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Abstract. The proliferation of machine learning models in critical
decision-making processes has underscored the need for bias discovery
and mitigation strategies. Identifying the reasons behind a biased sys-
tem is not straightforward, since in many occasions they are associated
with hidden spurious correlations which are not easy to spot. Standard
approaches rely on bias audits performed by analyzing model perfor-
mance in predefined subgroups of data samples, usually characterized
by common attributes like gender or ethnicity when it comes to peo-
ple, or other specific attributes defining semantically coherent groups
of images. However, it is not always possible to know a priori the spe-
cific attributes defining the failure modes of visual recognition systems.
Recent approaches propose to discover these groups by leveraging large
vision language models, which enable the extraction of cross-modal em-
beddings and the generation of textual descriptions to characterize the
subgroups where a certain model is underperforming. In this work, we
argue that incorporating visual explanations (e.g. heatmaps generated
via GradCAM or other approaches) can boost the performance of such
bias discovery and mitigation frameworks. To this end, we introduce Vi-
sually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple
yet effective technique which can be integrated to a variety of existing
frameworks to improve both discovery and mitigation performance. Our
comprehensive evaluation shows that incorporating visual explanations
enhances existing techniques like DOMINO, FACTS and Bias-to-Text,
across several challenging datasets, including CelebA, Waterbirds, and
NICO++.

Keywords: Unsupervised bias discovery · Bias mitigation · Visual ex-
planations

1 Introduction

The increasing adoption of deep learning-based image classification models, no-
tably in systems like facial recognition software, raises concerns related to biases
⋆ Equal contribution
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and fairness [3]. Biases in such systems can lead to unfair and discriminatory
outcomes, making it crucial to identify and address their underlying causes. Un-
fortunately, determining in which subgroups a given system may exhibit biased
behavior is not an easy task. The typical approach to detect biases consists in
auditing the system with respect to predefined attributes (often referred to as
protected attributes), like gender, sex, age, or ethnicity, by comparing specific
fairness metrics [2]. However, attributes like sex, age, or ethnicity are not always
the real causes that explain the poor performance of a given model in a particular
set of data samples. For example, in face recognition, a system may systemati-
cally fail to classify people with glasses due to the fact that they were not well
represented in the training set. In this case, auditing with standard demographic
attributes may not be able to reveal the real reason for bias. In other cases, such
as the classification of animals or objects, the attributes that characterize the
underperforming groups may not be obvious. Spurious correlations could lead
to systems that make incorrect predictions because the model has learned these
false relationships from the training data [7], or predictions which are actually
correct but for the wrong reasons [21]. This issue often arises when the model
is trained on datasets that do not accurately represent the real-world scenarios
on which it is intended to work with, or when the dataset itself contains hidden
biases. Thus, discovering the failure modes and providing explanations useful to
understand the real reasons behind them becomes a crucial task when designing
robust and fair systems. Existing literature refers to this task as unsupervised
discovery of bias [11], or slice discovery [6], in the sense that such methods aim
at mining the input data for semantically meaningful subgroups (slices) on which
the model performs poorly. In this context, a slice is defined as a group of data
samples that share a common attribute or characteristic that is not related to
the target label.

Recent studies have shown that text explanations [9] produced by multi-
modal large vision language models (VLMs) [5] can help in discovering and de-
scribing subpopulations on which a model systematically underperforms, with-
out the need for protected attribute annotations. At the same time, a different
line of work [11] has qualitatively demonstrated that visual explanations [1] de-
rived from biased models, especially for instances originating from conflicting
data slices, predominantly highlight spurious features usually associated with
shortcut learning. In this work, we hypothesize that since visual explanations
for biased models tend to underscore spurious correlations, they can serve as
instrumental tools in informing VLMs when they are used to identify and mit-
igate undesired biases. To this end, we leverage the descriptive power of recent
multimodal VLMs, and combine it with the capabilities of visual explanation
mechanisms to uncover biases contributing to systematic failures for unknown
slices in visual recognition models. Our extensive empirical evaluation highlights
the advantages of the proposed method, being easily adapted to different bias
discovery frameworks and systematically boosting their performance.

