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Abstract. We address the simulation-to-real domain gap in six degree-
of-freedom pose estimation (6DoF PE), and propose a novel self-supervised
keypoint voting-based 6DoF PE framework, effectively narrowing this
gap using a learnable kernel in RKHS. We formulate this domain gap
as a distance in high-dimensional feature space, distinct from previous
iterative matching methods. We propose an adapter network, which is
pre-trained on purely synthetic data with synthetic ground truth poses,
and which evolves the network parameters from this source synthetic
domain to the target real domain. Importantly, the real data training
only uses pseudo-poses estimated by pseudo-keypoints, and thereby re-
quires no real ground truth data annotations. Our proposed method is
called RKHSPose, and achieves state-of-the-art performance among self-
supervised methods on three commonly used 6DoF PE datasets includ-
ing LINEMOD (+4.2%), Occlusion LINEMOD (+2%), and YCB-Video
(+3%). It also compares favorably to fully supervised methods on all six
applicable BOP core datasets, achieving within −11.3% to +0.2% of the
top fully supervised results.

Keywords: pose estimation · self-supervision · domain adaptation · key-
point estimation

1 Introduction

RGB-D Six Degree-of-Freedom Pose Estimation (6DoF PE) is a problem being
actively explored in computer vision research. Given an RGB image and its
associated depth map, the task is to detect scene objects and estimate their
poses comprising 3DoF rotational angles and 3DoF translational offsets in the
camera reference frame. This task enables many applications such as augmented
reality [34,36,40,84], robotic bin picking [19,35,43], autonomous driving [51,85]
and image-guided surgeries [21,25].

As with other machine learning (ML) tasks, fully supervised 6DoF PE re-
quires large annotated datasets. This requirement is particularly challenging for
6DoF PE, as the annotations comprise not only the identity of the objects in
the scene, but also their 6DoF pose, which makes the data relatively expensive
to annotate compared to related tasks such as classification, detection and seg-
mentation. This is due to the fact that humans are not able to qualitatively or
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Fig. 1: RKHSPose adapts the network pretrained on synthetic data to real test scenes
(left), by comparing network feature spaces with real image inputs (solid arrows),
against those with syn/real image (right) inputs (dashed arrows). Mr regresses radial
quantities, MA is the Adapter network, and RKHS maps features into a higher dimen-
sional space.

intuitively estimate 6DoF pose, which therefore requires additional instrumen-
tation of the scene at data collection, and/or more sophisticated user annotation
tools [34, 84]. Consequently, synthetic 6DoF PE datasets [36, 43] have been in-
troduced, either as an additional complement to real datasets, or as standalone
purely synthetic datasets. Annotated synthetic datasets are of course trivially
inexpensive to collect, simply because precise synthetic pose annotation in a
simulated environment is fully automatic. A known challenge in using synthetic
data, however, is that there typically exists a domain gap between the real and
synthetic data, which makes results less accurate when inferring in real data
using models trained on purely synthetic datasets. Expectations of the potential
benefit of synthetic datasets has led to the exploration of a rich set of Do-
main Adaptation (DA) methods, which specifically aim to reduce the domain
gap [6,62,88] using inexpensive synthetic data for a wide variety of tasks, recently
including 6DoF PE [28,45,47].

Early methods [42, 83] ignored the simulation-to-real (sim2real) domain gap
and nevertheless improved performance by training on both synthetic and real
annotated data, effectively augmenting the real images with the synthetic. How-
ever, these methods still required real labels to be sufficiently accurate and robust
for practical applications, partially due to the domain gap. As shown in Fig. 1,
the rendered synthetic objects (right image) have a slightly different appear-
ance than the real objects (left image). The details of the CAD models, both
geometry and texture, are not precise, as can be seen for the can object (which
lacks a mouth and shadows), the benchvise (which is missing a handle), and
the holepuncher (which has coarse geometric resolution). Several recent meth-
ods [9, 44, 73, 75, 80] have started to address the sim2real gap for 6DoF PE by
first training on labeled synthetic data and then fine-tuning on unlabeled real
data. Commonly known as self-supervised, these methods reduce the domain gap
by adding extra supervision using features extracted from real images without
requiring real ground truth (GT) labels. The majority of these methods are view-
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point/template matching-based, and the self-supervision commonly iteratively
matches 2D masks or 3D point clouds [44,73,80].

