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Dissolving Is Amplifying: Towards Fine-Grained
Anomaly Detection

Supplementary Material

A Settings

A.1 Technical Details

Our experiments are carried out on the NVIDIA A100 GPU server with CUDA
11.3 and PyTorch 1.11.0. We use a popular diffusion model implementation3 to
train diffusion models for dissolving transformation, and the codebase for DIA is
based on the official CSI [53] implementation4. Additionally, we use the official
implementation for all benchmark models included in the paper.
The Training of Diffusion Models. The diffusion models are trained with a
0.00008 learning rate, 2 step gradient accumulation, 0.995 exponential moving
average decay for 25,000 steps. Adam [30] optimizer and L1 loss are used for
optimizing the diffusion model weights, and random horizontal flip is the only
augmentation used. Notably, we found that automatic mixed precision [34] can-
not be used for training as it impedes the model from convergence. Commonly,
the models trained for around 12,500 steps are already usable for dissolving
features and training DIA.
The Training of DIA. The DIA models are trained with a 0.001 learning
rate with cosine annealing [32] scheduler, and LARS [61] optimizer is adopted
for optimizing the DIA model parameters. After sampling positive and negative
samples, dissolving transformation applies then we perform data augmentation
from SimCLR [10]. We randomly select 200 samples from the dataset for training
each epoch and we commonly obtain the best model within 200 epochs.

A.2 Datasets

We evaluated on MedMNIST datasets [59], with image sizes of 28× 28:
– PneumoniaMNIST [59] consists of 5,856 pediatric chest X-Ray images

(pneumonia vs. normal), with a ratio of 9 : 1 for training and validation
set.

– BreastMNIST [59] consists 780 breast ultrasound images (normal and be-
nign tumor vs. malignant tumor), with a ratio of 7 : 1 : 2 for train, validation
and test set.

We also evaluated multiple high-resolution datasets that are resized to 224×224:

3 https://github.com/lucidrains/denoising-diffusion-pytorch
4 https://github.com/alinlab/CSI
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– SARS-COV-2 [3] contains 1,252 CT scans that are positive for SARS-CoV-2
infection (COVID-19) and 1,230 CT scans for patients non-infected by SARS-
CoV-2.

– Kvasir-Polyp [39] consists the 8,000 endoscopic images, with a ratio of 7 :
3 for training and testing. We remapped the labels to polyp and non-polyp
classes.

– Retinal OCT [7] consists 83,484 retinal optical coherence tomography (OCT)
images for training, and 968 scans for testing. We remapped the diseased
categories (i.e. CNV, DME, drusen) to the anomaly class.

– APTOS-2019 [4] consists 3,662 fundus images to measure the severity of
diabetic retinopathy (DR), with a ratio of 7 : 3 for training and testing. We
remapped the four categories (i.e. normal, mild DR, moderate DR, severe DR,
proliferative DR) to normal and DR classes.

B Heuristic Alternatives To Dissolving Transformations

With the proposed dissolving transformations, the instance-level features can
hereby be emphasized and further focused. Essentially, dissolving transforma-
tions use diffusion models to wipe away the discriminative instance features.
In this section, we evaluate our method with naïve alternatives to dissolving
transformations, namely, Gaussian blur and median blur.

(a) Gaussian (k=3) (b) Gaussian (k=7) (c) Gaussian (k=11)

(d) Median (k=3) (e) Median (k=7) (f) Median (k=11)

Fig. 5: Heuristic alternatives to dissolving transformations with various kernel sizes.
Compared with median blur, Gaussian blur preserves more image semantics.
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B.1 Different Kernel Sizes

We evaluate different kernel sizes for each operation. A visual comparison of those
methods is provided in Fig. 5. To be consistent with the diffusion feature dissolv-
ing process, the same downsampling and upsampling processes are performed for
DIA-Gaussian and DIA-Median. Referring to Tab. 1, though less performant,
the heuristic image filtering operations can also contribute to the fine-grained
anomaly detection tasks with a significant performance boost against the base-
line CSI method.