Contributions: Under the hypothesis that visual explanations can assist to
better identify the reasons behind biased systems, here we introduce Visually
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Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective strat-
egy which improves the performance of existing bias discovery and mitigation
methods based on multimodal embeddings. First, we provide empirical evidence
showing that visual explanations of biased models usually focus on spurious cor-
relations. Then, we leverage such explanations to direct the attention of existing
bias discovery and mitigation methods towards spurious features, resulting in
improved performance in both tasks. We show that ViG-Bias is general enough
to be adapted to a wide range of recent methods which address these problems
using cross-modal embeddings and textual explanations obtained via VLMs, like
DOMINO [6], FACTS [23] and Bias-to-Text [9], systematically improving their
performance on three challenging datasets.

2 Related work

Visual explanations. Visual explanations in computer vision have largely con-
tributed to the interpretability and trustworthiness of deep learning models.
They provide insights into the decision-making process of neural networks by
highlighting regions within an input image that are significant for predictions.
One prominent technique in this domain is Gradient-weighted Class Activation
Mapping (Grad-CAM) [18]. Grad-CAM utilizes the gradients flowing into the
final convolutional layer of a convolutional neural network to understand which
features are most important for a particular decision. By creating a heatmap of
these weighted features, Grad-CAM offers a visual representation that demon-
strates how the model focuses on different parts of the image to make a decision.
This method not only aids in improving model transparency but also helps in di-
agnosing potential reasons for misclassifications. GradCAM has previously been
employed as a description mechanism to interpret failure modes in [11]. How-
ever, even though the work of Krishnakumar et al [11] shows the potential of
visual explanations for this task, they mostly provide qualitative examples and
do not propose an automatic approach to bias discovery and mitigation. Singla
and co-workers [19] present another interesting work where they generate anno-
tations for visual explanations of the ImageNet dataset. They released a dataset
called Salient ImageNet, which provides heatmaps distinguishing between spuri-
ous and core features, where the last ones correspond to a set of visual features
that are always a part of the object definition. Even though they employ human
supervision to identify the visual explanations related to spurious correlations
(making the process difficult to automate), this work shows that such heatmaps
can actually be used to pinpoint this type of spurious attributes. Here, we plan
to leverage visual explanations (like GradCAM heatmaps and other variants) as
a mechanism to direct the attention of bias discovery and mitigation methods
towards spurious correlations.

Automatic bias discovery using VLMs. Several recent efforts have been con-
ducted in the identification of biased data slices using cross-modal embeddings.
The DOMINO method [6] combines cross-modal embeddings and error-aware
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mixture models to find semantically coherent clusters of images where a given
classification system is failing. Textual descriptions derived from the cross-modal
embeddings are then used to characterize the failure modes that were just dis-
covered. A similar approach is introduced by the FACTS (First Amplify and
then Slice to Discover Bias) [23] method, where the authors propose to first am-
plify the sources of bias in the training to ease its identification. This process is
carried out in two stages. The first stage involves amplifying the bias by regular-
izing the model. This is achieved through regularization by specifically increasing
the weight decay factor λ, which penalizes the most significant weights in the
model. Regularization is a common technique used to prevent overfitting, but
in this context, it serves a dual purpose: it not only helps to prevent overfitting
but also forces the model to rely more on the spurious attribute by simplifying
the hypothesis space. The second stage consists of identifying underperforming
data segments that exhibit unique correlations by employing mixture modeling
within a feature space aligned with bias, a method known as correlation-aware
slicing, similar to the aforementioned DOMINO. In [9], a different approach
called Bias-to-Text (B2T) was introduced. B2T uses linguistic interpretation
to identify and mitigate biases in vision models, including image classifiers. By
generating linguistic descriptions of images using VLMs, B2T extracts keywords
indicative of bias from the wrongly predicted examples, enabling a more focused
understanding and correction of prejudices within the models.

In this work, we will show how visual explanations can boost the performance
of these three approaches, by helping to better focus the model’s attention on
areas containing spurious features.