While the above-mentioned self-supervison works have shown promise, there
exist a wealth of DA techniques that can be brought to bear to improve perfor-
mance further for this task. One such technique is Reproducing Kernel Hilbert
Space (RKHS ), which is a kernel method that has been shown to be effec-
tive for DA [1, 5, 41]. RKHS was initially used to create decision boundaries for
non-separable data [12, 60], and has been shown to be effective at reducing the
domain gap for various tasks and applications [7,65,89]. The reproducing kernel
guarantees that the domain gap can be statistically measured, allowing network
parameters trained on synthetic data to be effectively adapted to the real data,
using specifically tailored metrics.

To address the sim2real domain gap in 6DoF PE, we propose RKHSPose,
which is a keypoint-based method [82, 83] trained on a mixture of a large col-
lection of labeled synthetic data, and a small handful of unlabeled real data.
RKHSPose estimates the intermediate radial voting quantity, which has been
shown to be effective for estimating keypoints [83], by first training a modi-
fied FCN-Resnet-18 on purely synthetic data, with automatically labeled syn-
thetic GT poses. The radial quantity is a map of the distance from each image
pixel to each keypoint. Next, real images are passed through the synthetically
trained network, resulting in a set of pseudo-keypoints. The real images and
their corresponding pseudo-keypoints are used to render a set of ‘synthetic-over-
real’ (syn/real) images, by first estimating the pseudo-pose from the pseudo-
keypoints, and then overlaying the synthetic object, rendered with the pseudo-
pose, onto the real image. The network training then continues on the syn/real
images, invoking an RKHS network module with a trainable linear product ker-
nel, which minimizes the Maximum Mean Discrepancy (MMD) loss. At the front
end, a proposed keypoint radial voting network learns to cast votes to estimate
keypoints from the backend-generated radial maps. The final pose is then deter-
mined using ePnP [46] based on the estimated and corresponding object key-
points.

The main contributions of this work are:

– A novel learnable RKHS-based Adapter backend network architecture to
minimize the sim2real domain gap in 6DoF PE;

– A novel CNN-based frontend network for keypoint radial voting;
– A self-supervised keypoint-based 6DoF PE method, RKHSPose, which is

shown to have state-of-the-art (SOTA) performance, based on our experi-
ments and several ablation studies.

2 Related Work

2.1 6DoF PE

ML-based 6DoF PE methods [57,61,84] all train a network to regress quantities,
such as keypoints and camera viewpoints, as have been used in classical algo-
rithms [34]. ML-based methods, which initially became popular for the general
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Table 1: Existing self-supervised 6DoF PE methods. Some methods use CAD models,
labeled synthetic (syn) data (images+poses), and real data without GT labels, while
others use only labeled synthetic data. Many methods require a ROI such as a bounding
box or a semantic mask, manually labeled or estimated by an existing framework. SO-
Pose [18] used very few real labels to improve performance.

method mode CAD syn real real ROImodel data images poses
SO-Pose [18] RGB ✓ ✓ ✓ ✓ ✓
TexPose [9] RGB ✓ ✓ ✓ ✗ ✓
SMOC-Net [75] RGB ✓ ✓ ✓ ✗ ✓
FS6D [33] RGBD ✓ ✓ ✗ ✗ ✓
AAE [73] RGB ✓ ✓ ✗ ✗ ✓
MHP [54] RGB ✓ ✓ ✗ ✗ ✓
Sock et al. [68] RGB ✓ ✓ ✗ ✗ ✓
DSC [86] RGBD ✓ ✓ ✗ ✗ ✓
Sundermeyer [71] RGB ✓ ✓ ✗ ✗ ✓
LatentFusion [59] RGB ✗ ✓ ✗ ✗ ✓
OSOP [66] RGBD ✓ ✓ ✗ ✗ ✗

Kleeberger et al. [44] D ✓ ✓ ✗ ✗ ✗

Su et al. [69] RGB ✓ ✓ ✓ ✗ ✗

Self6D [80] RGBD ✓ ✓ ✓ ✗ ✗

Self6D++ [79] RGB ✓ ✓ ✓ ✗ ✗

Deng et al. [15] RGBD ✓ ✓ ✓ ✗ ✗

RKHSPose (Ours) RGBD ✓ ✓ ✓ ✗ ✗

object detection task, have started to dominate the 6DoF PE literature due to
their accuracy and efficiency.