Dataset kernel size DIA-Gaussian DIA-Median

pneumonia
MNIST

3 0.845±0.01 0.779±0.03
7 0.839±0.04 0.872±0.01
11 0.856±0.02 0.678±0.07

breast
MNIST

3 0.541±0.01 0.641±0.03
7 0.653±0.03 0.689±0.01
11 0.749±0.05 0.542±0.04

SARS-
COV-2

3 0.813±0.02 0.837±0.07
7 0.847±0.00 0.809±0.03
11 0.802±0.01 0.793±0.02

Kvasir
Polyp

3 0.629±0.03 0.526±0.02
7 0.586±0.02 0.514±0.05
11 0.579±0.01 0.495±0.04

Table 7: Heuristic alternatives to dissolving transformations with various kernel sizes.
The blue color denotes a suboptimal performance against our proposed dissolving trans-
formations.

Compared against the dissolving transformations, those non-parametric heuris-
tic methods dissolve image features regardless of the generic image semantics,
resulting in lower performances. In a way, dissolving transformations dissolve
instance-level image features with an awareness of discriminative instance fea-
tures, by learning from the dataset. We therefore believe that the diffusion models
can serve as a better dissolving transformation method for fine-grained feature
learning.

B.2 Rotate vs. Perm

We supplement Tab. 4 with the heuristic alternatives to dissolving transforma-
tions in this section. As shown in Tab. 8, similar to dissolving transformations,
the rotation transformation mostly outperforms the perm transformation.
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Dataset transform Resize Only Gaussian Median Diffusion

SARS-
COV-2

Perm 0.768±0.01 0.788±0.01 0.826±0.00 0.841±0.01
Rotate 0.779±0.01 0.847±0.00 0.837±0.07 0.851±0.03

Kvasir
Polyp

Perm 0.826±0.01 0.712±0.02 0.663±0.02 0.860±0.01
Rotate 0.748±0.02 0.739±0.00 0.687±0.01 0.813±0.03

Retinal
OCT

Perm 0.892±0.01 0.754±0.01 0.747±0.03 0.890±0.02
Rotate 0.873±0.01 0.895±0.01 0.876±0.02 0.944±0.01

APTOS
2019

Perm 0.924±0.01 0.942±0.00 0.929±0.00 0.926±0.00
Rotate 0.918±0.01 0.922±0.00 0.918±0.00 0.934±0.00

Table 8: Comparison between rotate and perm as shifting transformation.

B.3 The Resolution of Feature Dissolved Samples

We supplement Tab. 5 with heuristic alternatives to dissolving transformations
in this section. As shown in Tab. 9, those heuristic alternatives are not as per-
formant as the proposed diffusion transformation.

Dataset size DIA-Gaussian DIA-Median DIA-Diffusion

SARS-
COV-2

32 0.847±0.00 0.837±0.07 0.851±0.03
64 0.821±0.01 0.839±0.01 0.803±0.01
128 0.838±0.00 0.848±0.00 0.807±0.02

Kvasir
Polyp

32 0.629±0.03 0.526±0.02 0.860±0.04
64 0.686±0.00 0.575±0.02 0.721±0.01
128 0.581±0.01 0.564±0.02 0.730±0.02

Retinal
OCT

32 0.895±0.01 0.876±0.02 0.944±0.01
64 0.894±0.00 0.887±0.00 0.922±0.00
128 0.908±0.01 0.906±0.00 0.930±0.00

APTOS
2019

32 0.922±0.00 0.918±0.00 0.934±0.00
64 0.910±0.00 0.917±0.00 0.937±0.00
128 0.910±0.00 0.922±0.00 0.905±0.00

Table 9: Results for different feature dissolver resolutions.

C Additional Experiments

C.1 Learning Anomalous Feature Patterns

This paper introduces a groundbreaking approach to fine-grained feature learn-
ing by contrasting images with their feature-dissolved counterparts. This tech-
nique enables our algorithm to identify and learn the fine-grained discriminative
features for fine-grained anomaly detection. An inherited idea is to explore if
our approach can enhance the detection of anomalous features by integrating a
higher volume of anomalous data into the training set. As shown in Table 10,
there is a notable improvement in anomaly detection performance correlating
with an increased presence of anomalous data.



