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Abstract. Vision-language datasets are vital for both text-to-image
(T2I) and image-to-text (I2T) research. However, current datasets lack
descriptions with fine-grained detail that would allow for richer associa-
tions to be learned by models. To fill the gap, we introduce Descriptions

of Connected and Contrasting Images (DOCCI), a dataset with
long, human-annotated English descriptions for 15k images that were
taken, curated and donated by a single researcher intent on capturing
key challenges such as spatial relations, counting, text rendering, world
knowledge, and more. We instruct human annotators to create compre-
hensive descriptions for each image; these average 136 words in length
and are crafted to clearly distinguish each image from those that are
related or similar. Each description is highly compositional and typically
encompasses multiple challenges. Through both quantitative and qualita-
tive analyses, we demonstrate that DOCCI serves as an effective training
resource for image-to-text generation – a PaLI 5B model finetuned on
DOCCI shows equal or superior results compared to highly-performant
larger models like LLaVA-1.5 7B and InstructBLIP 7B. Furthermore,
we show that DOCCI is a useful testbed for text-to-image generation,
highlighting the limitations of current text-to-image models in capturing
long descriptions and fine details.

1 Introduction

The past several years has produced a continual, marked evolution of text-to-
image (T2I) generation models (e.g. [6,48,49,51,64], and many more), leading to
not only improved capabilities and progress on research benchmarks, but deploy-
ment in user-facing applications (e.g., [1, 38,42,49], and many more). Neverthe-
less, even the best current models still exhibit weaknesses in key areas, including
precise handling of spatial relationships between objects, correct object count-
ing, and accurate text rendering [4,13,34,64]. As we look to improve our research
understanding of T2I models and the impact of their limitations on real-world
applications, it is essential to identify their weaknesses precisely and efficiently.

Many test prompt sets have been developed [11,12,51,61,64] to assess model
behaviors in a controlled manner (e.g., image-text alignment). The common
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A front view of a 1950s Chevrolet 210 is shown in the right half of the frame. The car, 
in faded baby blue, is parked on a field of dry grass. The car is equipped with round 
headlights on both its left and right sides, with a silver emblem positioned between 
them. The front grille and bumper of the car, originally polished silver, are beginning 
to rust in the small crevices. A hood ornament is attached to the car's bonnet, and the 
roof and A pillars are painted in white. On the right side of the car in front of the car's 
left front tire, there is a rough-cut square brick sitting, keeping the car in place. Behind 
the blue Chevy, on the left side of the frame, there is a barber shop with brown walls 
and windows. On the side wall of the barber shop, it says, "A Barber Shop is Old 
School But Never Old Fashioned." Under the "But Never," there is a drawing of a 
traditional barber's blade. On the left side of the "Old Fashioned," there is a drawing 
of scissors which are facing a United States flag that is sitting behind a window. To the 
left of the window, the text "A Shave, Haircut the Works" is written in smaller font. 
The sky is colored baby blue and partially obscured by altocumulus clouds. To the 
right of both, several green trees are visible. Daytime shot below eye-level, taken at 
the height of the car's hood.

Key Details of the Image

Objects & Attributes

Spatial Relationships

Text Rendering

World Knowledge

View / Scene

Key Objects and Attributes: color, material, texture, shape, size, count, pose, action, state etc.

Orientation: locations in the image; Direction: relative directions in which objects are facing.  

Text on different materials and surfaces with different styles (e.g., fonts, handwriting)

Named entities that require background knowledge (e.g., 1950s Chevrolet 210)

Camera view and angle (e.g., eye-level view) and scene settings (e.g., indoor/outdoor, day/night) 

Fig. 1: An example detailed description of a DOCCI image. The color of the text corre-
sponds to each aspect of the details listed below the description. A more comprehensive
list is presented in Appendix B. NOTE: this figure illustrates rich visual information
in our descriptions, but we do not annotate spans with these information types.