There are two main categories of ML-based fully supervised methods: feature
matching-based [29, 30, 57, 70, 84], and keypoint-based methods [31, 32, 61, 87].
Feature matching-based methods make use of the structures from general object
detection networks most directly. The network encodes and matches features and
estimates pose by either regressing elements of the pose (e.g. the transformation
matrix [75], rotational angles and translational offsets [84] or 3D vertices [70])
directly, or by regressing some intermediate feature-matching representations,
such as viewpoints or segments.

In contrast, keypoint-based methods encode features to estimate keypoints
which are predefined within the reference frame of an object’s CAD model. These
methods then use (modified) classical algorithms such as PnP [22, 46], Horn’s
method [38], and ICP [3] to estimate the final pose from corresponding image
and model keypoints. Unlike feature-matching methods, keypoint-based methods
are typically more accurate due to redundancies encountered through voting
schemes [32,61,83] and by generating confidence hypotheses of keypoints [31,87].

Recently, self-supervised 6DoF PE methods have been explored in order to
reduce the reliance on labeled real data, which is expensive to acquire. As sum-
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marized in Table 1, these methods commonly use real images without GT labels.
Some methods use pure synthetic data and CAD models only, with the excep-
tion of LatentFusion [59] which trained the model using only synthetic data. The
majority of these methods [9, 15, 33, 48, 66, 68, 69, 71, 75, 79, 80] are inspired by
fully supervised feature-matching methods, except DPODv2 [67] and DSC [86],
in which keypoint correspondences are rendered and matched.

A few methods [15, 66] fine-tuned the pose trivially by iteratively matching
the template/viewpoint, whereas others [33, 44, 59, 86] augmented the training
data by adding noise [44, 86], rendering textures [33, 67] and creating a latent
space [59]. Some methods [54, 71, 73] also implemented DA techniques such as
codebook encoding [71], Principle Component Analysis (PCA) [71] and symmet-
ric Bingham distributions [54]. Most methods [66,68,69,79,80,86] used rendering
techniques to render and match a template. There are a few methods that com-
bined 3D reconstruction techniques, such as Neural radiance fields (Nerf) [55]
and Structure from Motion (SfM) [76]. TexPose [9] matched CAD models to
segments generated by Nerf, and SMOC-Net [75] used SfM to create the 3D
segment and matched with the CAD model.

2.2 Kernel Methods and Deep Learning

While deep learning is the most common ML technique within the computer vi-
sion literature, kernel methods [12,60,64] have also been actively explored. Kernel
methods are typically in RKHS space [74] with reproducing properties that facil-
itate solving non-linear problems by mapping input data into high dimensional
spaces that can be linearly separated [11, 23]. Well-known early kernel methods
that have been applied to computer vision are Support Vector Machines [12] and
PCA [60]. A recent method [64] linked energy distance and MMD in RKHS, and
showed the effectiveness of kernels in statistical hypothesis testing.

More recent studies compare kernel methods with deep learning networks [1,
4,5,41]. RKHS is found to perform better on classification tasks than one single
block of a CNN comprising convolution, pooling and downsampling (linear) lay-
ers [41]. RKHS can also help with CNN generalization by meta-regularization
on image registration problems [1]. Similarly, norms (magnitude of trainable
weights) defined in RKHS help with CNN regularization [4,5]. Further, discrim-
inant information in label distributions in unsupervised DA is addressed and
RKHS-based Conditional Kernel Bures metric is proposed [50]. Lastly, the con-
nection between Neural Tangent Kernel and MMD is established, and an efficient
MMD for two-sample tests is developed [10].

Inspired by the previous work, RKHSPose applies concepts of kernel learning
to keypoint-based 6DoF PE, to provide an effective means to self-supervise a
synthetically trained network on unlabeled real data.
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Fig. 2: RKHSPose architecture. RKHPose is first trained on synthetic labeled data
(solid arrows), and then finetuned on alternating syn/real and (unlabeled) real images
(dashed arrows). MA is measured by MMD in RKHS by densely mapping the inter-
mediate features of Mr into high dimensional spaces with conv blocks. The distance is
treated as LMA and back-propagated through MA and Mr.

3 Method

3.1 Network Overview

As shown in Fig. 2, RKHSPose is made up of two networks, a main network
Mrv for keypoint regression and classification, and an Adapter network MA.
The input of Mrv with shape W×H×4, is the concatenation of an RGB image I
and its corresponding depth map D. This input can be synthetically generated
with an arbitrary background (Isyn and Dsyn), a synthetic mask overlayed on a
real background (Isyn/real and Dsyn/real), or a real (Ireal and Dreal) image. The
outputs are n projected 2D keypoints K, along with corresponding classification
labels C and confidence scores S. K are organized into instance sets based on C
and geometric constraints.