Bias mitigation: improving robustness to spurious correlations. Dis-
covering conflicting slices is important, but mitigating such biases is also cru-
cial. A common approach is based on group distributionally robust optimiza-
tion (GroupDRO) [17]. GroupDRO aims to enhance model performance across
different groups or subpopulations in the data, based on predefined protected
attributes like race or gender. The objective is to minimize the worst-case loss
across these groups, thereby encouraging fairness and reducing disparities in
model performance among them. However, one notable drawback of this tech-
nique is the requirement to assign specific group labels to every dataset entry,
which can lead to substantial increases in annotation costs, and requires to know
before-hand such groups. Another existing approach in the bias mitigation field
is JTT (Just Train Twice) [12]. JTT starts with the standard training of the
model to pinpoint examples that have been misclassified. Following this, the
training process is adjusted by reweighting the dataset, giving greater impor-
tance to these previously misclassified examples. JTT forces the model to pay
more attention to examples where the model is failing, thereby enhancing its
performance on those specific examples. Here, we will employ JTT as a baseline
approach for comparison, and propose ways to integrate visual explanations into
the group definitions for GroupDRO.



ViG-Bias: Visually Grounded Bias Discovery and Mitigation 5

Blond

M
a

le
F

e
m

a
le

Not blond

(a) In the CelebA dataset, the la-
bel, hair color is spuriously corre-
lated with the attribute gender.

Waterbird

L
a
n
d

W
a
te
r

Landbird

(b) In the Waterbirds dataset, the
label, bird type is spuriously cor-
related with the attribute back-
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Fig. 1: The four groups in the CelebA (left) and Waterbirds (right) datasets are based
on combinations of the spurious attribute and the label. The groups highlighted in
green have the most training samples, whereas the groups highlighted in red have the
least training samples.

3 Preliminaries and Problem Formulation

Following the formulation introduced in [23], let X and Y be the input (images)
and output (label) spaces, respectively, and D = {(xi, yi)}Ni=1 be a training
dataset of N samples drawn from X ×Y. We are interested in learning a classi-
fication model fθ : X → Y, parameterized by θ ∈ Θ, by minimizing the average
loss (e.g . cross-entropy) across training samples i.e. 1

N

∑N
i=1 ℓ(fθ(xi), yi). We

work under the hypothesis that, due to the presence of spurious correlations,
the model could incur in biased predictions, failing to generalize at test time. To
formulate the spurious correlations, let A = {a1, . . . , an} denote a set of spurious
attributes, where ai(x) ∈ {0, 1} indicates that the attribute ai is present in the
image x. In the presence of spurious correlation between an attribute ai and a
target label y, the model learns to rely on it rather than the real target features
to make predictions. This results in the model performing poorly on examples
of class y that do not contain the spurious feature ai.

The dataset D is partitioned into different and not equally distributed groups
or slices. A group is defined based on the combination of the target labels y ∈ Y
and the spurious attributes ai ∈ A that spuriously correlates with the label (i.e.
G = A×Y). Formally, given a pair (ai, y⋆), we define a group g(ai, y

⋆) as the set
of data samples labeled with y⋆ which contain attribute ai, i.e. where ai(x) = 1.

For example, in the CelebA dataset [14], where the task involves classifying
people with blond hair, the spurious attribute is the gender, as there is a higher
frequency of blond women in the dataset. Figure 1 illustrates this issue, and a
similar case found in the Waterbirds dataset [17], highlighting the classes with
the least training samples per group. The groups with the largest number of
samples are where the correlations hold, whereas the groups with the smallest
number of samples are where the correlations do not hold.



6 Authors Suppressed Due to Excessive Length

Training a model by simply minimizing the average error can lead to rely
on spurious features, like gender to predict hair color in the CelebA dataset.
Consequently, the model may perform poorly on minority groups where this
spurious correlation does not hold. Following [23], we consider a function M :
A → Y that maps each spurious attribute to the unique label that is most
associated with it. Then, the unsupervised bias discovery problem is defined as
finding the groups (or slices) G, where attribute ai is spuriously correlated with
label y as:

G =
{
g(ai, y) | ∀a, y ∈ A× Y, M(a) = y

}
(1)

4 ViG-Bias: Visually Grounded Bias Discovery and
Mitigation

In this section, we present the proposed method for discovering biases using
visual explanations. We first provide quantitative evidence showing that visual
explanations tend to correlate with spurious features, and then propose using
them to drive the attention and improve performance for a variety of bias dis-
covery and mitigation methods.