practice involves generating images for test prompts and then obtaining au-
tomatic evaluation scores, either through embedding-based approaches [21] or
VQA-based approaches [11, 23, 62]. But, these test prompts are often simplistic
and fail to specify critical details, such as the orientation, direction, and fine-
grained attributes of the key visual subjects (e.g., “a cat standing on a horse”

can be as specifically described as “a left-facing grey British short-hair perched

on a white and brown-spotted Mustang horse.”). Crucially, these prompt sets lack
ground-truth images, making it impossible to directly compare generated images
with corresponding reference images. One way to address this issue is to use ex-
isting human-annotated image-caption datasets like COCO [36]. Unfortunately,
the captions in these datasets are typically brief (e.g., COCO captions average
around 10 words) and lack details of the visual features in the images. The re-
cently introduced Densely Captioned Images (DCI) dataset provides descriptions
with over 1,000 words per image [59]. But, those descriptions concatenate short
captions of image segments, which lack rich linguistic structures and coherence.
Additionally, their images are sampled from SA-1B [29], which were not taken
specifically with the intent of evaluating T2I models.

To fill this gap, we introduce a new vision-language dataset, Descriptions of
Connected and Contrasting Images (DOCCI, pronounced doh-chee). Fig. 1
demonstrates the level of detail included in our descriptions, including its cov-
erage of multiple aspects of the image. DOCCI contains 15k images – all taken,
selected, framed and curated by the lead author, Jason Baldridge – along with
manually annotated detailed text descriptions. The images intentionally focus
on many of the failure modes noted in section 6.3 of the Parti paper [65] – in fact,
the initial set of DOCCI pictures were taken during the course of the develop-
ment of the Parti model. Example challenge aspects that were targeted include
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Same subjects with different spatial relationships and other 
aspects 

Arranged objects for counting and spatial relationships

Naturally occurring contextualized text rendering

Mix of multiple aspects combining multiple objects with remarkable configurations 
Paint Channel Letters Carved Tile Stamp

Same Objects Colors and Numbers Arranged Text Many Objects Complex Orientations

Rare Combination Optical Effect Mixed Media World Knowledge Words, Objects, and Reflection

Orientation Pose Background Action With Other Object

Fig. 2: Examples of related images. DOCCI images were intentionally collected to
have substantially similar, contextually related groups of distractor images. The text
descriptions must be detailed enough to differentiate each image from related ones.

precise visual properties such as complex attribute-object binding, spatial rela-
tionships, multimedia blending, counting, and different types of optical effects.
The complexity of images varies from very simple ones (text on a blackboard) to
highly complex ones (detailed street wall murals and their surrounding context).
Additionally, there are multiple images of the same or similar objects, e.g., each
with slight differences in their spatial orientations and counts, in line with the
concept of contrast sets [19]. This approach enables a precise and localized inves-
tigation of model behaviors, thereby making the evaluation more rigorous and
challenging. DOCCI images are free of personally identifiable information (PII)
and have been donated to the public domain under the CC-BY license. Equipped
with the newly-curated images and detailed descriptions, DOCCI covers a wide
range of outstanding issues for T2I models.

Annotating detailed yet concise descriptions for images from scratch is chal-
lenging. For efficiency, we divide the text annotation process into three stages
(see Figure 3). In the first stage, annotators write short descriptions of objects
based on the predefined rubric, ensuring they capture all the salient details. The
second stage consolidates those short descriptions into one detailed, coherent
natural language description. The final stage enriches the description by adding
important details such as colors, textures, and the relationships between vari-
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ous elements. We rigorously implement quality control steps to ensure that each
description meets our high standards of annotation.

We evaluate current highly-performant T2I and I2T models with DOCCI to
conduct both quantitative and qualitative analyses. We first demonstrate that,
combined with a sample efficient model such as PaLI 5B, DOCCI can greatly
improve I2T generation. To assess this, we introduce a framework for evaluating
long image descriptions, including the side-by-side human evaluation setup with
the precision (i.e., hallucinations) and recall (i.e., details) ratings. Our experi-
mental results also show that the T2I models still exhibit numerous error modes
including those related to spatial relationships, counting, and text rendering.
We show that the limited input length of most T2I models is problematic as it
causes significant parts of the description (i.e., prompt) to be omitted, making
it impossible to include those details in the generated image. We also show the
unreliability of automatic metrics such as FID [22] and CLIPScore [21], which
do not align with the results of our human evaluation.

2 Dataset Construction
DOCCI is unique in its curation and annotation, as described overall in this
section and in Appendices A and C in further detail.

