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Abstract. Accurate measurement of the discrepancy between point sets
is crucial for point cloud learning tasks. Chamfer distance (CD) is favoured
over more effective loss metrics such as Earth Mover’s Distance (EMD)
for this purpose due to its computational efficiency. Previous investi-
gations into loss function improvements exclusively focus on 3D losses
as static metrics, and ignore their dynamic behaviour during training.
We show that directly modifying the correspondence criteria can pre-
vent clustering of points during training, leading to more uniform point
distributions. We propose UniformCD, a novel 3D distance metric that
prioritises matching the relative local densities of point neighbourhoods
when assigning correspondences. The proposed loss improves perfor-
mance on various tasks such as cloud completion, parametric model op-
timisation, as well as downstream task performance in self-supervised
learning, achieving SOTA EMD results among point set objective func-
tions. We show that our method exploits local density information to
converge towards globally optimum density distributions, narrowing the
disparity between CD and EMD. Source code is available on Github.

1 Introduction

The advent of deep learning, combined with the widespread popularity of 3D
scanning devices has led to significant work on point cloud learning tasks. These
include point cloud completion [30,33,37,39], denoising [17,29,40], up-sampling
[15, 41] and generation [10, 25, 35]. All of these tasks are heavily reliant on the
ability of a network to learn an accurate representation of a point cloud. Learning
such a representation is, in turn, reliant on accurately measuring the distance be-
tween a generated and input point cloud. In addition to learning representations,
such a measurement is also crucial for iterative optimisation tasks involving point
clouds such as registration and parametric optimisation.

A distance computation between two point sets can be decomposed into three
stages. First, correspondences between individual points are identified. Next, the
distance between each corresponding set of points is measured. Finally, these
distances are aggregated to produce a single distance value.

The fundamental intent of any point cloud distance metric is to provide a
comparison between the underlying geometric surfaces that generate each of the
two point clouds, known as their ‘supports’. Thus, the distance between the two
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point sets acts as a proxy for the distance between their supports. This makes
the comparison of distance metrics particularly difficult as there is no ‘true’
ground truth measure for the discrepancy between supports. In accordance with
Goodheart’s law, whenever a model is trained with a certain distance metric as
a loss, it tends to outperform models trained on other losses at that particular
metric. Consequently, visual comparisons of points generated by models trained
on various distance metrics are often used to evaluate distance metrics.

CD and EMD are the two most commonly used point set distance metrics.
EMD is generally accepted to be more effective, and produces more visually
consistent results [18, 31]. However, CD is commonly used in practice as it is
much more computationally efficient. In particular, CD tends to converge to
suboptimal solutions when used as an objective function [12]. The performance
gap between CD and EMD has inspired a number of alternative distance func-
tions [4, 11,12,18] that seek to improve the performance of CD.

In this work, we show that the requirements of a distance function vary based
on its use case. To explore these requirements, aside from their well-investigated
static properties, we examine the dynamic properties exhibited by 3D losses
when they are used as objective functions. Subsequently, we propose a novel
modification aimed at improving convergence of CD when used as a loss function.

Our proposed method improves convergence by reducing the likelihood of
multiple points in one cloud corresponding to a single point in the other, resulting
in local minima (Figure 1). This is performed by modifying the correspondence
criteria to take the local density of a corresponding point into account, discour-
aging matches with points within dense neighbourhoods. Our method maintains
the same computational complexity as CD (O(n log n)). We demonstrate that
our method outperforms CD and alternative distance metrics on completion,
parametric optimisation, and self-supervised learning in EMD metrics. We fur-
ther show that our method is agnostic to choice of model architecture.

In summary this research provides the following contributions;

– We present a novel analysis of requirements of a point set distance metric
used for optimisation;

– Based on insights from this analysis, we propose a novel distance metric
which prioritises uniform density distributions;

– We provide evaluations to illustrate the effectiveness of our proposed metric
and demonstrate that it lessens the gap between CD and EMD.