Consider a dataset D with samples (x, y, a) ∈ D drawn from X × Y × A,
where a is spuriously correlated with the label y. We are interested in discover-
ing the visual features upon which a model has relied to make a prediction. Prior
work [8,19] suggests that, under the presence of spurious correlations, visual ex-
planations for models trained with standard empirical risk minimization (ERM)
tend to focus on such shortcuts, while ignoring the core features. We thus resort
to GradCAM heatmaps generated using an image classifier that was trained with
standard ERM on the dataset of interest D. Such heatmaps will then be used as
visual explanations to guide the attention of bias discovery methods (alternative
visual explanation methods like ScoreCAM [22], FullGrad [20], GradCAM++ [4]
are also evaluated in Section 6.3). GradCAM heatmaps are obtained by first com-
puting the gradients of the target class with respect to the feature maps of the
last convolutional layer, as neurons in this layer offer best compromise between
high-level semantics and detailed spatial information [18]. These gradients flow-
ing back are then globally-averaged over the width and height dimensions to
obtain the importance weights of every feature map in this last layer. Then, the
ReLU activation function is applied on the weighted average of the feature maps,
so that only the features that have a positive influence on the class of interest
are finally highlighted. These heatmaps are finally normalized between 0 and 1.

4.1 Are Visual Explanations Focusing on Spurious Correlations?

The work of Krishnakumar [11] and colleagues provides qualitative examples
showing that GradCAM heatmaps for biased models tend to focus on spurious
correlations. Here we perform a more systematic quantitative evaluation to con-
firm this hyphotesis. To this end, we design a simple experiment using CelebA
(where the conflicting slices are well known) that consists of three steps:
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With spurious correlation Without spurious correlation With spurious correlation Without spurious correlationAll the test set

Fig. 2: Visual explanation methods (e.g . GradCAM [18] for the spurious attribute
blond) help with identifying spurious correlations. We use the Intersection-over-Union
(IoU) metric to measure the percentage of overlap between a binary image representing
the spurious feature and the image we get after applying a visual explanation method.

1. We first construct binary segmentation masks mc
i and ms

i for all images xi

in both datasets, segmenting the core features associated with the object of
interests (mc

i representing, for example, the hair in CelebA), and the spurious
attribute (ms

i representing the face) as shown in Figure 1. We do so by using
LangSAM 4, an open-source model that combines Segment Anything Model
(SAM) [10] with GroundingDINO [13] to enable instance segmentation from
text prompts.

2. We then proceed to create binary masks bi by thresholding the heatmaps
obtained via GradCAM as bi = GradCAM(xi) ≥ τ . These masks represent
the area where the biased model focuses its attention (we use τ = 0.7 in our
experiment which was choosen by visual inspection).

3. Finally, we measure the intersection over union (IoU) between the GradCAM
masks bi, and both, the core (mc

i ) and spurious (ms
i ) segmentations.

Figure 2 shows the results of this motivational experiment. As it can be
observed, GradCAM masks coming from bias-conflicted cases (with spurious
correlations) tend to present a significantly higher overlap with the spurious
features, what in this case implies focusing directly on the face instead of the
hair. With this quantitative experiment confirming our initial hypothesis, we
proceed to describe the ViG-Bias framework, showing how visual explanations
can be easily integrated to improve performance in a variety of existing bias
discovery and mitigation methods.

4.2 Improving Unsupervised Bias Discovery via Visual Explanations

ViG-Bias is based on a simple yet effective idea: use visual explanations to direct
the attention of bias discovery methods towards real spurious features. Let us
define a mapping function h : X → X , that is applied to an input image x to
highlight areas where a given classifier is focusing, as:

h(x) = 1l
{
x⊙ GradCAM(x) ≥ τ

}
(2)

where ⊙ represents the Hadamard (element-wise) product of the input image
x and the heatmap produced by the GradCAM (or other visual explanation
4 https://github.com/luca-medeiros/lang-segment-anything