2.1 Images
We summarize here the collection and curation of DOCCI images. See Ap-
pendix A for more details. All 15k annotated DOCCI images were taken by
one of the authors, Jason Baldridge, and his family. The majority of these im-
ages were taken in the United States, spanning over fifteen states (especially
California, Florida, Nevada, New York, Arkansas and Texas). A few were taken
in other countries such as India, Iceland, and Italy. Most images are natural
scenes captured in both indoor and outdoor settings and feature different types
of lighting conditions. The choice of subjects was driven largely by opportunity
– interesting scenes and things encountered over the course of August 2021 to
September 2022, as well as a selection of relevant images taken before that period.
Additionally, many images were specifically arranged or framed to test known
limitations of text-to-image models, such as counting and spatial relationships
and mixed media images (e.g. an image of a cat shown on a TV with a live cat in
front of the TV). The images range from very complex ones containing intricate
murals fronted by plants and signs, to quite simple ones like short handwritten
words in chalk on pavement. Since the images capture everyday scenes, com-
mon objects include domestic/wild animals, plants, artwork, vehicles, toys, and
elements of natural and urban landscapes (e.g., rivers, rocks, and buildings).

Most images are captured using an iPhone camera in landscape or portrait
orientation. Typically, their size is 2048⇥1536 pixels, but some are smaller due
to cropping that ensured the focus was on a specific element in the original
shot. In addition, we release 8,932 unannotated DOCCI-AAR images curated
in similar fashion from October 2022 to November 2023. These images also span
multiple regions of the USA (especially New York, Texas, California, Michigan,
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Stage 1
Extracting Key Information  

Stage 2
Writing Descriptions 

Stage 3
Elaborating Descriptions

Input

Output
Object1: 1950s Chevrolet 210 on a dry glass field
Object2: A barber shop with a brown wall 
Text: Text on the wall "A Barber Shop is …"

Object1: 1950s Chevrolet 210 on a dry glass field
Object2: A barber shop with a brown wall 
Text: Text on the wall "A Barber Shop is …"

Version 1: The medium shot view of a blue 
Chevrolet Bel Air car parked on the ground and 
dried grass around. The text “A BARBER SHOP IS 
OLD SCHOOL BUT NEVER OLD FASHIONED” …  

Version 1: The medium shot view of a blue 
Chevrolet Bel Air car parked on the ground and 
dried grass around. The text “A BARBER SHOP IS 
OLD SCHOOL BUT NEVER OLD FASHIONED” …  

Final: A front view of a 1950s Chevrolet 210 is shown in the right half of the 
frame. The car, in faded baby blue, is parked on a field of dry grass. The car is 
equipped with round headlights on both its left and right sides, with a silver 
emblem positioned between them. The front grille and bumper of the car, 
originally polished silver, are beginning to rust in the small crevices. A hood 
ornament is attached to the car's bonnet, and the roof and A pillars are painted 
in white. On the right side of the car in front of the car's left front tire …

Annotator
Pool A

Annotator
Pool B

Annotator
Pool C

Fig. 3: Data Annotation Process. Stage 1 : extract the key aspects, such as objects,
from the image and write short descriptions. Stage 2 : extend and combine these short
descriptions into one overall description. Stage 3 : elaborate and refine the description.

Arkansas, and Arizona) but also include a large number of images from Canada,
Germany, Switzerland, and France. These images are not constrained to por-
trait or landscape mode; instead, they are cropped to select the most salient
components and thus cover arbitrary aspect ratios (AAR).

Given the nature of their collection, DOCCI’s images necessarily are a biased
sample in terms of content and geographical extent. We hope others will donate
images in similar fashion to expand the visual diversity available for research.
Contrastive Images Figure 2 shows examples of related images in DOCCI.
The images were intentionally collected to include groups of related, substantially
similar distractor images. For instance, a group of images depicts the same cats
but in different orientations, poses, and actions. There could be several images
of green apples placed on a table in various numbers and arrangements. Words,
characters, and numbers can appear on various surfaces or materials, such as
paper, brick walls, and stone, in diverse formats, including print, stickers, and
handwriting. Those similar images are intentionally taken to challenge both T2I
and I2T models, to test if they can correctly reflect the details in either direction.
Reoccurring Entities There are 15 distinct entities that occur in multiple
images, including specific cats, dogs, vehicles and graffiti tags. All instances of
these entities are tagged with their corresponding images in the dataset, and we
will release these for future work on consistent character generation with DOCCI
using methods like DreamBooth [50] (and its descendants).
License and Privacy As noted, the DOCCI images were donated by a single
person and shared under the CC-BY 4.0 license. Very few images, as taken,
contained personally identifiable information (PII). We manually reviewed all
images for PII. We removed some images and otherwise scrubbed any detected
faces, phone numbers, and URLs by blurring them by hand.