2 Background

2.1 Point Set Distance Metrics

We identify two primary use cases for measuring the discrepancy between a pair
of point clouds. The first is as an objective function. Consider training a gen-
erative model which learns a representation of a point cloud. 3D discrepancy
serves as the loss function for this training. The model attempts to minimise the
distance between a ground truth point set known as the target, and a point set
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Fig. 1: Morphing a sphere into a given shape (left → right) by minimising Earth
Mover’s Distance (top), chamfer distance (middle) and UniformCD (bottom). The
ground truth is given on the right. Note the occurrence of high density clusters on CD,
resulting in very low density in other regions. UniformCD significantly reduces this
effect, resulting in a more uniform cloud, similar to EMD.

generated by the model known as the source. This method is used to train au-
toencoder architectures for completion of occluded point clouds [39,42], denois-
ing [22,40] and resampling [1,36]. It is also increasingly utilised for self-supervised
learning on point clouds, in order to improve performance on downstream tasks
such as semantic segmentation [27,28,38]. Aside from training neural nets, these
objective functions are also used for iterative optimisation tasks. Here, the goal
is to directly optimise a set of parameters which leads to the generation or
manipulation of a point set. Point cloud registration [6,13] and parametric mod-
elling [7, 23] are common examples of this process.

When used as an objective function, the metric must be computationally ef-
ficient, as it is repeatedly calculated during optimisation. The discrepancy must
also be differentiable to enable gradient descent optimisation via backpropaga-
tion. Furthermore, coverage of all points in the target cloud is desirable in a
discrepancy metric. In essence, this equates to a surjective mapping from the
source points to the target points and vice versa. Low coverage leads a model
to generate multiple points that cluster towards a single point in the target
cloud [12] and ignore other points. This results in the loss metric reaching a lo-
cal minima. Point clouds generated by such models show large density variations
compared to the ground truth, similar to the second row of Figure 1. This is a
dynamic property; it is not observed when the metric is used in a single iteration,
but emerges over time when a metric is repeatedly utilised for optimisation.

Variation of point correspondences over iterations is another dynamic prop-
erty. Iterative optimisation using gradient descent benefits from a smooth loss
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function. However, if the set of corresponding point pairs change significantly be-
tween two iterations, the resultant loss may be difficult to optimise. Additionally,
invariance to noise is also desirable in an objective function.

The second use case is simply as an evaluation metric for gauging the ef-
fectiveness of the above tasks [10,15,33,34,39]. An evaluation metric has notably
different requirements in comparison to an objective function. Here, accuracy,
i.e. the ability to represent the true deviation between the supports of two point
sets, is preferable over computational efficiency. Differentiability and smoothness
are no longer required. Coverage is still desirable, however convergence towards
local minima is no longer a concern. Thus, we find that the requirements of a
point set discrepancy metric differ significantly based on its use case.
With these requisites in mind, let us examine existing point set distance metrics.

2.2 Chamfer Distance and Earth Mover’s Distance

Chamfer discrepancy (CD) is the most commonly used distance metric by a
significant margin. It is computed by summing the squared distance between each
point and its nearest neighbour in the other cloud. It has proven to be effective in
practice, and has low computational complexity. When nearest neighbour search
is performed using an octree structure, CD has time complexity O(n log n) [20],
where n is the number of points. for a pair of point clouds X and Y, bidirectional
CD is given by,

DCD =
∑
j

min
i

||xi − yj ||2 +
∑
i

min
j

||xi − yj ||2 (1)

The second most common distance metric is Earth Movers Distance (EMD).
EMD seeks a bijection, F (X) from X to Y , which minimises the squared distance
between each point x and its corresponding point F (x) in Y . Searching for this
mapping is an iterative process with complexity O(n3 log n) [24]. Unlike CD, both
clouds must have an equal number of points for EMD calculation. Intuitively,
EMD measures the distance that each point in X must be moved in order to
convert X into Y , such that the total distance of movement is minimised. EMD
is given by;

DEMD = min
F :X→Y

∑
i

||xi − F (xi)||2 (2)

Previous work provides comparisons between CD and EMD. It has been
qualitatively and quantitatively demonstrated that EMD optimisation produces
more consistent results than CD [18, 31]. Nguyen et al [18] additionally argue
that optimisation with CD is weaker than with EMD. This infers that minimis-
ing EMD guarantees CD minimisation, while the opposite is not guaranteed.
However, we note that this inference is contingent upon the existence of an opti-
mum 1 : 1 mapping between all points of the two clouds, which is not always the
case. For instance, when registering two clouds, occlusions and noise will cause
variations between clouds [6]. In such cases, EMD diverges to a sub-optimal
solution by seeking a 1 : 1 mapping.
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Optimisation with EMD prevents clustering as the mapping is injective, i.e.
multiple points in the source cannot correspond to a single point in the target.
This results in a balanced density distribution in comparison to CD. As a metric,
EMD has been demonstrated to be superior to CD at identifying deviations due
to noise and occlusions, which is often desirable [31].