https://github.com/luca-medeiros/lang-segment-anything
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method). We argue that such simple function can help to improve the perfor-
mance of recent bias discovery methods based on cross-modal feature clustering
(e.g. DOMINO [6] and FACTS [23]) and image captioning (e.g. Bias-to-text [9]).
In the following sections, we discuss how visual explanations can be incorporated
into each of the aforementioned methods.
Visually Grounded DOMINO (ViG-DOMINO): DOMINO uses cross-
modal embeddings to identify coherent conflicting slices and generate natural
language descriptions to describe them. To this end, they first project the im-
ages into a cross-modal embedding (e.g CLIP [16]). Then, given a classifier that
was trained using a standard ERM procedure, predictions for each image are ob-
tained. These predictions are then combined with the cross-modal embeddings
and the true labels associated with the input image. An error-aware mixture
model is finally fit to cluster slices that are homogeneous not only semanti-
cally, but also with respect to error type (e.g. all false positives). Finally, natural
language descriptions of the discovered slices are produced to describe character-
istics shared between examples in the discovered slices. For more details about
DOMINO please refer to [6].

We modify DOMINO by simply pre-processing the images before the cross-
modal embeddings are obtained, i.e. we generate heatmaps using the pretrained
classifier and extract embeddings for h(x) instead of x. Note that other types of
visual explanation methods could also be used, as discussed in Section 6.3.
Visually Grounded FACTS (ViG-FACTS): The FACTS method is similar
to DOMINO, but it consists of a two-stages process, where biases are first am-
plified and then slicing is performed. In the first stage, we increase the model’s
reliance on spurious, often bias-indicative correlations, which are amplified us-
ing regularization. In general, regularization helps in preventing overfitting and
encourages the model to learn more robust patterns that are assumed to be
applicable beyond the training set. However, in FACTS, the regularization is
applied to constrain the model’s capacity and learn the bias-aligned slices where
spurious correlation holds. This leads to the model developing a strong depen-
dency on these correlations, making the biases more pronounced and identifiable.
Once these biases are amplified and more clearly delineated, we proceed to the
second stage -slicing- where an error-aware mixture model that uses the CLIP
embeddings similarly to DOMINO is applied.

We modify FACTS the same way as we modified DOMINO, by applying the
mapping h(x) to the input images before embedding them to CLIP.
Visually Grounded Bias-to-Text (ViG-B2T): In contrast to the methods
described above that focus on discovering conflicting slices on the cross-modal
embeddings, B2T first generates textual image descriptions which are then pro-
cessed to identify the conflicting slices. The ClipCap [15] image captioning model
is used to generate textual descriptions. Then, keywords are extracted for the
uncorrectly predicted samples, and ranked using the CLIP score to determine
which ones are related to the spurious attributes, based on their similarity with
correctly or incorrectly classified images. Formally, the CLIP score is given by:

sCLIP(k,D) = sim(k,Dwrong)− sim(k,Dcorrect) (3)
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Class: Not blond

Fig. 3: The B2T framework treats visual biases as language, allowing to (1) uncover
new biases by interpreting keywords and (2) mitigate biases in models by leveraging
these identified keywords. Through B2T, spurious correlations between attributes like
female and blond are uncovered. To enhance this process, we suggest integrating a vi-
sual explanation component before keyword generation. This addition aims to improve
the relevance of identified keywords and assess the effectiveness of using these keywords
in debiasing.

where Dwrong and Dcorrect are the set of correctly and incorrectly classified im-
ages, respectively, and sim(a,D) is the similarity between the keyword k and the
dataset D. Keywords with the highest CLIP score are considered to describe the
spurious attributes. Figure 3 illustrates the overall framework of B2T method.

We modify B2T and improve the quality of the bias description keywords
by focusing the attention of the image captioning model into the spurious fea-
tures using visual explanations. Therefore, before generating the captions, we
first apply function h(x) to the images, then generate the captions, extract the
keywords and rank them as originally proposed in [9]. Figure 3 illustrates the
B2T method, and how we utilize visual explanations.

4.3 Improving bias mitigation via visual explanations

Although the methods described above are effective in discovering biases in
image classifiers, they do not provide a direct way to mitigate them. In this
section, we describe how bias mitigation methods can benefit from visual ex-
planations to improve worst-group accuracy. Here we focus on two alternatives:
using language-based zero-shot classifiers, and Group Distributionally Robust
Optimization (GroupDRO) [17].
Zero-shot Classifier. Language-based Zero-shot (ZS) classification can be de-
fined as the task of predicting a class that has not been explicitly seen during
training, by levereging the semantic understanding encoded in its pre-trained
embeddings (e.g ., using cross-modal embeddings like CLIP [16]). Prior studies
proposed several prompting strategies to mitigate biases in ZS classifiers. [24]
employs group-informed prompting, which performs zero-shot classification us-
ing prompts with group information (e.g., “a waterbird on a land background”),
what has shown to reduce the gap between worst and average-class accuracy.
Since this approach still requires having access to the group names, which is
not the case in our setting, we follow [9] and employ a prompting strategy that
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Amplify Correlation Correlation Aware Slicing

