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Fig.A: Impact of L
train
x , L

train
q sampling range. AMES is trained by limiting

the descriptor set size to a particular range during training while testing for all set
sizes, both within and outside the range used for training. Performance evaluated on
ROP+1M (left) and GLDv2 (right) for AMES. All runs use global descriptors with
PQ8 for initial ranking and ensemble similarity to re-rank m=1600 images.
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Fig. B: Impact of dimensionality d. Performance evaluated on ROP+1M (left) and
GLDv2 (right) for AMES. All runs use global descriptors with PQ8 for initial ranking
and ensemble similarity to re-rank m=1600 images.
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ℓ2 loss β ROP+1M GLDv2

– 0 75.5 34.3

ZN

1 76.3 34.6
10 76.4 34.7
100 76.3 34.5

S
1 75.7 34.4
10 75.9 34.4
100 75.9 34.4

Table A: Impact of distillation. ZN stands for distillation with ℓ2 loss on the
output tokens (proposed method). S stands for distillation with ℓ2 loss on the final
local similarity scores. ZN and β = 10 are the default choices for AMES.

N ROP+1M GLDv2

0 72.8 33.3
1 73.0 33.3
3 75.1 34.1
5 75.5 34.3
7 75.6 34.3

Table B: Impact of network depth.
N = 0 stands for the performance of the
global-only similarity for reference. N = 5
is the default choice for AMES.

ITQ FT ROP+1M GLDv2

– – 74.6 34.1
– ✓ 74.8 34.0
✓ – 75.1 34.3
✓ ✓ 75.5 34.3

Table C: Impact of binarization set-
tings. ITQ stands for initialization with
ITQ [1]. FT stands for fine-tuning W , as
opposed to keeping it frozen. ITQ and FT
are the defaults for AMES.

A Additional results

In this section, we provide additional experimental results with different model
settings and training hyper-parameters. Unless specified otherwise, Ltest

q = 600

and L
test

x =50, global descriptors with PQ8, m=1600 and AMES binary without
distillation are used.

Impact of L
train
x , L

train
q sampling range. Figure A displays the results

of AMES trained with four different sampling ranges. In the smaller sampling
ranges, performance increases until Ltest

x is close to the maximum range used dur-
ing training. After that point, performance almost consistently drops or remains
the same. This behavior aligns with the observation in prior work in different
research field [11], where transformer-based models are trained and tested with
different input sequence lengths. In the larger sampling ranges, performance
steadily improves as L

test

x increases. It saturates for the larger descriptor set
sizes, i.e. performance gains are marginal for L

test

x greater than 600 with signifi-
cant memory and computation overhead. The two larger sampling ranges report
very close results; hence, we select [10, 400] in our default settings for better
efficiency in training time and memory allocation. Nevertheless, training with
an even larger sampling range could potentially yield even better performance.

Impact of dimensionality d. To further investigate the memory footprint
and performance trade-off, we explore two additional dimensionalities of the
binary local descriptors in Figure B. In low memory regimes, using more local
descriptors with lower dimensions is advantageous. On the other hand, it is
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Medium Hard GLDv2
L