2.2 Text Descriptions

We hypothesize that good descriptions include sufficient details of the key ob-
jects and their attributes as well as salient information of secondary objects and
background. In addition, a good description should be well-organized and read
like a newspaper article: important information is covered in early sentences,
while secondary information is mentioned later, thereby effectively triaging key
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Table 1: Statistics for DOCCI and other datasets. #Words and #Sent. give the average
number of words and sentences per description, respectively. For DCI, we only use the
extra captions and exclude descriptions of submasks (see Appendix G).

Images Descriptions

Dataset Sources Size Size #Words #Sent.

DOCCI (ours) Author donation 14,847 14,847 135.9 7.1

DCI (extra caption) SA-1B 8,012 8,012 144.7 10.1

Stanford Vis. Par. COCO, Visual Genome 19,561 19,561 68.5 6.3

Localized Narratives COCO, Open Images 848,749 873,107 41.0 2.6

COCO Flickr 123,287 616,767 11.3 1.0

details. To clarify the goal of our annotation task, we focus on the key visual
features such as objects, attributes, spatial relationships, text render-
ing, counting, world knowledge, scenes, views, and optical effects. See
Appendix B for further detail on annotation interfaces and guidelines.
Annotation Protocol Writing detailed and high-quality descriptions for im-
ages demands a broad skill set, including extensive knowledge about various
objects and proficient writing skills. During pilot studies, it was clear that com-
posing a detailed description of an image from scratch is time-consuming and
tiring, even for expert annotators. To enhance efficiency, we divide our anno-
tation process into three stages (Figure 3), distributing the required skills and
workload more effectively. In the first stage, we extract the key aspects (e.g., the
main objects and their attributes) and create concise descriptions of each. In
the second stage, we combine these brief descriptions into a preliminary draft.
Finally, in the third stage, we add further detail and refine the description. In
some images, collecting detailed information is difficult when relying solely on
visual cues. To ensure that the final descriptions are deeply grounded in the con-
text of the images, we provide background information (e.g., specific car makes,
whether it was sunrise or sunset) to the annotators when available.

3 Dataset Analysis
We analyze the features, functionalities and quality of DOCCI, and compare
it with existing datasets including DCI [59], Stanford Visual Paragraphs [31],
Localized Narratives [46], and COCO Captions [36].

3.1 Dataset Statistics
Table 1 lists key statistics for DOCCI and prior datasets. On average, DOCCI’s
descriptions are substantially longer than those in the Stanford Visual Para-
graphs dataset and have similar length to DCI’s. However, the average sen-
tence count in DOCCI descriptions is lower than in DCI: DOCCI’s sentences are
denser. This discrepancy becomes even larger when compared to larger datasets
such as Localized Narratives and COCO, which are less detailed.

We further investigate the length of the descriptions, as this serves as a
reliable proxy for identifying recall errors (i.e., missing information). Figure 4
displays the distribution of description lengths across each dataset. DOCCI has
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Fig. 4: The distribution of description lengths. The x-axis represents the number of
words, and the vertical dotted lines in the violin plot indicate quartiles.
Table 2: The percentage of descriptions that contain each challenge type and the av-
erage count of that particular challenge type per image. Additionally, we show boxplots
depicting the distributions of each challenge type over all images.

Challenge Type Descriptions (%) Avg.

action 20.9 0.3
attribute - color 97.3 5.3
attribute - material 60.9 1.3
attribute - shape 62.1 1.4
attribute - size 47.4 0.9
attribute - state 97.8 5.3
attribute - texture 25.7 0.3
counting 54.6 1.0
object 100.0 17.7
scene/view/lighting 63.6 1.2
spatial 99.9 11.5
text rendering 23.3 0.4
world knowledge 76.2 2.0

the highest median description length compared to other datasets, including
DCI (which has the highest mean). The plot reveals the presence of outlier
descriptions exceeding 1,000 words in DCI – which elevate its mean length.