Mrv comprises two sub-networks, regression network Mr and voting network
Mv. Inspired by recent voting techniques [32, 61, 82, 83, 90], Mr estimates an
intermediate voting quantity, which is a radial distance map Vr [83], by using a
modified Fully Connected ResNet 18 (FCN-ResNet-18). The radial voting map
Vr, with shape W×H, stores the Euclidean distance from each object point to
each keypoint in the 3D camera world reference frame. The voting network Mv

(described in Sec. 3.3) then takes Vr as input, accumulates votes, and detects
peaks to estimate K, C and S.

The Adapter network MA consists of a series of CNNs which encode pairs of
feature maps from Mrv, and are trained on both synthetic overlayed and pure real
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data. MA encodes feature map pairs (fsyn/real, freal) into corresponding high-
dimensional feature maps (hsyn/real, hreal). The input data, (Isyn/real, Ireal) and
(Dsyn/real, Dreal), are also treated as (fsyn/real, freal) during the learning of MA.
Each of these networks creates a high-dimensional latent space, essentially the
Reproducing Kernel Hilbert Space (RKHS) [2] and contributes to the learning of
both Mrv and MA by calculating the MMD [27]. While RKHS has been applied
effectively to other DA tasks, to our knowledge, this is the first time that it has
been applied to 6DoF PE, and the adapter network architecture is novel.

The loss function L is made up of five elements: Radial regression loss Lr for
Vr; Keypoint projection loss Lk for K; Classification loss Lc for C; Confidence
loss Ls for S, and finally; Adapter loss LA for the comparison of intermediate
feature maps. The regression losses Lr, Lk, and Ls all use the smooth L1 metric,
whereas classification loss Lc uses the cross-entropy metric H(·). RKHSPose
losses can then be denoted as:

Lr = smoothL1(Vr, V̂r) (1)

Lk = smoothL1
(K, K̂) (2)

Lc = H(p(C), p̂(C)) (3)

Ls = smoothL1
(S, Ŝ) (4)

LA = MMD(f̂syn/real, f̂real) (5)
L = λrLr + λkLk + λcLc + λsLs + λALA (6)

where λr, λk, λc, λs, and λA are weights for adjustment during training, and all
non-hatted quantities are GT values. At inference, Mrv takes Ireal and Dreal as
input, and outputs K, C and S. The keypoints K are ranked and grouped by
S and C, and are then forwarded into the ePnP [46] algorithm which estimates
6DoF pose values. ICP can then be optionally applied using the depth data to
refine the estimated pose.

3.2 Convolutional RKHS Adapter

Reproducing Kernel Hilbert Space H is a commonly used vector space for Do-
main Adaptation [58, 77]. Hilbert Space is a complete metric space (in which
every Cauchy sequence of points has a limit within the metric) represented
by the inner product of vectors. For a non-empty set of data X , a function
KX :X×X →R is a reproducing kernel if:{

k(·, x) ∈ H ∀ x ∈ X
⟨f(·), k(·, x)⟩ = f(x) ∀ x ∈ X , f ∈ H

(7)

where ⟨a, b⟩ denotes the inner product of two vectors a and b, k(·, x) = KX
for each x ∈ X , and f is a function in H. The second equation in Eq. 7 is an
expression of the reproducing property of H.

In order to utilize H for DA, we expand the kernel definition to two sets of
data X and Y. The reproducing kernel can then be defined as:

K(X ,Y) = ⟨KX ,KY⟩H (8)
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Here, KX and KY are themselves inner product kernels that map X and Y
respectively into their own Hilbert spaces, and K(X ,Y) is the joint Hilbert space
kernel of X and Y. Note that K(X ,Y) is not the kernel commonly defined for
CNNs. Rather, it is the similarity function defined in kernel methods, such as
is used by Support Vector Machine (SVM) techniques to calculate similarity
measurements. Some recent methods [8, 52, 53, 56] named it a Convolutional
Kernel Network (CKN) to distinguish it from CNNs.