test
q L

test
x bin dist global ROxf +1M RPar +1M ROxf +1M RPar +1M

600 600 ✓ ✓ PQ8 88.3±0.4 83.5±0.4 93.2±0.2 86.9±0.1 77.0±0.7 69.6±0.5 86.1±0.4 75.7±0.1 35.6±0.1

600 50 ✓ ✓ PQ8 87.0±0.3 81.1±0.2 92.6±0.0 85.4±0.0 75.0±0.5 66.0±0.3 84.7±0.0 72.9±0.1 34.7±0.1

50 50 ✓ ✓ PQ8 86.9±0.2 80.9±0.3 92.4±0.1 85.0±0.1 74.7±0.4 65.4±0.4 84.3±0.1 72.0±0.2 34.3±0.1

600 600 ✓ – PQ8 87.7±0.4 82.4±0.3 92.7±0.3 86.2±0.4 75.6±0.7 67.3±0.5 85.1±0.6 74.0±0.8 35.1±0.0

600 50 ✓ – PQ8 86.7±0.5 80.6±0.3 92.2±0.2 84.7±0.2 74.4±0.9 65.2±0.5 83.9±0.4 71.4±0.5 34.3±0.1

50 50 ✓ – PQ8 86.5±0.2 80.2±0.3 92.0±0.2 84.2±0.2 73.9±0.3 64.4±0.3 83.4±0.3 70.5±0.4 34.0±0.0

600 600 – – PQ8 89.3±0.2 84.7±0.4 93.3±0.0 87.2±0.2 78.1±1.0 71.5±0.7 86.6±0.0 76.5±0.4 35.8±0.3

600 50 – – PQ8 87.2±0.2 81.5±0.2 92.6±0.1 85.4±0.1 75.5±0.8 66.9±0.7 84.8±0.3 73.1±0.4 34.8±0.2

50 50 – – PQ8 86.8±0.2 80.7±0.1 92.3±0.1 85.0±0.1 74.4±0.7 65.1±0.4 84.1±0.2 71.9±0.2 34.4±0.1

600 600 – – full 89.1±0.1 84.4±0.4 93.2±0.1 87.1±0.2 78.3±0.3 71.2±0.5 86.3±0.2 76.2±0.3 35.9±0.2

600 50 – – full 87.3±0.3 81.3±0.2 93.0±0.1 85.6±0.2 75.8±0.8 66.2±0.7 85.6±0.1 73.3±0.2 34.7±0.2

50 50 – – full 87.3±0.2 80.9±0.0 92.6±0.0 85.0±0.1 75.5±0.6 65.5±0.2 84.7±0.2 72.0±0.2 34.4±0.1

Table D: AMES performance for different settings reported separately per
dataset with standard deviations across three experiments using a different seed. mAP
used for ROxf and RPar. mAP@100 used for GLDv2.

preferable to use fewer higher-dimensional descriptors instead of including all
available ones in the high memory regime. A subset of the descriptors carries
most of the necessary information, and adding more introduces redundancy or
noise in the matching.

Impact of distillation. In Table A, we evaluate the impact of the hyper-
parameter β, and we compare our distillation scheme with another alternative
that applies distillation on the output similarity scores, commonly used in the
literature [4,8]. Different values of β do not significantly affect performance. Our
distillation scheme considerably outperforms the similarity-based approach. This
is expected considering that the latter may oppose the supervision loss, whereas
ours is complementary.

Impact of network depth. Table B reports the performance of AMES
implemented with various numbers of blocks N . The performance saturates after
using more than three transformer blocks.

Impact of binarization settings. In Table C, we assess our implemen-
tation choices for our binarization scheme, i.e. the initialization with ITQ and
the fine-tuning of the trainable parameters of the matrix W . Both choices are
necessary to achieve the final performance, with the proper initialization having
a significant impact since the model does not achieve similar performance while
learning W from scratch.

Performance mean and standard deviation. For future reference, we
provide the numeric results of our AMES model on the different ROxford and
RParis settings, as well as the private split of GLDv2, in Table D. Results
of AMES in Table 1 from the main paper are repeated in Table E with their
standard deviation. The mean and standard deviation of three training runs with
different seeds are reported.

Top-m re-ranking. Figure C shows the retrieval performance for re-ranking
using local similarity only or with the global-local ensemble. Local similarity does
not work by itself; it harms the performance compared to the global similarity
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global desc. local desc. re-ranking Medium Hard GLDv2
bin dist top-m ROxf +1M RPar +1M ROxf +1M RPar +1M

CVNet [5] CVNet [5]

– – 100 84.9±0.2 78.6±0.2 90.6±0.0 81.3±0.0 71.1±0.5 62.4±0.7 81.6±0.0 66.5±0.1 35.3±0.2

✓ ✓ 100 84.6±0.7 78.4±0.6 90.6±0.0 81.3±0.0 70.8±1.4 61.9±1.0 81.5±0.1 66.3±0.2 35.0±0.2

– – 400 86.8±0.3 81.3±0.2 91.9±0.0 84.1±0.1 74.2±0.6 66.3±0.5 84.1±0.1 71.5±0.1 35.5±0.2

✓ ✓ 400 86.3±1.0 80.9±0.8 91.9±0.1 84.0±0.0 73.7±1.6 65.5±1.2 84.1±0.3 71.2±0.3 35.1±0.2

SG [9]

CVNet [5] – – 1600 89.1±0.1 84.4±0.4 93.2±0.1 87.1±0.2 78.3±0.3 71.2±0.5 86.3±0.2 76.2±0.3 35.9±0.2

✓ ✓ 1600 88.5±0.4 83.6±0.4 93.2±0.2 87.0±0.1 77.2±0.9 69.8±0.6 86.3±0.4 75.9±0.3 35.5±0.2

DINOv2 [7] – – 1600 92.4±0.9 87.1±0.5 95.2±0.1 89.8±0.1 83.1±1.1 76.1±0.7 90.2±0.4 81.0±0.3 38.3±0.2