An obvious difference between CD and EMD is the significantly higher time
complexity, which has resulted in EMD almost exclusively being reserved for
use as an evaluation metric rather than for optimisation. This has also led to
the introduction of various EMD approximation algorithms [24]. Notably, the
auction algorithm [2] and recently the Sliced Wasserstein Distance (SWD) have
been utilised specifically as point set distance metrics [14,18]. SWD is computed
by projecting the source and target onto a unit sphere in a certain direction,
and comparing the two projections. This is repeated over different slices, and the
distance is approximated using Monte Carlo estimation. Despite their relative
efficiency, these approximations still require iterative computation, unlike CD.

2.3 Alternative Distance Metrics

Due to the computational complexity of EMD, various CD modifications have
been suggested as loss functions. These aim to preserve the efficiency of CD
while providing some of the benefits of EMD. They include Density-aware CD
(DCD) [31], hyperbolic CD (HyperCD) [11], Contrastive CD (InfoCD) [12], Ori-
ented and Directional CD (OCD/DCD) [16], weighted CD [4] and learnable CD
(LCD) [5]. DCD introduces two main modifications to CD [31]. First, it intro-
duces a first-order approximation of Taylor expansion, in order to suppress over
sensitivity to outliers due to square growth. Second, it normalises the contribu-
tion of each point to the total distance by scaling each term by the total number
of correspondences of the corresponding points. Essentially, this normalises the
effect of density mismatches between the clouds. Unfortunately, the latter mod-
ification is not differentiable, and the scaling factor is replaced by a constant
parameter when DCD is used as an objective function.

HyperCD computes the distance between correspondences in hyperbolic space
rather than Euclidean space in order to increase weights of ’good’ point matches
[11]. InfoCD builds on HyperCD, and attempts to maximise the lower bound of
the mutual information between the two underlying geometric surfaces [12]. The
authors show that this results in a regularising effect upon CD, which prevents
clustering. Note that InfoCD is essentially composed of chamfer loss and an ad-
ditional regularising component. The weight of the regularising component must
be manually tuned. Furthermore, InfoCD is only stable for L1 loss, resulting in
slower convergence compared to the L2 loss commonly utilised in CD.

OCD/DCD take the vector directions of each term in CD into account, to
provide additional information for single image reconstruction tasks [16]. Weight-
edCD weighs up larger displacement terms [4], achieving the opposite effect of
the Taylor expansion used in DCD. LCD trains a neural network to predict the
ideal weights for individual CD terms [5]. However, this results in a black box
loss function/metric, leading to additional uncertainty. In summary, most CD
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alternatives focus on modifications to the distance calculation between corre-
spondences or to the weighing of loss terms during aggregation.

Based on the above findings, we desire the following properties in an im-
proved distance metric. It must be differentiable, computationally efficient, and
have a high rate of convergence. It should prevent point clustering due to conver-
gence towards local minima. Despite addressing nearly all of these requirements,
neither EMD nor EMD approximations are feasible due to computational cost.
Comparatively, CD is faster, but can cause point clustering. Modified CD algo-
rithms attempt to bridge the gap between CD and EMD. In particular, InfoCD
attempts to address the point clustering issue, but is unstable beyond L1 loss,
resulting in slower convergence, and cannot directly modify clustered correspon-
dences. The density balancing approach of DCD comes closest to our objective of
addressing the density mismatches due to clustering, but lacks differentiability.

Thus, we aim to modify CD to favour clouds with uniform densities without
compromising differentiability, and propose the following modified CD function.

3 Proposed Method

We seek an objective function to compare a generated cloud (X) and target cloud
(Y) which will enable a model to learn an accurate representation of point cloud
inputs. Specifically, our objective is to improve chamfer distance by increasing its
ability to match densities between clouds, thereby reducing clustering of points,
similar to EMD. Recall the three stages of point set distance computation; corre-
spondence search, distance computation and aggregation. Previous modifications
to CD focus exclusively on modifications to distance computation or aggregation.
However, the distinction between CD and EMD lies solely in the correspondence
search. We therefore shift our focus to improving the correspondence search.