We split DOCCI into four sets: 9,647 train, 5,000 test, 100 qualification-
dev, and 100 qualification-test. The test set is intended for computing au-
tomatic metrics. The qualification sets comprise manually selected images that
specifically test prominent challenges in T2I models, intended for manual in-
spection or human evaluation. QUAL-DEV can be used by experimenters for
their own qualitative comparisons. QUAL-TEST is intended to be held out for
rating by human judges. We also split the DOCCI-AAR images into 3,932
train and 5,000 test sets, with the expectation that this will facilitate future
experiments with automatic high-quality captioning (or, we hope, further human
annotation).

3.2 Challenge Types

DOCCI’s descriptions cover various types of challenges for T2I models, and
one description can contain multiple challenges. We analyze the challenge types
using DSG [11], which extracts challenge types from descriptions (e.g., Attribute-
color). This automatically generated by an LLM and thus may contain errors,
but it serves as an effective proxy for estimating the distribution of challenge
types. Table 2 summarizes the percentage of descriptions per challenge type and
the average number of challenge types per description. The descriptions include
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Table 3: Language complexity and readability scores.

Dataset Syntactic (") Semantic (") SMOG (") FRE (#) #Errors (#)

DOCCI (ours) 8.6 50.5 8.7 77.7 0.3
DCI (overall) 8.1 52.0 7.9 82.5 1.2
Stanford Vis. Par. 6.0 23.9 6.7 88.6 0.8

Localized Narratives 5.8 13.5 6.0 87.7 1.2
COCO 4.5 4.9 7.3 82.2 0.1

an average of 17.7 objects,1 and their spatial relationships are mentioned in
99.9% of the descriptions. Object attributes are well covered: color and state are
described in 97% of descriptions. Additionally, count is present in 54.6% of the
descriptions, and text rendering in 23.3%. Each single description encompasses
multiple challenge types, making DOCCI a challenging benchmark.

3.3 Description Quality

Detail Are DOCCI descriptions detailed enough to differentiate similar/related
images? To answer this, we ask human annotators to identify the correct pivot

image from a set of four similar images (i.e., distractors), based on the pivot’s
description. For this, we sample 1k pivots images from the test set (DOCCI-
Test-Pivots). Then, we collect other images as distractor candidates from the
test set, based on their similarity scores and sample four as distractors, ensur-
ing that all images appear as a distractor for at least one pivot. This produces
1,000 groups of five images, and each is evaluated by three annotators. Given
the description and the five images (pivot and four distractors), three annotators
correctly identified the true (pivot) image 97.1% of the time, achieving Fleiss’
kappa of 0.98. We confirmed that all negative cases were due to human errors.
The high accuracy and strong agreement among annotators demonstrate that
the descriptions capture essential and unique details of the pivots.

Language Complexity Table 3 compares language complexity and readabil-
ity. For assessing language complexity, we evaluate two dimensions: the syntactic
complexity, measured by the maximum depth of the dependency tree [39], and
semantic complexity, indicated by the number of nodes in a scene graph. DOCCI
and DCI – the datasets with longer descriptions – generally achieve higher
complexity scores. DOCCI exhibits the highest syntactic complexity, while DCI
achieves the highest semantic complexity score. For readability scores, we report
the Simple Measure of Gobbledygook (SMOG) score [33] and the Flesch Read-
ing Ease (FRE) score [28]. The scores indicate that DOCCI’s descriptions are
generally written in plain English, yet are not overly simplistic. Additionally, we
count the average number of suggestions by an off-the-shelf spelling/grammar

1 This number includes both primary and secondary objects. DSG often detects nested
objects (e.g., tires of a car), leading to a higher count of objects detected.
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DOCCI: Indoor downward angled shot of a toy DeLorean Hot Wheels car facing the right 
between two wooden child blocks with the red letters, "D" and "L" on their front faces 
with a red double lined border. The left block slightly angled towards the right with a 
blue number "3" on its left side and a yellow letter, "F" on the top. The rightmost block 
slightly angled towards the left with a faded yellow letter, "G" on its top. The three 
objects sit on a plain white surface. A light reflection is visible below the objects 
reflecting off of these semi-glossy surface. A bright light from the right side cast 
shadows backwards and slightly towards the left.