✓ ✓ 1600 90.7±0.3 85.1±0.2 94.9±0.1 89.3±0.2 80.0±0.9 72.6±0.8 89.7±0.2 80.0±0.4 37.8±0.0

with SG re-rank [9]

CVNet [5] – – 1600 91.1±0.2 86.6±0.4 94.3±0.1 88.8±0.1 80.4±0.7 74.1±0.6 88.6±0.3 79.9±0.2 36.0±0.2

✓ ✓ 1600 90.7±0.3 85.9±0.3 94.3±0.1 88.9±0.1 79.4±0.7 72.9±0.6 88.7±0.4 79.8±0.2 35.8±0.1

DINOv2 [7] – – 1600 93.6±0.6 88.2±0.4 95.3±0.1 90.1±0.1 84.8±0.9 77.7±0.8 90.7±0.4 82.0±0.2 38.5±0.2

✓ ✓ 1600 92.7±0.3 86.7±0.1 95.2±0.2 89.8±0.2 83.0±0.6 75.4±0.5 90.4±0.3 81.4±0.5 38.0±0.1

Table E: AMES performance for different backbones reported separately per
dataset with standard deviations across three experiments using a different seed. mAP
used for ROxf and RPar. mAP@100 used for GLDv2. Global descriptors are in full
precision.
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Fig. C: Impact of re-ranking the top-m images obtained by global similarity. The
global and local similarity ensemble is effective, but local similarity fails by itself.
Results on ROP+1M.

ranking. By contrast, the ensemble similarity consistently increases performance
as the number of re-ranked images increases. The same holds both for our method
and R2Former. This observation is likely a byproduct of the high-performing
global descriptors used in our work and is not fully aligned with the original
findings by other methods using older descriptors, such as RRT using DELG.

Transformer architecture comparison. In our experiments with RRT,
we observe a small performance decrease by including the global descriptor in
the input token set, which is part of the original RRT architecture. We attribute
this to the difficulty of mapping both descriptors in the same space and the
insignificant value of one extra token compared to the many tokens of the local
descriptors. The results of Figure 3 in the main paper are obtained with the
original RRT setup. In addition to that, we use the RRT model architecture
and train with the same input token set as AMES, i.e. excluding the global
descriptor. Results are presented for the binarized variants of both models in
Figure D, where AMES seems to consistently outperform RRT even after our
fix to it.



AMES: Asymmetric and Memory-Efficient Similarity 5

10 20 50 100 200 400

74

75

76

77

local descriptors number (L
test
x )

m
A

P

RRT w/o global
AMES

Fig.D: AMES vs. RRT for varying L
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test
q = 600 on ROP+1M. RRT is

modified to remove the global descriptor from its input tokens.

In-depth analysis of global-local similarity Using an ensemble of global
and local models to compute the final similarity for each pair of images is clearly
beneficial based on quantitative results. In Figure E, we present the global and
local similarities, estimated by the corresponding models separately, for six se-
lected queries. In several cases, the two types of similarities are not linearly
correlated, making it easier to separate matching and non-matching pairs.

B Additional implementation details

Backbone architecture and training process. Our network is trained for
15 epochs with 300 batch size. Every batch consists of 100 triplets, in which one
training sample acts as an anchor. All training samples are used as an anchor
exactly once per epoch. The rest of the triplet consists of a matching sample from
the same class as the anchor and a non-matching sample. Both are randomly
drawn from the anchor’s 300 nearest neighbors with a distribution proportional
to the cube of their global similarities. The network is optimized with AdamW [6]
and cosine learning rate scheduler with the initial value of 2 ·10−4. The variance
δ for the binarization layer is set to 10−3, following [4]. Figure F shows the
distillation process between the teacher and the student models.

In the experiments with CVNet, we follow the extraction pipeline from the
original paper. We feed the input images in 3 resolutions and extract the local
descriptors from the penultimate layer feature map. When using SuperGlobal, we
skip Scale-GeM and ReLUP to reproduce performance close to the reported one.
SG is reported to achieve 73.4 and 33.4 on ROP+1M and GLDv2, respectively,
without re-ranking and 81.2 and 35.0 with re-ranking m=1600 images; see Table
1 for our reproduction. For DINOv2 [7] experiments, we use its ViT-B/14 variant
with registers to extract patch tokens and CLS tokens as our local and global
descriptors. We resize the input images such that the larger image side equals
518 pixels and pad the rest of the image to a square.
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Fig. E: Comparison of global and local similarity. Each figure shows the top 400
retrieved images after the initial ranking for a single query from ROxf+1M in the hard
setting. ∆AP represents the change in average precision for the specific query between
using global similarities only and our ensemble similarities. Matching (positive) and
non-matching (negative) are according to the query image ground truth.