Various kernels of CKN, such as the Gaussian Kernel [53], the RBF Ker-
nel [52] and the Inner Product Kernel [56], have been shown to be comparable
to shallow CNNs for various tasks, especially for Domain Adaption. The most
intuitive inner product kernel is mathematically similar to a fully connected
layer, where trainable weights are multiplied by the input feature map. To allow
the application of RKHS methods into our CNN based Adapter network MA,
trainable weights are added to K(X ,Y) [49]. The trainable Kernel Kw(X ,Y) can
then be denoted as:

Kw(X ,Y) = ⟨⟨X ,WX ⟩ , ⟨Y,WY⟩⟩H (9)

where WX and WY are trainable weights. By adding WX and WY , Kw(X ,Y)
still satisfies the RKHS constraints.

The sim2real domain gap of feature maps f being trained in Mrv (with
few real images and no real GT labels) are hard to measure using trivial dis-
tance metrics. In contrast, RKHS can be a more accurate and robust space for
comparison, since it is known to be capable of handling high-dimensional data
with a low number of samples [24, 56]. To compare (fsyn/real, freal) in RKHS,
a series of CNN layers encodes (fsyn/real, freal) into higher-dimensional features
(hsyn/real, hreal), followed by the trainable Kw(X ,Y). Once mapped into RKHS,
hsyn/real={sri}mi=1 and hreal={ri}mi=1 can then be measured by Maximum Mean
Discrepancy (MMD), a common DA measurement [27, 49], which is the square
distance between the kernel embedding [26]:

MMD(hsyn/real, hreal) =
1

m

 m∑
i=1

m∑
j=1

kw(sri, srj)−
m∑
i=1

kw(sri, sri)

)

−

 m∑
i=1

m∑
j=1

kw(sri, rj)−
m∑
i=1

kw(sri, ri)

)
+

 m∑
i=1

m∑
j=1

kw(ri, rj)−
m∑
i=1

kw(ri, ri)

)] 1
2

(10)

where kw() is the feature element of Kw().
In summary, the Adapter MA shown in Fig. 2 measures MMD for each

(hsyn/real, hreal) in RKHS, by increasing the fsyn/real and freal dimension using
a CNN and thereby constructing a learnable kernel Kw. The outputs are the
feature maps hsyn/real and hreal, which are supervised by loss LA during train-
ing of the real data epochs. Based on the experiments in Sec. 5.3, our trainable
inner product kernel is shown to be more accurate for our task than other known
kernels [52,53,56] that we tested, that are often used in such kernel methods.
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3.3 Keypoint Radial Voting Network

The network Mv votes for keypoints using a CNN architecture, taking the ra-
dial voting quantity Vr resulting from Mr as input. VoteNet [63] previously
used a CNN approach to vote for object centers, whereas other keypoint-based
techniques have implemented GPU-based parallel RANSAC [32,61] methods for
offset and vector quantities. The radial quantity is known to be more accurate
than the vector or offset quantities, and has been previously implemented with
a CPU-based parallel accumulator space method [82, 83]. Given its superior ac-
curacy, Mv implements radial voting using a CNN to improve efficiency. Given
a 2D radial map V̂r estimated by Mr and supervised by GT radial maps Vr, the
task is to accumulate votes, find the peak, and estimate the keypoint location.
The Vr foreground pixels (which lie on the target object) store the Euclidean dis-
tance from these pixels to each of the keypoints, with background (non-object)
pixels set to value -1.

The estimated radial map V̂r is indeed an inverse heat map of the candidate
keypoints’ locations, distributed in a radial pattern centered at the keypoints.
To forward V̂r into a CNN voting module, it is inversely normalized so that
it becomes a heat map. Let vmax

r and vmin
r be the maximum and minimum

global radial distances for all objects in a dataset, which can be calculated by
iterating through all GT radial maps, or alternately generated from the object
CAD models. An inverse radial map V̂ −1

r can then be denoted as V̂ −1
r = (vmax

r −
V̂r)/(v

max
r −vmin

r ). Voting network Mv takes V̂ −1
r as the input and generates the

accumulated vote map by a series of convolution, ReLu, and batch normalization
layers. The complete network architecture is provided in the Supplementary
material Sec. S.2. The background pixels are filtered out by a ReLu layer, and
only foreground pixels contribute to voting. The accumulated vote map is then
max-pooled for peak extraction, and reshaped using a fully connected layer into
a n×4 output. The output represents n keypoints and comprises n×2 projected
2D keypoints K, n classification labels C, and n confidence scores S. The labels
C indicate which object the corresponding keypoint belongs to, and S ranks
the confidence level of keypoints before being forwarded into ePnP [46] for pose
estimation. Mv is supervised by Lk, Lc, and Ls (Eqs. 2-4) and is trained end-
to-end along with Mr.