GPT-4v: The image showcases a still life setup consisting of two wooden alphabet blocks 
and a small model car positioned between them. The blocks appear well-used, with some 
visible wear on their edges, adding a sense of nostalgia or history to the items. On the 
left, there is a block with a red letter 'D' prominently displayed against the block's 
natural beige color; similarly, the right block features a red letter 'L'. Between the 
two blocks, the model car, resembling a classic DeLorean, is positioned with its 
gull-wing doors opened, drawing attention to its metallic silver finish. The car's 
intricate details, including the rims and body panels, hint at its collectible nature. 
The lighting is soft and diffused, casting gentle shadows and giving the composition a 
calm, introspective mood. All items rest on a reflective white surface against a plain 
white background, which places the entire focus on the toys themselves.

Image:

Fig. 5: A side-by-side comparison of descriptions from DOCCI and one generated by
GPT-4v. Blue-highlighted spans indicate details present in one description but absent
in the other. Red-highlighted spans denote incorrect information (i.e., hallucination).

checker. On average, DOCCI generates 0.3 error suggestions per description,
whereas DCI generates 1.2, indicating better quality control in DOCCI.2

4 Evaluating I2T Generation Models with DOCCI
We demonstrate the utility of DOCCI for image-to-text (I2T) generation by
evaluating SOTA I2T models with both automatic metrics and side-by-side (SxS)
human evaluation. Additionally, we conduct a SxS human evaluation of DOCCI
descriptions compared to GPT-4v, to better understand key differences between
human descriptions and high-quality machine-generated descriptions.
Setup We generate detailed descriptions for images from the test set using
InstructBLIP (Vicuna-7B) [14], LLaVA-1.5 7B [37], and PaLI 5B [8,9]. Following
their original setup, we use a different prompt for each model as described in
their paper. PaLI has not been trained on captioning tasks during its pretraining
phase; thus, we finetune it using the DOCCI training set (9,647 examples) and
the COCO training set [36]. We report reference-based metrics for captioning
such as BLEU@4 [44], ROUGE-L [35], METEOR [5], CIDEr [60], and the average
number of words as proxies of the detail and density of descriptions.
SxS Human Evalution For SxS human evaluation, we focus on PaLI 5B
finetuned on DOCCI compared to InstructBLIP, LLaVA, and GPT-4v, and
generate descriptions with each model for the 100 DOCCI-QUAL-TEST im-
ages. Since GPT-4v generates lengthy descriptions, we prompted it to create
shorter descriptions.

Even so, GPT-4v’s average response length was the longest, at 147 words.
Annotators indicate their preference in terms of precision and recall errors
[27] (see Fig. 5). Here, precision primarily governs incorrect information (i.e.,
hallucinations), and recall penalizes generic or uninformative descriptions. We
do not consider aspects of writing quality (e.g., fluency and word choice).
Quantitative Metrics Table 4 compares three I2T models on the qual-test
set, using common reference-based metrics. Pali 5B (finetuned on DOCCI) gen-
erates longer descriptions (121.8 words on average), substantially improving all
2 To ensure that DOCCI remains purely annotated by humans, we do not alter or

modify descriptions based on suggested errors.



10 Y. Onoe et al.

Table 4: I2T performance on the DOCCI test set. PaLI 5B finetuned on DOCCI out-
performs other models by a substantial margin, indicating that DOCCI is an effective
training data for I2T generation.

Model Eval Mode BLEU@4 ROUGE-L METEOR CIDEr #Words

PaLI 5B, FT on COCO finetune 0.0 11.3 3.6 0.0 15.1

PaLI 5B, FT on DOCCI finetune 10.1 29.1 17.9 16.0 121.8

InstructBLIP (Vicuna-7B) zero-shot 3.5 20.5 10.6 5.9 84.4

LLaVA-1.5 7B zero-shot 3.5 22.0 11.3 6.4 89.5

PaLI 5B FT on DOCCI vs GPT-4v

PaLI 5B FT on DOCCI vs LLaVA-1.5 7B

PaLI 5B FT on DOCCI vs InstructBLIP

Fig. 6: Side-by-side human evaluation of descriptions generated by PaLI, GPT-4v,
LLaVA, and InstructBLIP, with a specific focus on the visual features listed in Sec-
tion 2.2. Note that we do not assess writing quality (fluency and word choice). In
summary, descriptions by finetuned PaLI 5B contain more details compared to those
three models (better recall scores), but it falls behind GPT-4v in terms of precision.