Mixture Model

Discovered Slices

CLIP

(frozen)

Class: Not blondClass: Not blond

Man

Woman

High Low

Visual explanations 

Fig. 4: Our objective is to pinpoint slices of data where a spurious correlation exists be-
tween a task-irrelevant attribute (such as gender) and the label of interest. For instance,
in the given example, women who are not blond correspond to a bias-conflicting slice,
while not blond men form a bias-aligned slice. FACTS amplifies correlations, aiming
to establish a straightforward bias-aligned hypothesis. Then, it applies a visual expla-
nation to the dataset using the amplified model. Finally, correlation-aware slicing is
executed, a process in which clustering is conducted within the bias-amplified feature
space. To enhance this process, we suggest integrating a visual explanation component
h before keyword generation.

mitigates biases in ZS classifiers by augmenting the base prompt with conflict-
ing keywords discovered by B2T and our visually grounded variant, ViG-B2T.
Importantly, we show that the words discovered by ViG-B2T actually lead to
improved mitigation performance.
Group Distributionally Robust Optimization (GroupDRO). As discussed
in the Section 2, GroupDRO [17] is effective at mitigating biases but it requires
pre-defined group annotations. Formally, for some loss functions ℓ (e.g . cross-
entropy) and training data {(xi, yi, gi)}Ni=1 with N samples, the GroupDRO ob-
jective is given by:

min
θ∈Θ

{
max
g∈G

1

ng

ng∑
i=1|gi=g

ℓ(fθ(xi), yi)

}
(4)

where ng is the number of samples per group. The original B2T proposes inferring
group annotations using the language-based zero-shot classifier, CLIP [16], and
then re-train a classifier using the GroupDRO algorithm with the new group
annotations. Here, we evaluate the performance of GroupDRO when trained
using the keywords inferred by the original B2T and our proposed ViG-B2T.

5 Experiments

We study three datasets: CelebA [14], Waterbirds [17] and NICO++ [25], which
are standard benchmarks for evaluating the discovery and mitigation of biases
caused by spurious correlations. All the details about the datasets can be found in
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Supplementary Material A. Moreover, all implementation details of our method
are presented in Supplementary Material B.

5.1 Evaluation Protocol

Bias Discovery Metrics. In our study, we adopt the Precision@k metric [6]
to assess the effectiveness of our slice discovery methodology in identifying bias-
conflicting slices within a dataset. This metric measures the proportion of the
top k elements in the discovered slice that are in the ground-truth slice. For
more details we refer to [6].
Bias Mitigation Metrics. To evaluate the bias mitigation performance, we
use two different metrics: average and worst-case accuracy. Following [17], we
report an adjusted average accuracy, which is the test accuracy across all groups,
weighted by the number of samples in each group in the training data. The
worst-group accuracy (WGA) is the lowest accuracy across all groups defined
as, ming∈G

1
ng

∑ng

i=1|gi=g 1l
{
fθ(x) = y

}
where ng is the number of samples per

group.

5.2 Comparison Baselines

Bias Discovery Baselines. Our objective is to assess the impact of incorpo-
rating visual explanations into a bias discovery method and determine whether
it enhances the effectiveness of the bias discovery process. Thus, the baseline
methods consist of the standard versions of the bias discovery methods, for this
comparison we include B2T [9], FACTS [23], and DOMINO [6].
Bias Mitigation Baselines. Regarding debiasing methods, our aim is to as-
sess the influence of visual explanations on their formulation. As outlined in
Section 4.3, our approach involves extracting keywords associated with spuri-
ous attributes and informed using visual explanations, forming groups through
zero-shot classification based on these keywords and labels, and subsequently
training a GroupDRO [17] model based on the generated groups. We intend to
compare these methods with the standard versions which do not incorporate vi-
sual explanations. Additionally, we will compare them with a standard version of
GroupDRO [17] where groups are built using the ground-truth attributes already
present in the dataset, as well as with another mitigation method, JTT [12],
which does not rely on group information.