4 Experiments

4.1 Datasets and Evaluation Metrics

RKHSPose uses BOP Procedural Blender [17] (PBR) synthetic images [16, 36,
37, 72] for the synthetic training phase. The images are generated by dropping
synthetic objects (CAD models) onto a plane in a simulated environment using
PyBullet [13], and then rendering them with synthetic textures. All objects in
the synthetic images are thus automatically labeled with precise GT poses. We
evaluated RKHSPose for the six BOP [37,72] core datasets (LMO [34], YCB [84],
TLESS [35], TUDL [36], ITODO [20], and HB [40]), all except IC-BIN [19],
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which does not include any real training or validation images and is therefore
not applicable. ITODO and HB have no real images in the training set, and so
for training we instead used the real images in their validation sets, which were
disjoint from their test sets.

Our main results are evaluated with the ADD(S) [34] metric for the LM
and LMO dataset, and the ADD(S) AUC [84] metric for the YCB dataset.
These are the standard metrics commonly used to compare self-supervised 6DoF
PE methods. ADD(S) is based on the mean distance (minimum distance for
symmetry) between the object surfaces for GT and estimated poses, whereas
ADD(S) AUC plots a curve formed by ADD(S) for various object diameter
thresholds. We use the BOP average recall (AR) metrics for our ablation studies.
The AR metric, based on the original ADD(S) [34], evaluates three aspects,
including Visible Surface Discrepancy (ARV SD), Maximum Symmetry-Aware
Surface/Projection Distance (ARMSSD and ARMSPD) [36].

4.2 Implementation Details

RKHSPose is trained on a server with an Intel Xeon 5218 CPU and two RTX6000
GPUs with a batch size of 32. The Adam optimizer is used for the training of
Mrv, on both synthetic and real data, and MA is optimized by SGD. Both of
the optimizers have an initial learning rate of lr = 1e-3 and weight decay 1e-4
for 80 and 20 epochs respectively.

The input of the network is normalized before training, as follows. The RGB
images I are normalized and standardized using ImageNet [14] specifications.
The depth maps are each individually normalized by their local minima and
maxima, to lie within a range of 0 to 1. The radial distances in radial map Vr

and 2D projected keypoints are both normalized by the width and height of I.
A single set of four keypoints is chosen by KeyGNet [81] for the set of all

objects in each dataset. One extra background class is added to C in order to filter
out the redundant background points in K. Mrv is first trained for 120 epochs
on synthetic data, during which MA remains frozen. Following this, training
proceeds for an additional 80 epochs which alternate between real and synthetic
data. When training on real data, both MA and Mrv weights are learned, whereas
MA is frozen for the alternating synthetic data training.

During real data epochs, Mrv initially estimates pseudo-keypoints for each
real image. These pseudo-keypoints are then forwarded into ePnP for pseudo-
pose estimation. Each estimated pseudo-pose is then augmented into a set of
poses Paug by applying arbitrary rotational and translational perturbations with
respective ranges of [− π

18 ,
π
18 ] radians and [−0.1, 0.1] along three axes within

the normalized model frame, which is defined using the largest object in the
dataset. The set of syn/real images are rendered by overlaying onto the real
image the CAD model of each object using each augmented pose value in Paug.
The cardinality of Paug is set to be one less than the batch size, and the adapter
MA is trained on a mini-batch of the hybrid images resulting from Paug, plus
the image resulting from the original estimated pseudo-pose.
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Table 2: Comparison with other methods. Accuracy of RKHSPose for LM and LMO is
evaluated with ADD(S), and for YCB is evaluated with ADD(S) AUC. All ‘Supervision:
Syn + Self’ methods use real images without real labels.