Dissolving Is Amplifying 5

λ Kvasir-Polyp Retinal-OCT APTOS-2019

0% 0.860±0.04 0.944±0.01 0.934±0.00
10% 0.877±0.02 0.948±0.01 0.935±0.00
20% 0.880±0.01 0.951±0.00 0.940±0.00

Table 10: Performance improvement with increasing proportions of anomalous data.
λ is the proportion of anomalous samples within the training data.

C.2 New Negative Pairs vs. Batchsize Increment

As the newly introduced dissolving transformation branch, given the same batch
size B, our proposed DIA takes 3K · B samples compared to the baseline CSI
that uses 2K ·B samples. In a way, DIA increases the batchsize by a factor of 1.5.
Since contrastive learning can be batchsize dependent [26, 28], we demonstrate
in Tab. 11 that our performance improvement is not due to batch size. CSI with
a larger batch size exhibits similar performances as the baseline CSI method,
while the proposed DIA method outperformed the baselines significantly.

Datasets CSI CSI-1.5 DIA

PneumoniaMNIST 0.834 0.838 0.903
BreastMNIST 0.546 0.564 0.750
SARS-COV-2 0.785 0.804 0.851
Kvasir-Polyp 0.609 0.679 0.860

Table 11: Comparison between DIA and the batch size increment. CSI-1.5 represents
the baseline CSI models that are trained with 1.5 times bigger batch sizes. To be
specific, CSI and DIA are trained with a batch size of 32 while CSI-1.5 used 48.

C.3 The Design of Similarity Matrix

Shifting transformations enlarge the internal distribution differences by intro-
ducing negative pairs where the views of the same image are strongly different.

With augmentation branches Oi and O′
j , the target similarity matrix for

contrastive learning is therefore defined where the image pairs that share the
same shift transformation as positive while other combinations as negative, as
presented in Fig. 6a. Due to the introduction of the dissolving transformation
branch Ak, this ablation studies the design of the target similarity matrix of those
newly introduced pairs. We further evaluate the design of Fig. 6b, where the
target similarity matrix is designed to exclude the image pairs with and without
dissolving transformations applied whilst sharing the same shift transformation,
when i = k or j = k. Essentially, these pairs share the same shift transformation
which should be considered as positive samples, but the Ak branch removes
features that make them appear negative. Thus, we investigate whether these
contradictory samples should be considered during contrastive learning.
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Fig. 6: Visual comparison between the similarity matrices (K = 2). The white, blue,
and lavender blocks denote the excluded, positive, and negative values, respectively.

Methods SARS-
COV-2

Kvasir
Polyp

Retinal
OCT

APTOS
2019

Baseline CSI 0.785 0.609 0.803 0.927
Ours DIA-(a) 0.851 0.860 0.944 0.934
Ours DIA-(b) 0.850 0.843 0.932 0.930

Table 12: Semi-supervised fine-grained medical anomaly detection results.

As shown in Tab. 12, those designs achieve very similar performances on
medical datasets. Then, we further evaluate our methods on standard anomaly
detection datasets, that contain coarse-grained feature differences (i.e. Car vs.
Plane) with a minimum need to discover fine-grained features. We therefore
further include the following datasets:

CIFAR-10 consists of 60,000 32x32 color images in 10 equally distributed
classes with 6,000 images per class, including 5,000 training images and 1,000
test images.

CIFAR-100 similar to CIFAR-10, except with 100 classes containing 600
images each. There are 500 training images and 100 testing images per class.
The 100 classes in the dataset are grouped into 20 superclasses. Each image
comes with a "fine" label (the class to which it belongs) and a "coarse" label
(the superclass to which it belongs), which we use in the experiments.

Note that the corresponding diffusion models for each experiment are trained
on the full CIFAR10 and CIFAR100 datasets, respectively.

As shown in Tab. 12 and Tab. 13, the exclusion of the i = k and j = k pairs
barely affect the performance for the fine-grained anomaly detection tasks, but
significantly lowers the performance for the coarse-grained anomaly detection
tasks.
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Dataset Method 0 1 2 3 4 5 6 7 8 9 avg.