AMES: Asymmetric and Memory-Efficient Similarity 7

λ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

γ

1e-4 28.8 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0

1e-3 28.7 31.9 31.4 31.3 31.2 31.2 31.1 31.0 31.0 31.1 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0

1e-2 28.7 32.6 32.9 32.6 32.3 32.1 32.0 31.9 31.8 31.6 31.5 31.4 31.4 31.3 31.2 31.2 31.1 31.0 31.1 31.0 31.0

1e-1 28.7 29.7 30.3 31.1 31.7 32.1 32.4 32.7 32.9 32.9 33.0 32.9 32.7 32.5 32.3 32.2 32.0 31.9 31.5 31.3 31.0

1e0 28.7 28.9 29.1 29.2 29.4 29.7 29.9 30.0 30.2 30.3 30.6 31.0 31.4 31.8 32.2 32.4 32.6 32.8 32.7 32.1 31.0

1e1 27.6 30.3 30.4 30.5 30.6 30.7 30.8 30.8 30.9 30.9 30.9 31.0 31.0 31.1 31.2 31.3 31.5 31.9 32.2 32.2 31.0

Table F: Global-local ensemble tuning via grid search on the validation set
(GLDv2 public retrieval benchmark). Performance measured with mAP@100.

The local feature detector architecture is adopted from DOLG [12]. It consists
of two 1 × 1 convolution layers followed by a Softplus activation. There is a
BatchNorm [2] and ReLU in between the two convolutions. It is applied on
top of a dense 3D activation map to provide a weight per local descriptor. For
CVNet, the detector is applied on top of the third ResNet101 block output of
1024 dimensions (3D activation map depth). For DINOv2, the detector is applied
on top of the ViT output, i.e. the set of patch tokens of 768 dimensions. During
training, we use these local descriptor weights to extract a global descriptor by
performing weighted average pooling and train with triplet loss. The triplets are
sampled in the same manner as in AMES; the margin for the loss is set to 0.9. We
train only the detector part on top of a frozen backbone for 20k iterations with
a batch size of 10. We use AdamW optimizer and cosine learning rate scheduler
with an initial value equal to 10−4. During testing, we use the weights to select
the L strongest local descriptors per image. This acts in the form of a classical
local feature detector.

Estimation of mAP. We rely on two different implementations for estimat-
ing mAP on ROxford/RParis or mAP@100 on GLDv2. We choose the corre-
sponding implementations that use the trapezoids for the area under the curve or
average precision values, respectively, in our effort to better match the standard
practice in the prior work.

Global-local ensemble parameter tuning. The optimal parameters for
each (Ltest

q ,Ltest

x ) setting are tuned independently. We conduct a hyper-parameter
tuning via grid search on the validation set to find the values for λ and γ from the
global-local ensemble and local similarity, respectively. We use the public split of
the GLDv2 as the validation set for tuning and re-rank m = 400 images. Table F
illustrates grid search results of an example run with L

test

q =600 and L
test

x =600.
Higher values of λ are usually paired with higher values of γ. Consequently, even
when λ is large, its most confident predictions are accounted for in the final
ensemble. The differences for λ = 0 among different rows are due to the ties in
the ranking of database images; many local similarities are either 0 or 1 with
very large γ.



8 P. Suma et al.

Fig. F: The distillation process of AMES. The teacher model (top) distills its
output tokens to the student model (bottom) via the root mean squared error loss. The
student operates in an asymmetric way on a subset of the local descriptors used by the
teacher for the database image. The loss is applied to the intersection of the two sets.
Function f refers to a different function for the teacher (dimensionality reduction by a
linear layer) and the student (dimensionality reduction, binarization, and re-mapping
to the real coordinate space). The distillation loss is combined with the binary cross-
entropy loss.

Competing methods. We use the publicly available implementations for
all the competitors and employed methods, i.e. ASMK1, RRT2, R2Former3,
CVNet4, and SuperGlobal5. For a fair comparison in our trade-off evaluation,
we follow a similar tuning process for all competing approaches.

