU-RSVI4
GSBA 0.080992 0.061310 0.030404 0.023698
GLBA 0.076173 0.065985 0.033554 0.024961

NMRSBA 0.050969 0.041629 0.042317 0.028183
NWRSBA 0.040640 0.045313 0.035451 0.022666

RSL-BA(ours) 0.0443502 0.039314 0.023351 0.020675

each curve and subsequently conduct experiments by sequentially arranging 4
to 12 lines in space. We iterate this process 50 times and draw box plots of the
experimental outcomes using varying quantities of lines. We conduct two sets of
experiments with a fixed number of points on the curves: 4 points and 6 points.
The results are displayed in Fig. 2. An increase in the number of lines leads to
a noticeable enhancement in the algorithm’s accuracy, followed by a period of
stabilization. Meanwhile, the time consumption consistently rises.

4 Complete results on the TUM-RSVI [9] and
WHU-RSVI [3] dataset

We compare our method with two SOTA GS-based-method: 1) GSBA [7], 2)
GLBA [10], and two SOTA RS-based-method: 1) NMRSBA [1], 2) NWRSBA
[5]. The experiments are conducted on a laptop with an Intel i7 CPU and all
algorithms are implemented in MATLAB.

4.1 Synthetic Images

In this section, we conduct experiments on input synthetic images. We use the
WHU-RSVI [3] dataset, from which we select two sets of data from trajectory1-
fast and trajectory2-fast for 3D reconstruction and pose estimation. We first
employ [8] to detect RS curves by segmenting curves into multiple short-line
segments and performing line fitting for initialization. The GS line-based SfM [6]
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is applied to initialize the RSL-BA parameters. The comparative methods in-
clude GSBA, NMRSBA, NWRSBA, and GSLBA. Table 1 shows the median
absolute trajectory error of different methods, it can be observed that the pro-
posed RSL-BA method is the most stable one, achieving optimal or near-optimal
results in all cases. Qualitative comparison are also provided in Fig. 3. Unlike
point-based methods, line-based methods often achieve good results with fewer
feature lines. However, the GSL-BA method is not sufficiently stable when RS
effects are prominent.

4.2 Real Images

In this section, we conduct experiments on the real image dataset TUM-RSVI [9].
The experimental setup and comparison methods are similar to those in Sec. 4.1.
Table 2 shows the median absolute trajectory error of different methods, tracer
comparison plots is also provided in Fig 4, it can be observed that the RSL-BA
method outperforms other methods but is slightly weaker than NWRSBA. This
is because the TUM-RSVI lacks line features and they are not visually promi-
nent, making it less suitable for RSL-BA. Besides, we implement a naive point-
line RSBA by jointly optimizing points and lines with NWRSBA and proposed
RSL-BA. An important observation is that such a naive NWRSBA+RSL-BA
combination significantly outperforms each method individually, which implies
that the proposed RSL-BA could be applied solely or combined with the point-
based method as point-line BA to the downstream RS vision task such as RSSfM
or RSSLAM.

Table 2: The median absolute trajectory error (ATE) of different methods in TUM-
RSVI [9] dataset.the best results are highlighted by bold font.

GSBA GLBA NMRSBA NWRSBA RSL-BA(ours) NWRS+RSL-BA
seq1 0.069484 0.086460 0.052366 0.045064 0.037816 0.034495
seq2 0.029821 0.030379 0.026028 0.023227 0.025132 0.024754
seq3 0.065160 0.063718 0.057918 0.055001 0.048187 0.045184
seq4 0.049613 0.052026 0.032214 0.030534 0.031903 0.027448
seq5 0.031860 0.035839 0.019407 0.016066 0.017659 0.015068
seq6 0.061966 0.061792 0.032434 0.024658 0.026448 0.031414
seq7 0.051621 0.056534 0.039154 0.039620 0.039701 0.033150
seq8 0.026403 0.028690 0.024807 0.025926 0.024983 0.024486
seq9 0.098334 0.098212 0.082481 0.073580 0.080523 0.076613
seq10 0.81174 0.81180 0.59390 0.53296 0.57477 0.57417
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Input GSBA NMRSBA NWRSBA GSL-BA RSL-BA(ours)

Fig. 3: Trajectories and 3D reconstruction comparison. Each column represents a dif-
ferent bundle adjustment algorithm, and each row represents a different sequence. It
can be observed that our algorithm has smaller trajectory errors and better reconstruc-
tion results.
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Fig. 4: Comparison of trajectory errors on the TUM-RSVI [9]. Each column represents
a different bundle adjustment algorithm, and each row represents a different sequence.
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