6 Results

6.1 Evaluating Bias Discovery

We first evaluate the quality of the predicted slices with and without utilizing vi-
sual explanations in Table 1. As in [23], we use the metric Precision@k, and we
set k = 10. Unlike DOMINO and FACTS, B2T does not assume that each tar-
get label may be mapped to multiple spurious features. Moreover, the discovered
keywords in B2T reflect only the dominant spurious feature per class. That is
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Table 1: Visual explanations enhance the effectiveness of bias discovery methods. We
report precision@k as a metric to assess the quality of slices generated by each method.

Method Datasets

Waterbirds CelebA NICO++75 NICO++90 NICO++95

DOMINO [6] 90.0% 87.0% 24.0% 24.0% 24.0%
ViG-DOMINO (ours) 92.0% 90.0% 25.0% 24.0% 25.4%

B2T [9] 92.0% 64.0% - - -
ViG-B2T (ours) 97.0% 70.0% - - -

FACTS [23] 100.0% 100.0% 55.0% 60.8% 61.0%
ViG-FACTS (ours) 100.0% 100.0% 60.0% 66.7% 65.0%

Table 2: Visual explanations improve the effectiveness of bias mitigation approaches.
We report worst group accuracy and average accuracy across all groups (the higher the
better) and gap between these two (the lower, the better).

Prompting strategy Waterbirds CelebA NICO++75 NICO++90 NICO++95

Worst Avg. Gap Worst Avg. Gap Worst Avg. Gap Worst Avg. Gap Worst Avg. Gap

ZS w/ Base prompt [16] 51.0% 79.0% 28% 69.4% 81.9% 12.5% 70.7% 76.0% 5.3% 70.3% 76.6% 6.3% 68.2% 77.3% 9.1%
ZS + Group labels [24] 50.3% 82.7% 32.4% 71.6% 90.2% 18.6% 75.3% 76.8% 1.5% 75.8% 77.2% 1.4% 75.1% 77.7% 2.6%
ZS + B2T Groups [9] 55.0% 76.3% 21.3% 77.5% 86.4% 8.9% 77.0% 77.6% 0.6% 69.9% 75.0% 5.1% 77.1% 75.0% 2.1%
ZS + ViG-B2T Groups (ours) 63.1% 77.8% 14.7% 78.2% 85.2% 7% 77.9% 79.4% 1.5% 75.3% 80.6% 5.3% 74.6% 81.1% 6.5%

why we could not report its results on the NICO++ dataset (note that the orig-
inal B2T publication does not report results on NICO++ neither). Nonetheless,
the accuracy of the inferred slices when using visual explanations in B2T on
Waterbirds and CelebA datasets shows systematic improvement. Importantly,
incorporating visual explanations into bias discovery methods yields either the
same or better Precision@k across all five datasets.

6.2 Evaluating Bias Mitigation

We then assess the effectiveness of identified slices and keywords in reducing
spurious correlations. Initially, we assess the average and worst-group accuracies
for zero-shot classification using various prompting strategies. Then, we compare
debiasing models using the GroupDRO algorithm, each using the discovered
keywords to infer the new group annotations across all datasets.
Evaluating Zero-Shot Classification. Results shown in Table 2 reveal that
incorporating visual explanations enhances worst group accuracy across all
datasets and reduces the gap between worst and average accuracy, resulting in
significant improvements. For instance, in the Waterbird dataset, we achieve an
8% increase in worst group accuracy compared to Zero-shot classification with-
out visual explanation. Similarly, in CelebA, we observe a 1.2% enhancement in
worst group accuracy.
Debiasing Classifiers With GroupDRO. We compare the bias mitigation
performance when training a classifier using GroupDRO considering three dif-
ferent group definitions:(1) using the ground-truth attributes (e.g. male and
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Table 3: Incorporating visual explanations improves the effectiveness of bias mitigation
approaches, particularly in terms of worst group accuracy, a commonly utilized metric
in bias mitigation tasks.

Method Uses group information Waterbirds CelebA

Worst Avg. Gap. Worst Avg. Gap.