Specifically, we attempt to take relative local density between the two clouds
into account when choosing correspondences. To this end, we propose a novel
loss function, labelled Uniform Chamfer Distance (UniformCD). Bidirectional
UniformCD is is given by;

DUniformCD(X,Y ) =
1

|X|
∑
j

||yi − xj ||2 +
1

|Y |
∑
h

||yh − xr||2 (3)

i = argmin
i∈{1,2,...,N}

f(i) = ∥yi − xj∥2 ×
dens(yi, X)

dens(yi, Y )
(4)

where N = number of points and r is defined similarly to i. The density ratio
represents the disparity between the density of Y in the local neighbourhood
of the proposed correspondence, and the density of X around the same point.
Local density of a potential correspondence is measured by the inverse of the
sum of squared distances to its k nearest points (kNN).

dens(yi, X) =
1∑

p∈Pyi
||yi − xp||2

dens(yi, Y ) =
1∑

q∈Qyi
||yi − yq||2

(5)
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Where Pyi
and Qyi

are the k nearest neighbours of yi in X and Y respectively;

Pyi (1:k) =
{
p |xp ∈ X ∧ p ∈ argsort(||yi,xp||2)(1:k)

}
(6)

Qyi (1:k) =
{
q | yq ∈ Y ∧ n ̸= i ∧ n ∈ argsort(||yi,yn||2)(1:k+1)

}
(7)

We limit the correspondence search in Equation 4 to the local neighbourhood
of a point to preserve computational efficiency. Thus, we can simply modify the
nearest neighbour search in CD to a kNN to find the local neighbourhood, which
is then reused in the density calculation (Equation 5) in the opposite direction.
Consequently, UniformCD is restricted to local information through both the
local neighbourhood used for density measurement, and the local neighbourhood
used for correspondence search. We use a local neighbourhood of 32 points for
both correspondence search and density calculations. Ablation studies on k and
other variables are provided in the supplementary material.

Fig. 2: Comparison be-
tween point assignment
strategies of CD and Uni-
formCD based on relative
density. (Figure depicts X
→ Y assignment only, and
demonstrates the relative
density calculation for ya,
based on 3 nearest points.)

Intuitively, this loss function pushes generated points towards regions in
which the density of X is lower than the density of Y. Consider two points
xa and xb, whose closest point in the target is ya (Figure 2). Under CD, both
of these points correspond to ya. However, under UniformCD, aside from closest
distance, relative density is also used to determine point correspondence. The
density of X around point ya is high due to the presence of xa, xb, and xc. How-
ever the density of Y around ya is lower as yb, yc and yd are relatively farther
from ya. Thus, the relative density of X compared to Y is high at ya. Compar-
atively, the relative density around yb is lower, as points of X are farther from
yb. When accounting for both relative density as well as distance, xb is likely to
correspond to yb instead of ya. At a macro level, this prevents multiple points
in the source corresponding to a single point in the target, thereby preventing
clustering towards local minima during optimisation.

The behaviour of UniformCD under density disparities can be further exam-
ined by visualising the point-wise distances between two clouds with mismatched
densities (Figure 3). Notably, points in areas of mismatched density have a signif-
icantly higher point-wise loss under UniformCD in contrast to CD. This induces
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Fig. 3: Sensitivity of UniformCD to density variations, shown by cloud → Target (T)
one-way distances. T and cloud A are sampled from 16 camera poses around the object.
B and C are sampled from the same cameras but with a higher bias towards 2 cameras,
resulting in an uneven density. The colour of each point visualises distance to its corre-
sponding point in the target (green) based on chamfer (top) and UniformCD (bottom)
distance. Unlike CD, UniformCD distinguishes the density variations. (N=4096)

these points to shift towards a uniform density distribution during optimisa-
tion. While UniformCD is bidirectional, we visualise cloud → target distances
for simplicity.

Analysis. We hypothesise that the proposed UniformCD objective function
shrinks the discrepancy between CD and EMD, and moves closer towards the
globally optimum correspondences of EMD. We evaluate this hypothesis in a
number of ways. Consider the behaviour of various loss functions on the simpli-
fied example task of iteratively morphing a sphere into a desired shape (Figure
1). Firstly, the proposed method achieves a lower EMD score than all other
CD alternatives, and outperforms CD in the chamfer distance metric (Figure 4,
top). Note that alternative loss functions are able to outperform the CD objec-
tive function in the chamfer distance metric due to convergence of CD towards
local minima. In both metrics, UniformCD performs closer to EMD than others.