metrics and outperforming larger instruction-tuned models. This indicates that
the DOCCI training set is effective for fine-tuning and can drastically
change the output length despite its relatively small size. Note that
we use only one reference description per image, and the choice of reference de-
scription impacts those scores [17]. Additionally, we still lack reliable automatic
metrics for evaluating detailed and long image descriptions. Given this, we do
not assess the content of the generated descriptions, leaving it for future research.
Human Evaluation Results Figure 6 plots the Likert scale for each model
pair. The top bar plot shows that GPT-4v is more accurate than PaLI 5B fine-
tuned on DOCCI, but PaLI includes more details. GPT-4v typically produces
fluent and accurate descriptions, though they are not always concise, sometimes
including speculative statements. Conversely, PaLI provides more details (e.g.,
spatial relationships, named entities), but this comes at the risk of generating in-
accurate information. The middle plot indicates that human annotators slightly
prefer PaLI over LLaVA on both precision and recall, while the bottom plot
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Fig. 7: Side-by-side human evaluation of the DOCCI descriptions and those generated
by GPT-4v, with a specific focus on the visual features listed in Section 2.2. Note that
we do not assess the quality of the writing such as fluency and word choice.
suggests that PaLI is preferred over InstructBLIP. Note that LLaVA has been
trained on the instruction tuning data generated (158k) by GPT-4 [40], and
InstructBLIP has been trained on a range of vision-language datasets adapted
for instruction tuning (13 publicly available datasets). Despite the fact that
the DOCCI training set is relatively small (9.6k), the finetuned PaLI
achieves remarkable performance, demonstrating the strong supervi-
sion in the DOCCI training set and the sample efficiency of PaLI 5B.
DOCCI Descriptions vs GPT-4v GPT-4v [41] demonstrates impressive
abilities in generating fluent, well-written descriptions. However, can GPT-4v
create more detailed descriptions than those of human annotators? We generate
descriptions of similar length to those in the DOCCI using images from DOCCI-
QUAL-TEST. Figure 7 plots the 5-point Likert scale for precision and recall
selected by annotators. For precision, as both DOCCI and GPT-4v descriptions
rarely include incorrect information, the annotators selected “Neutral” 59% of
the time. Other than “Neutral”, annotators judge DOCCI descriptions as more
accurate than those of GPT-4v. The annotators prefer DOCCI descriptions 89%
of the time in terms of recall. Figure 5 showcases the details present in one de-
scription but absent in the other (blue-highlighted spans) and inaccurate infor-
mation (red-highlighted spans). Although DOCCI descriptions are shorter, they
include more detailed information compared to GPT-4v descriptions. These
findings show that large models like GPT-4v demonstrate remarkable
capabilities in producing detailed descriptions, but that there are still
important gaps with descriptions created by human annotators.

5 Evaluating T2I Generation Models with DOCCI
In this section, we investigate how T2I models behave with long and detailed
descriptions. We report the performance of current high-performing T2I models
on DOCCI. For this, we compute automatic metrics for image quality and text-
image alignment, along with side-by-side (SxS) human evaluation.
Setup We generate images based on DOCCI descriptions using three T2I
models: a variant of Imagen [51], DALL-E 3 [42], and Stable Diffusion XL
(SDXL) [45]. We report on three image quality metrics: FID [22], CMMD [25],
and FDDINOv2 [56], and two text-image-alignment metrics, CLIPScore [21] and
DSG [11] on the test set.3 For FID, CMMD, and FDDINOv2, we use DOCCI
3 We used 4,966 examples as DALL-E 3’s content filter rejected 34 rewritten prompts

(Our descriptions do not contain any sensitive content.).
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Table 5: T2I performance by Imagen, SDXL, and DALL-E 3 on the DOCCI test set.
For image quality metrics, we report random training images (Random) and retrieved
training images based on descriptions (Text Ret.) as baselines. For image-text align-
ment metrics, we report scores using with the original images as an oracle (Test).