Dataset/Metric

Method Real data LM LMO YCB
ADD(S) ADD-Simage label ADD(S) AUC AUC

Supervision: Syn (lower bound)
AAE ✗ ✗ 31.4 - - -
MHP ✗ ✗ 38.8 - - -
GDR (TexPose version) ✗ ✗ 77.4 52.9 - -
Self6D++ ✗ ✗ 77.4 52.9 77.8 89.4
Self6D++ with Dref ✗ ✗ 88.0 62.5 79.2 90.1
Ours ✗ ✗ 78.2 54.3 76.5 90.2
Ours+ICP ✗ ✗ 87.9 55.7 78.3 91.3

Supervision: Syn + Self
Sock et al. ✓ ✗ 60.6 22.8 - -
DSC ✓ ✗ 58.6 24.8 - -
Self6D ✓ ✗ 58.9 32.1 - -
SMOC-Net ✓ ✗ 91.3 63.3 - -
Self6D++ ✓ ✗ 88.5 64.7 80.0 91.4
TexPose ✓ ✗ 91.7 66.7 - -
Ours ✓ ✗ 95.8 68.6 82.8 92.4
Ours+ICP ✓ ✗ 95.9 68.7 83.0 92.6

Supervision: Syn + Real GT (upper bound)
SO-Pose ✓ ✓ 96.0 62.3 83.9 90.9
Self6D++ ✓ ✓ 91.0 74.4 82.6 90.7
Ours ✓ ✓ 96.7 70.8 85.4 92.2
Ours+ICP ✓ ✓ 96.8 71.3 85.6 92.4

Initially MA is frozen, and for the first 80 epochs, the loss is set to emphasize
the classification and the visibility score regression, i.e. λc = λs = 0.6 and λr =
λk=0.4. Following this, up to epoch 200, the scales of losses are then exchanged
to fine-tune the localization of the keypoints, i.e. λc=λs=0.4 and λr=λk=0.6.
After epoch 120, MA is unfrozen each alternating epoch, and λD is set to 1
during the remaining MA training epochs. This training strategy, shown in Fig. 2,
minimizes the sim2real gap without any real image GT labels, and using very
few (320) real images.

4.3 Results

The results are summarized in Tables 2 and 3. To our knowledge, RKHSPose
outperforms all existing self-supverised 6DoF PE methods. In Table 2, the up-
per bound fully supervised, lower bound synthetically supervised, and middle
self-supervised methods (including ours) are compared. On LM and LMO, our
ADD(S) is +4.2% and +2% better than the second best method TexPose [9]. We
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Table 3: Comparison with fully supervised methods. RKHSPose results on TLESS
(−1.8), TUDL (−0.4), ITODD (−4.6) and HB (+0.1) compares to SOTA methods
with full supervision of real GT labels. Methods annotated with ∗ use the detection
results from other detection methods.

Method real Dataset
label LM LMO TLESS TUDL ITODD HB YCB

SurfEmb∗ [30] ✓ - 76.0 82.8 85.4 65.9 86.6 79.9
RCVPose3D [82] ✓ - 72.9 70.8 96.6 73.3 86.3 84.3
RADet [87]+PFA∗ [39] ✓ - 79.7 85.0 96.0 67.6 86.9 88.8
ZebraPose [70] ✓ - 78.0 86.2 95.6 65.4 92.1 89.9
Ours ✗ 95.7 68.2 85.5 96.2 68.6 92.2 83.6
Ours+ICP ✗ 95.8 68.4 85.6 96.2 68.7 92.3 83.8

Fig. 3: Qualitative overlay results on selected images. Red dots and blue dots are
projected surface points from GT poses and estimated poses, respectively.

compared our performance to Self6D++ [79], which was the only other method
that evaluated using YCB, and saw a 3% improvement after ICP on ADD(S)
AUC. Last but not least, in Table 3 our performance evaluated on the other
four BOP core datasets is comparable to several upper bound methods from the
BOP leaderboard. Some test scenes with RKHSPose results are shown in Fig. 3.

RKHSPose runs at 34 fps on an Intel i7 2.5GHz CPU and an RTX 3090 GPU
with 24G VRAM. It takes on average 8.7 ms for loading data, 4.5 ms for forward
inference through Mrv (×10 faster compared to the analytical radial voting in
RCVPose [83]), and 16.2 ms for ePnP.

5 Ablation Studies

5.1 Dense Vs. Sparse Adapter

The Adapter MA densely matches the intermediate feature maps, whereas the
majority of other methods [15,75,80] only compare the final output. To show the
benefits of dense comparison, we conduct an experiment with different variations
of MA. A sparse matching Ms

A network is trained on synthetic and real data
comparing only a single feature map, which is the intermediate radial map. Ms

A

has the exact same overall learning capacity (number of parameters) as the
dense matching MA described in Sec. 3.3. The results in Table 4 show that MA
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Table 4: AR of different adapters on LM
and five BOP core datasets.