Next, consider the relationship between X → Y point correspondences and
Y → X correspondences. These are identical in the case of EMD, as it is a
symmetric loss. However, these discrepancies are often dissimilar in CD, leading
to imperfect alignments between the clouds. Thus the percentage of matching
forward and backward correspondences can be seen as a metric for the similarity
between CD and EMD, with CD converging upon EMD as this value reaches
100%. As with CD, UniformCD is asymmetric, but the additional criteria of
matching densities across the clouds is likely to increase symmetry. UniformCD
is notably closer to EMD than other losses in this regard (Figure 4, bottom-left).
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Fig. 4: Optimisation behaviour of CD, EMD, InfoCD and UniformCD losses. Top:
CD and EMD metric variation during shape optimisation. Note that values are log
normalised to highlight their disparity. UniformCD outperforms CD and InfoCD in
the EMD metric, and outperforms CD in the CD metric. Bottom-left: Backwards
consistency of correlations, as measured by the number of correspondences that are
identical in both (X→ Y) and (Y→ X) directions. Bottom-centre: Coverage of points,
as measured by the number of points in each cloud which correspond to a point in
the other cloud. Bottom-right: Stability of point correspondences (i.e. assignments
remain unchanged from one iteration to the next). Npoints = 4096.

Furthermore, under EMD, each point in X corresponds to a single point in
Y. However, this constraint does not hold under CD, causing multiple points in
X to correspond to a single point in Y, leaving some points in Y without a cor-
respondence. We gauge this behaviour by measuring the number of points in Y
without a correspondence (Figure 4, bottom-centre). Similar to backward consis-
tency, UniformCD moves closer towards the ideal behaviour of EMD. Note that
the imperfect initial behaviour of EMD is caused by the EMD approximation
approach used in the experiment.

Additionally, it can be observed that point correspondences stabilise as the
optimisation converges (Figure 4, bottom-right). Realistically, perfect correspon-
dences are not found during optimisation, and points converge towards a state
with low loss where a small deviation of point locations causes a shift in corre-
spondences. This is particularly evident in the case of EMD and, to a lesser de-
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gree, in UniformCD. In contrast, correspondences show high stability in chamfer
loss. Note that the caveat of stability in CD is convergence towards local min-
ima. We observe that while the volatility of correspondences reduces the stability
of UniformCD, it allows points to locate the globally optimum correspondences
while only having local density information in each iteration.

Furthermore, in comparison to other alternative losses such as BalancedCD,
HyperCD and InfoCD, we argue that our correspondence modification is more
robust for optimisation tasks than weighting of loss terms. This is expanded
in the supplementary material. Having established that UniformCD drives the
behaviour of CD closer towards that of EMD, we proceed to evaluate its perfor-
mance in point cloud learning and optimisation tasks.

4 Experiments

We examine the performance of UniformCD on a diverse set of datasets (MVP
[19], ShapeNet [3], PCN [39], ModelNet [32] and industrial BIM elements [7]),
network architectures (PointNet [21], PCN [39], VRC [19], PointAttn [8] and
SeedFormer [42]) and tasks (completion, reconstruction, classification, and para-
metric modelling), to ensure that the objective function is universally applicable.
Datasets
– ShapeNet-55: [3] Consists of 41,952 3D shape models for training and 46,765

shapes for testing, spanning 55 categories. We use the subset presented in [18]
with 2048 points, for training point cloud reconstruction models.

– MVP: [19] A multi-view partial point cloud dataset rendered from a subset
of ShapeNet, captured by 26 camera poses. Contains 100,000 point sets of 16
categories and is used for training and evaluating completion performance.

– PCN: [39] A subset of ShapeNet spanning 8 categories. It contains points
rendered using 2.5D depth images from 8 view points. Partial and complete
clouds contain 2,048 and 16,384 points respectively. This dataset is used for
training and evaluating completion performance.

– ModelNet40: [32] A 3D CAD model dataset spanning 40 categories, compris-
ing 9,843 and 2,468 shapes for training and testing respectively. This dataset
is used to evaluate reconstruction and classification performance.

– Industrial BIM dataset: [7] A dataset sampled from multiple camera view-
points of 16,384 parametric BIM models of industrial facility elements. We
use pipe, elbow, and flange classes to test parametric modelling performance.

Implementation Details. All models are trained with Adam optimiser [9],
implemented in PyTorch and run on an RTX 3080 GPU. We use an EMD ap-
proximation based on the auction algorithm introduced by Liu et al. [14]

4.1 Point cloud completion

Point cloud completion is the task of inferring missing points from an occluded
input. The majority of previous work on CD modifications has been evaluated ex-
clusively on point cloud completion [11,12,31]. We test our solution on MVP and
PCN benchmarks, and evaluate completion performance using CD and EMD.
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We compare against PCN [39], TopNet [26], MSN [14] and VRC [19], and
in particular CD, InfoCD and DCD losses with VRC on the MVP benchmark
(Table 1, Figure 5). We use the experimental setup proposed in [39]. All hyper-
parameters such as learning rate, point size are identical to the setup in [31].