CIFAR10
Baseline CSI 89.9 99.1 93.1 86.4 93.9 93.2 95.1 98.7 97.9 95.5 94.3
Ours DIA-(a) 90.4 99.0 91.8 82.7 93.8 91.7 94.7 98.4 97.2 95.6 93.5
Ours DIA-(b) 80.0 98.9 80.1 74.0 81.2 84.4 82.7 94.7 93.9 89.7 86.0

Dataset Method 0 1 2 3 4 5 6 7 8 9

CIFAR100

Baseline CSI 86.3 84.8 88.9 85.7 93.7 81.9 91.8 83.9 91.6 95.0
Ours DIA-(a) 85.9 82.6 87.0 84.7 91.8 84.4 92.1 79.9 90.8 95.3
Ours DIA-(b) 83.2 80.4 86.1 83.0 90.8 78.2 90.6 75.8 86.7 92.5

Method 10 11 12 13 14 15 16 17 18 19 avg.

Baseline CSI 94.0 90.1 90.3 81.5 94.4 85.6 83.0 97.5 95.9 95.2 89.6
Ours DIA-(a) 93.0 90.1 89.9 76.7 93.1 81.7 79.7 96.0 96.3 95.2 88.3
Ours DIA-(b) 91.2 86.3 87.7 73.3 91.8 80.7 79.7 97.2 95.3 93.3 86.2

Table 13: Results on standard benchmark datasets. Results are AUROC scores that
are scaled by 100.

C.4 Memory footprint

The computational efficiency is provided in Table 6. We provide the memory
footprint as below:

Batch size 8 16 32 64

GPU mem (GB) 2.38 4.51 8.78 17.33

Table 14: Memory footprint on different image resolutions.

D Non-Data-Specific Dissolving

As per the discussion in Secs. 5.2 and 6, we demonstrated the importance of
the training for data-specific diffusion models. To further provide an intuition of
what happens when using non-data-specific diffusion models, we present visual
examples for the dissolving transformations with “incorrect" models. For each
dataset, we show the expected dissolved images using the data-specific diffusion
models (as used in our framework), dissolving with a diffusion model trained
on PneumoniaMNIST dataset, dissolving with a diffusion model trained on CI-
FAR10 dataset, and dissolving with Stable Diffusion5 [43].

As illustrated in Figs. 7 to 11, the dissolving operation dissolves images to-
wards the learned prior of the training dataset. Such behavior is especially signif-
icant by using the PneumoniaMNIST trained diffusion model. We can observe
that all images soon look like lung x-rays, regardless of how the input looks
like. For the Stable Diffusion model, the dissolving transformation removes the
texture and then corrupts the image.

5 Stable diffusion performs reverse diffusion steps on the latent feature space. We,
therefore, use the VAE model to encode the image to latent space for the dissolving
transformation. Then we decode the latent features back to images.
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Fig. 7: Visualization of APTOS dataset. From left to right are the dissolved images
with increased t from 1 to 975. From top to bottom, the first three rows represent models
trained on the APTOS, PneumoniaMNIST, and CIFAR10 datasets, respectively. The
final row showcases the output of the stable diffusion model.

Fig. 8: Visualization of OCT2017 dataset. From left to right are the dissolved images
with increased t from 1 to 975. From top to bottom, the first three rows represent models
trained on the OCT2017, PneumoniaMNIST, and CIFAR10 datasets, respectively. The
final row showcases the output of the stable diffusion model.
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Fig. 9: Visualization of Kvasir dataset. From left to right are the dissolved images with
increased t from 1 to 975. From top to bottom, the first three rows represent models
trained on the Kvasir, PneumoniaMNIST, and CIFAR10 datasets, respectively. The
final row showcases the output of the stable diffusion model.

Fig. 10: Visualization of BreastMNIST dataset. From left to right are the dissolved
images with increased t from 1 to 975. From top to bottom, the first three rows repre-
sent models trained on the BreastMNIST, PneumoniaMNIST, and CIFAR10 datasets,
respectively. The final row showcases the output of the stable diffusion model.
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Fig. 11: Visualization of SARS-COVID-2 dataset. From left to right are the dissolved
images with increased t from 1 to 975. From top to bottom, the first three rows repre-
sent models trained on the SARS-CoV-2, PneumoniaMNIST, and CIFAR10 datasets,
respectively. The final row showcases the output of the stable diffusion model.