Adapter ARV SD ARMSSD ARMSPD AR

Ms
A 78.1 77.8 77.8 77.9

MA 84.9 84.1 84.3 84.4

Table 5: AR of different training strate-
gies on LM and five BOP core datasets.

Training Type ARV SD ARMSSD ARMSPD AR

Mixed 84.9 84.1 84.3 84.4
Sequantial 82.3 81.7 81.7 81.9

Table 6: [R Tab A] AR of different ker-
nels on LM and five BOP core datasets.

Kernel w ARV SD ARMSSD ARMSPD AR

Linear ✗ 71.6 70.8 70.6 71.0
✓ 84.9 84.1 84.3 84.4

RBF ✗ 73.4 72.9 73.2 73.2
✓ 82.5 81.3 81.5 81.6

Table 7: AR of different metrics on LM
and five BOP core datasets.

Metric ARV SD ARMSSD ARMSPD AR

MMD 84.9 84.1 84.3 84.4
KL Div 78.0 77.8 78.0 77.9
Wass 80.9 80.6 80.9 80.8

surpassed Ms
A on all six datasets tested. Specifically, on ITODD, MA is 12.1%

more accurate than Ms
A. This experiment shows the effectiveness of our densely

matched MA.

5.2 Syn/Real Synchronized Training

When training RKHSPose, real epochs are alternated with synthetic epochs. In
contrast, some other methods [9, 75,79, 80] separate the synthetic/real training.
We conducted an experiment to compare these two different training strategies,
the results of which are shown in Table 5. The alternating training performs
slightly better (+2.5% on average) than the sequential training, possibly due to
the early access to real scenes thereby avoiding local minima.

5.3 Adapter Kernels and Metrics

We use a linear (dot product) kernel and MMD in RKHS for domain gap mea-
surements. There are various other kernels and similarity measurements that
can be implemented in RKHS as described in Sec. 3.2. First, we add trainable
weights to the radial basis function (RBF) kernel in a similar manner as Kw

defined in Eq. 9. The trainable RBF kernel on two sets of data X and Y is
denoted as:

Krbf (X,Y ) = exp(−w ∥X − Y ∥2) (11)

where w are the trainable weights, which replaces the original adjustable param-
eter in the classical RBF kernel. We also experiment with the classical RKHS
kernel functions without trainable weights, including the inner product kernel
and the original RBF kernel [78], for comparison. Further, we experiment on
other commonly used distance measures, including Kullback-Leibler Divergence
(KL Div, i.e. relative-entropy) and Wasserstein (Wass) Distance.
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Fig. 4: Impact of # of real images with/without GT labels used during training. All
datasets are evaluated by the BOP AR metric. We conduct experiments from 0 to 640
real images on all datasets, except ITODD which contained only 357 real images.

In Table 6, the RBF kernel performs similar to the linear product kernel with
a slight performance dip. In Table 7, MMD minimizes the domain gap better
than the Wass Distance, followed by the KL Div metric, leading to a better
overall performance on AR. Based on these results, we used the linear product
kernel with trainable weights and selected MMD as the main loss metric.

5.4 Number of Real Images and Real Labels

The objective of RKHSPose is to reduce real data usage and train without any
real GT labels. To show the effectiveness of the approach, we conducted an
experiment by training on different numbers of real images, the results of which
are shown in Fig. 4. We used up to 640 real images in all cases, except for that of
ITODD which contains only 357 real images. The AR of all datasets saturates at
160 images except YCB. The further improvement of YCB beyond 160 images
is also only +0.1% and saturates after 320 real images. We nevertheless use 320
real unlabeled images for our main results. This experiment showed that adding
more than 320 real labeled images did not significantly improve performance.

6 Conclusion

To sum up, we propose a novel self-supervised keypoint radial voting-based 6DoF
PE method using RGB-D data called RKHSPose. RKHSPose fine-tunes poses
pre-trained on synthetic data by densely matching features with a learnable
kernel in RKHS, using real data albeit without any real GT poses. By applying
this DA technique in feature space, RKHSPose achieved SOTA performance on
the six applicable BOP core datasets, surpassing the performance of all other self-
supervised methods. Notably, the RKHSPose performance closely approaches
that of several fully-supervised methods, which indicates the strength of the
approach at reducing the sim2real domain gap for this problem.
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