Next, we compare against FoldingNet [36], PCN, PointAttn [8] and Seed-
Former [42] on the PCN benchmark (Table 3). In particular, we compare against
InfoCD, HyperCD and DCD losses with SeedFormer architecture. We note that
fine-tuning a CD trained model on UniformCD produces best results on this
dataset. We use the experimental setup and hyperparameters used in [12] to
enable comparison, and report L1 CD scores as per the norm.

For all models, UniformCD achieves significant EMD improvements in both
datasets compared to models trained on CD. However, there is a negative impact
on CD performance in both benchmarks, highlighting a trade-off between EMD
and CD metrics. As EMD is generally considered superior to CD [31], it may be
argued that biasing the model towards better EMD performance is beneficial.
However, CD may also be preferable in some cases. Regardless, the results show
that UniformCD pushes the behaviour of CD towards EMD, and reduces the
disparity between EMD and CD. Specifically, the Pearson correlation coefficient
between EMD and CD metrics for the PCN testset increases from 0.817 to 0.843
when trained on UniformCD instead of CD. Therefore, employing UniformCD
as an objective function produces results that harmonise CD and EMD.

On the DCD metric, UniformCD outperforms all objective functions except
DCD itself on both datasets (Table 2). To demonstrate applicability to real world
data, we follow the PoinTr [37] KITTI car evaluation. We measure Fidelity and
MMD (CDx103) scores of 0.143 and 1.539 with UniformCD vs. 0.138 and 1.702
with CD, on SeedFormer architecture, without fine-tuning on cars (Figure 6).
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Avg.

CD 4.50 8.83 6.41 13.01 21.33 9.90 12.86 9.46 20.00 10.26 14.63 4.94 1.73 6.17 5.84 5.76 9.78
PCN EMD 4.70 7.99 5.75 6.90 11.99 5.32 6.60 5.40 9.84 4.85 7.87 5.24 10.56 4.93 4.86 5.59 6.80

CD 4.05 10.61 7.15 14.22 18.86 10.75 15.85 9.70 21.64 10.45 14.91 5.76 2.24 6.53 6.07 5.78 10.84
PCN-ours EMD 2.89 3.53 3.10 4.65 7.79 3.51 4.53 4.02 5.49 3.63 4.26 2.58 3.03 3.46 3.68 2.21 4.07

CD 4.06 9.08 6.64 13.11 19.25 9.78 14.36 9.66 22.33 9.73 15.51 5.13 1.86 6.25 5.81 4.99 10.29
PCN++ EMD 3.44 3.75 3.15 4.65 8.00 3.56 4.69 4.22 6.13 3.85 4.39 2.62 2.78 3.60 3.71 3.07 4.27

CD 4.12 9.84 7.44 13.26 18.64 10.77 12.95 8.98 19.99 9.21 16.06 5.47 2.36 7.06 7.04 4.68 10.30
TopNet EMD 4.89 6.30 4.07 7.01 10.75 6.47 7.50 4.68 8.09 6.27 6.80 3.50 4.21 4.26 6.02 3.49 6.18

CD 2.73 8.92 6.50 10.75 13.37 9.26 10.17 7.70 17.27 6.64 12.1 5.21 1.37 4.59 4.62 3.38 7.99
MSN EMD 2.75 4.02 3.47 4.44 6.28 3.74 4.46 3.82 5.27 3.34 4.28 2.92 2.07 3.30 3.62 2.21 3.94

CD 2.20 7.92 5.60 7.49 8.15 7.45 7.52 5.20 11.90 4.88 7.39 4.53 1.15 3.90 3.44 3.22 6.09
VRC EMD 3.03 7.57 6.14 5.49 6.15 5.80 4.65 4.97 6.58 3.45 5.28 6.59 3.08 4.45 4.56 3.20 5.27

CD 2.72 9.03 6.58 9.93 11.53 9.38 9.80 6.71 17.22 6.88 10.34 5.32 1.39 4.47 4.62 4.69 7.87
VRC-EMD EMD 2.50 3.65 3.23 4.15 5.31 3.61 3.93 3.58 5.17 3.19 3.97 2.69 2.08 3.06 3.48 2.29 3.62

CD 2.22 8.00 5.41 7.88 8.28 7.94 8.89 5.46 14.76 5.78 9.37 4.44 1.30 3.59 3.43 2.39 6.51
VRC-DCD EMD 2.29 4.43 3.46 3.92 4.98 3.98 3.89 3.51 5.34 3.13 3.91 3.29 2.21 3.02 3.38 2.39 3.67