ERM No 62.4% 97.7% 35.3% 47.0% 94.9% 47.9%
JTT [12] 86.3% 92.8% 6.5% 82.0% 88.0% 6%

GroupDRO w/ original groups [17]
Yes

88.0% 93.7% 5.7% 88.4% 91.6% 3.2%
GroupDRO w/ B2T groups [9] 88.3% 93.8% 5.5% 87.8% 92.7% 4.9%
GroupDRO w/ ViG-B2T groups (ours) 90.2% 93.4% 3.2% 91.0% 93.9& 2.9%

female for CelebA, or land and water for Waterbirds), (2) using inferred groups
obtained from standard B2T [9] and (3) incorporating visual explanations in the
creation of the inferred groups via ViG-B2T. Additionally, we compare our ap-
proach with JTT [12], which do not use group information, and standard ERM.
Results are presented in Table 3, showing that integrating visual explanations
enhances worst group accuracy across all datasets, and yields the lowest gap
between worst and average accuracy.

6.3 Ablations

We considered an alternative VE method (ScoreCAM [22], which differently from
GradCAM, does not rely on gradients to construct the class activation maps)
and different thresholds τ for the generation of the binary masks. Figure 5 shows
results both for bias discovery (Figure 5a) and mitigation (Figure 5b). We aim to
assess the stability of the visual explanation methods across different threshold
levels. We find that both, GradCAM and ScoreCAM achieve approximately simi-
lar worst group accuracies for different values of τ . For instance, ScoreCAM gets
good worst-group accuracy at lower threshold values, whereas GradCAM [18]
requires increasing threshold values. Nevertheless, the worst group accuracy re-
mains approximately constant for both methods. Finally, some qualititave results
from these visualizations are provided in Figure 6 for different attention methods.
Additional results are also included in Supplementary Material C.

7 Conclusion

In this paper, we introduced Visually Grounded Bias Discovery (ViG-Bias), a
novel method that leverages visual explanations to uncover and address biases
in visual recognition models. By integrating multimodal embeddings with visual
explanation techniques, ViG-Bias not only identifies biases with higher precision
but also provides insights into the nature of these biases. Our approach rep-
resents a significant step forward offering a method that is both effective and
interpretable, while easily adaptable to multiple existing frameworks. However,
it is not free from limitations. The type of spurious correlation that can be dis-
covered by ViG-Bias is limited to those that can be attributed by VEs. For
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(a) We plot the value of the Precision@k
obtained after fitting the mixture model in
FACTS with and without incorporating vi-
sual explanations against the threshold τ ,
and compare ViG-FACTS (GradCAM) and
ViG-FACTS (ScoreCAM) for visual expla-
nation capabilities on the CelebA datasets.
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(b) We plot the value of the worst-group
accuracy obtained using GroupDRO with
ViG-B2T groups classifier, as the threshold
τ increases for GroupDRO with ViG-B2T
(GradCAM) and GroupDRO with ViG-
B2T (ScoreCAM) on the CelebA dataset.

Fig. 5: Ablating the GradCAM [18] mask threshold τ on the CelebA dataset for bias
discovery (a) and mitigation (b). The main hyperparameter that is important for our
model is the parameter τ that integrates the optimal threshold for the mask. We
optimize this parameter depending on the dataset, however, our method performs
better than the baseline in almost all the different choices of τ . Empirically, as a rule
of thumb, setting τ = 0.5 is a good starting point.

Original Ground truth GradCAM GradCAM++ FullGrad ScoreCAM

Fig. 6: Visual explanations of other CAM-variants (GradCAM [18], GradCAM++ [4],
Fullgrad [20] and ScoreCAM [22]) for a biased model trained on CelebA. Compared
to other CAM methods, ScoreCAM tends to better highlight the region related to the
spurious feature (in this case, instead of focusing on the hair, it points to the face), for
images from groups where the spurious correlation holds.

example, spurious correlations not related to localized artifacts or objects, like
global intensity distribution shifts due to noise or different acquisition devices,
will not be detected by ViG-Bias. As for Societal Impact, we believe it is over-
all positive as our method improves bias detection and mitigation, ultimately
contributing to more fair AI systems. As future work, we aim to investigate the
integration of ViG-Bias with other bias detection and mitigation frameworks to
further enhance its effectiveness and adaptability.
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