ASMK includes an internal quantization process that aggregates vectors per
cell; therefore, the effective number of local descriptors that need to be stored
is typically lower than the input number. Also, a visual word id needs to be
stored for each effective descriptor, which amounts to 2 bytes per descriptor if
1 github.com/jenicek/asmk
2 github.com/uvavision/RerankingTransformer
3 github.com/bytedance/R2Former
4 github.com/sungonce/CVNet
5 github.com/ShihaoShao-GH/SuperGlobal

https://github.com/jenicek/asmk
https://github.com/uvavision/RerankingTransformer
https://github.com/bytedance/R2Former
https://github.com/sungonce/CVNet
https://github.com/ShihaoShao-GH/SuperGlobal
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stored as an unsigned integer, using delta coding. The total memory footprint
is derived from the sum of the effective descriptor vectors and their word ids.
The binary and simplified variant [10] is used, while local similarity is estimated
for all the database images as this is more of an indexing than a re-ranking
approach. As the input to ASMK, we perform dimensionality reduction down
to 128 dimensions by PCA whitening [3] learned on the training set, while its
internal representation is comprised of 128-bit vectors.

RRT and R2Former are trained with our implementation framework with
varying descriptor set sizes and the same projection function f at their input,
as in our fp variant. In both cases, we use d = 128 for the reduction of local
descriptors. We use a similar reduction layer for RRT on the global descriptors
to map them to the same dimension space as the local ones. In this way, we train
those on exactly the same input local descriptors, training dataset, and training
process as AMES.

CVNet’s memory footprint of the re-ranker is computed based on the quan-
tized variant of the approach, as reported in Lee et al . [5] since it demonstrates
a marginal performance drop compared to the full precision variant.

C Qualitative results

In Figure G, we show examples of hard positive images whose ranking is sig-
nificantly improved using AMES for re-ranking. The most prominent examples
include small objects among severe background clutter. We conclude that local
similarity is essential in handling clutter, but current benchmarks only include
a small number of such cases.

In Figure H, we illustrate several matching image pairs, i.e. a query and a
database image, and visualize the locations and importance of the local descrip-
tors for the local similarity estimation with our AMES model. We experiment
with two different values for L

test

x , corresponding to symmetric and asymmet-
ric matching. We measure the importance of the local descriptors based on the
dot product similarity between the output matching token tN and the output
tokens XN and QN of the two images. The network has learned to ignore the
background descriptors that do not have a matching pair in both images. This
is prevalent mainly in the limited memory settings, but it is also noticeable in
the settings with more descriptors. Note that on the side of the query image, the
importance of descriptors also changes between the symmetric and asymmetric
settings, which reflects the availability of matching descriptors on the side of the
database image. All images are from the GLDv2 test set.

D Limitations

We discuss limitations of AMES and possible improvements of those. (i) AMES
relies on external sources/models for image descriptors, for both global and lo-
cal. Hence, the quality of the employed descriptors is an important factor for
the final performance, regardless of the performance gains AMES introduces.
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Nevertheless, AMES is agnostic to the type of local descriptors and applicable
in an off-the-shelf way. Training both AMES and the backbone representation
in an end-to-end manner is possible, but we do not pursue this direction in this
work. (ii) AMES lacks of modeling image geometry. It does not contain any
mechanism that encodes the spatial structure of the images. We consider it a
promising direction for future work for better generalization of the proposed
approach. Our preliminary trials using conventional positional encodings do not
bring any performance improvements.
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1405  3 1316  31 1134  23 1089  125 1097  156 1120  270 239  118 98  1

46  13 34  4 10  3 4  4 0  0 0  0 0  0 0  0

30  0 8  1 4  5 28  77 8  80

893  239 575  0 761  331 742  350 788  414 293  2 273  5 233  60

1505  0 1030  0 619  19 6  0 2  0 0  0 0  0

869  85 979  197 649  7 535  38 358  12 346  13 350  27 323  7

1192  8 982  84 741  131 542  8 363  11 337  11 319  3 376  86

1389  45 1144  0 1001  0 940  1 432  1 280  0 145  0 143  0

1140  215 905  0 401  20 218  6 20  12 0  0 248  833

Fig.G: The impact of re-ranking with AMES. We show a query (region within
the orange bounding box) per row and its hard positives from the database. We show
the number of negative images ranked before the positive using only global similarity
(1) and after re-ranking with AMES (2), by (1)→(2). The positives are ordered based
on the difference (1)-(2) in descending order. Green (red) border denotes improved
(harmed) re-ranking. Retrieval on ROxford +1M.
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(a) (b)

(c)

Fig.H: Our model estimates the image pair similarity with a low number of local de-
scriptors. Circle size reflects importance of the corresponding local descriptor within the
model. Top: 100 (query) vs. 100 (database) local descriptors. Bottom: memory efficient
asymmetric similarity with 100 vs. 30 local descriptors. Descriptors of the common ob-
ject (other objects) are taken more (less) into account even with the lightweight and
asymmetric variant.
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