CD 2.03 7.88 5.41 7.31 7.92 7.22 7.3 5.01 11.67 4.65 7.14 4.30 0.97 4.68 3.19 3.04 5.87
VRC-InfoCD EMD 2.68 7.26 5.83 5.15 5.82 5.49 4.36 4.68 6.22 3.13 4.97 6.26 2.77 4.13 4.15 2.89 4.97

CD 2.56 10.36 6.68 9.58 11.83 9.92 11.57 6.49 17.94 7.15 12.31 5.79 1.52 4.10 4.13 3.80 8.25
VRC-ours EMD 2.07 3.41 2.87 3.52 3.93 3.44 3.59 2.92 4.53 2.83 3.51 2.57 1.48 2.44 2.42 1.78 3.09

Table 1: Completion results on MVP dataset in terms of CD (×104) and EMD (×102)
[31]. Objective function is CD unless otherwise specified. Lower is better.
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Fig. 5: Completion results on MVP dataset. From top to Bottom: Partial input (yel-
low), VRC-CD (green), VRC-UniformCD (red), ground truth (blue).

Fig. 6: KITTI results,
scan (top), CD (centre),
UniformCD (bottom)

Dataset Method plane cabinet car chair lamp Avg.

MVP

VRC: CD 0.374 0.509 0.499 0.488 0.475 0.462
VRC: DCD 0.335 0.447 0.427 0.451 0.445 0.420
VRC: InfoCD 0.349 0.468 0.456 0.499 0.500 0.445
VRC: ours 0.349 0.468 0.466 0.484 0.481 0.435

PCN
SF: CD 1.104 1.180 1.195 1.141 1.115 1.152
SF: infoCD 1.051 1.126 1.156 1.090 1.078 1.103
SF: ours 1.018 1.100 1.127 1.060 1.058 1.075

Table 2: DCD results on PCN and MVP datasets (some
classes omitted for brevity, SF = SeedFormer). Lower is
better.

4.2 Point cloud reconstruction

We test reconstruction performance using the PointNet based autoencoder ar-
chitecture and experimental setup proposed in [18] on CD and EMD metrics.
We compare results against CD, EMD, SWD [18] and InfoCD (Table 4a). As
was the case with point cloud completion, UniformCD improves EMD scores,
at a slight cost to CD scores. We observe that training time per iteration for
UniformCD increases by around 18% compared to CD due to the increased time
cost of the neighbour search (Table 5b). This can be adjusted by lowering k.

4.3 Self-supervised learning

One approach to bypass the hurdle of identifying the optimal metric for eval-
uating a model trained on a distance metric is to directly measure model per-
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Method Metric Plane Cabinet Car Chair Lamp Couch Table Boat Avg.

CD 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31
FoldingNet EMD 15.64 22.13 17.45 29.74 32.00 24.56 19.00 21.88 22.08

CD 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 11.27
PCN EMD 4.66 9.77 5.72 8.68 16.95 8.34 8.08 7.51 8.71

CD 3.87 9.00 7.63 7.43 5.90 8.68 6.32 6.09 6.86
PointAttN EMD 1.15 2.51 2.31 1.91 1.46 2.85 1.48 1.79 1.93

CD 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74
SeedFormer EMD 1.81 4.09 3.60 2.75 2.20 4.12 2.24 2.66 2.93

CD 16.42 26.23 21.08 20.06 18.30 26.51 18.23 18.22 24.52
SeedFormer -DCD EMD 13.05 18.55 12.90 14.58 9.82 19.47 16.22 14.20 16.84

CD 3.72 8.71 7.79 6.83 5.11 8.61 5.82 5.76 6.54
SeedFormer -HyperCD EMD 1.63 3.62 3.16 2.57 2.06 3.78 1.99 2.40 2.65

CD 3.70 8.79 7.72 6.82 5.08 8.63 5.84 5.70 6.54
SeedFormer -infoCD EMD 1.75 3.94 3.43 2.72 2.16 4.04 2.09 2.58 2.84

CD 5.09 10.91 9.05 9.87 8.05 12.01 8.44 7.87 8.91
PointAttN -Ours EMD 1.06 1.98 1.72 1.85 1.62 2.34 1.56 1.56 1.71

CD 4.80 10.53 8.91 9.31 7.38 11.33 7.91 7.29 8.45
PointAttN -Ours(f/tune) EMD 1.00 1.89 1.67 1.72 1.46 2.20 1.47 1.49 1.61

CD 5.94 12.30 10.30 10.37 9.33 13.35 8.84 8.49 9.86
SeedFormer -Ours EMD 1.80 3.08 2.62 2.62 2.39 3.62 2.15 2.35 2.57

CD 4.61 10.32 9.19 8.31 6.28 11.23 7.04 6.91 7.99
SeedFormer -Ours(f/tune) EMD 1.54 2.58 2.43 2.10 1.78 2.98 1.78 1.94 2.14

Table 3: Completion results on PCN dataset in terms of L1 CD (×104) and EMD
(×102) [12]. Objective function is CD unless otherwise specified. Lower is better.

formance on a downstream task. This essentially measures the effectiveness of
the 3D representation learned by the model. This can be evaluated by using the
autoencoder trained above for a downstream task on an unseen dataset. Specifi-
cally, we train a classifier on ModelNet using vector embeddings generated from
the above network. We follow the same experimental setup as [18], utilising a
256-dimension vector for the embedding, and an SGD optimiser. Classification
accuracy is compared against CD, EMD, SWD and InfoCD. (Table 4b). Uni-
formCD achieves the highest classification accuracy among all loss functions.
This demonstrates that achieving a balance between EMD and CD metrics is
beneficial for downstream tasks.

CD EMD

Objective fn. mean stddev mean stddev

CD 8.541 5.88 5.88 2.0
SWD (SSW) 7.40 4.96 8.31 2.6
InfoCD 13.52 3.32 9.44 3.7
UniformCD 9.15 6.44 5.58 2.0

(a) Point cloud reconstruction results in terms of CD
(×104) and EMD (×102). PointNet based autoen-
coder trained on ShapeNetCore55. Lower is Better.

Objective fn. Accuracy (%)

CD 83.9
EMD 84.4
SWD (SSW) 86.8
InfoCD 86.3
UniformCD 87.1

(b) Classification results using self-
supervised embeddings from encoder trained
on ShapeNetCore55. Higher is Better.

Table 4: Reconstruction and Classification results on ModelNet40.
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elbow pipe flange

objective fn. CD EMD CD EMD CD EMD

CD 12.08 2.75 2.27 0.91 16.43 6.13
EMD 43.13 1.01 9.38 0.26 51.15 1.47
InfoCD 12.04 2.85 2.36 0.89 17.32 6.28
UniformCD 10.87 2.37 2.83 0.74 21.14 4.87

(a) Parametric modelling results on industrial facility elements in
terms of CD (×104) and EMD (×102) [7]. Lower is better.

Objective fn. time (ms)

CD 143
EMD (auction alg.) 757
InfoCD 144
SWD 153
UniformCD 169

(b) Comparison of training time per it-
eration on PointNet autoencoder.

Table 5: Parametric modelling performance and autoencoder run times.

4.4 Parametric modelling

Parametric modelling involves inferring the geometric parameters of points sam-
pled from a parametric 3D shape. Minimising 3D loss between a predicted shape
and the ground truth points has recently been utilised to recover geometric pa-
rameters from point clusters [7]. This task is notably different from the previous
tasks, as the geometric parameters of a given shape are directly optimised, in-
stead of optimising the weights of a neural network which predicts points based
on an input. We use the experimental setup proposed in [7], and replace the loss
function for the parameter optimisation step with our proposed loss.

UniformCD outperforms all CD variants on EMD, and achieves the best CD
values on elbow elements (Table 5a). However, directly optimising EMD achieves
a higher EMD value than all CD variants. It is worth noting that while the EMD
objective substantially outperforms all alternatives on direct optimisation tasks,
this improvement is much lower when EMD is used for model training. This can
clearly be seen in VRC model performance on point cloud completion (Table 1).

5 Conclusion

We present UniformCD, a novel point set objective function for 3D representa-
tion learning and iterative optimisation tasks. Distinct from previous CD mod-
ifications, we utilise an improved correspondence search to encourage uniform
density distributions during optimisation. This prevents clustering at conver-
gence and produces outputs that match the local densities of the input clouds.
The proposed loss is agnostic to network architecture and drives the dynamic
behaviour of CD significantly closer towards EMD. This results in improved per-
formance on a variety of tasks such as point cloud completion, self-supervised
learning and 3D model parametric optimisation.
Limitations. The method reduces the smoothness of correspondences compared
to CD, particularly at convergence. Analysing the effect of the variability of cor-
respondences at convergence on model performance would be a useful avenue for
future exploration. Additionally, due to the larger search radius of kNN search,
UniformCD is slightly (∼18%) slower that vanilla CD.
Acknowledgements. This research has received funding from EPSRC, AVEVA
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