Image Quality Image-Text Alignment

Model FID (#) CMMD (#) FDDINOv2 (#) CLIPScore (") DSGVQA (") DSGHuman (")

Imagen 28.13 1.016 300.8 81.2 69.2 77.3

SDXL 23.69 0.823 267.2 85.9 65.2 69.8

DALL-E 3 32.37 1.691 300.8 80.1 76.3 85.6

Random 13.71 0.002 142.8 – – –

Text Ret. 13.43 0.003 133.1 – – –

Test – – – 80.8 78.7 91.7

images to compute the statistics of the reference distribution. We also report
random training images (Random) and retrieved training images based on de-
scriptions (Text Ret.) as baselines. For DSG, we compute the final score using
a VQA model (DSGVQA), with PaLM 2 340B [3] for question generation and
PaLI 17B [9] for VQA. In addition, we ask human annotators to assess 100 sam-
ples from the test set to observe the correlation between the scores given by
the VQA model and human judgment (DSGHuman). As oracle performance, we
report the scores computed with the original test images (Test). Additionally,
we conduct side-by-side human evaluation using the 100 DOCCI-QUAL-TEST
set, focusing on user preference. In this human evaluation, we ask annotators
to rank three generated images based on the same description, considering both
image quality and fit to the prompt, and report the mean rank of each model.

Automatic Metrics and User Preference Table 5 shows the zero-shot T2I
generation performance of the models with automatic metrics. All three models
substantially underperform the Random and Text Ret. baselines, and SDXL
consistently achieves better scores than Imagen and DALL-E 3 (for FID, CMMD,
and FDDINOv2). These results run counter to our human evaluation, which rate
DALL-E 3 and Imagen higher: In our user preference evaluation, DALL-
E 3 was rated the highest with a mean rank of 1.42, followed by
Imagen at 1.84 and SDXL at 2.38. This discrepancy between FID and
human judgment is also reported in previous studies [43,56].

Image-Text Alignment The right half of Table 5 lists three metrics for
image-text alignment. SDXL achieves the highest CLIPScore, while DALL-E
3 performs the worst. However, DSGVQA results in a conflicting pattern which
aligns better with our human evaluation. Basically, CLIPScore is not suitable
for long descriptions as the CLIP text encoder truncates just 77 tokens. While
one can summarize a long description to fit this input limit, there will still be
information loss. In contrast, DSG extracts atomic validation questions from
the full description, distilling its full specification in a detailed and interpretable
manner. It thus serves as a better proxy for image-text alignment. We addition-
ally report the DSG results by human annotators instead of a VQA model to
verify its reliability (DSGHuman). The absolute scores are higher than DSGVQA
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Description Original SDXLDALL-E 3Imagen

A long-shot view of 
the front side of the 
Hoover Dam. The dam is 
very large, and it is 
made up of light brown 

stone. The bottom 
portion of it is 

narrow, but as it goes 
up, it gets wider. 

Underneath the bottom…

H
i
g
h
 
S
i
m
i
l
a
r
i
t
y

M
i
x
e
d
 
S
i
m
i
l
a
r
i
t
i
e
s

L
o
w
 
S
i
m
i
l
a
r
i
t
y

A blue Ford truck with 
a black grille guard 
attached to the front 
of it is parked on the 
side of a dark gray 

asphalt road. Directly 
to the left of the 

truck is a grass area 
with a gray cement 
sidewalk on it…

A red cardboard sign 
with white text and a 
white border. The text 

on the sign reads 
"COMING SOON / 

PROXIMAMENTE". There 
are creases where the 

cardboard has been bent 
at the top of the sign 
and in the bottom..

Fig. 8: Text-to-Image Reconstruction Quality. Top row (a) shows high-fidelity recon-
structions by Imagen, DALL-E 3, and SDXL with CLIP similarities over 88%, due to
detailed descriptions. Middle row (b) DALL-E 3 generates an image of a box truck
instead of an open truck, viewed from an aerial perspective, and includes additional,
unintended road signs. Bottom row (c) depicts all models’ overemphasis of “green” from
a vague description, highlighting the impact of inadequate detail in the input.

as human annotators can make better judgments in areas where VQA models
fall short (e.g., spatial relations). The overall trend of DSGHuman matches with
DSGVQA as well as our user preference evaluation. DALL-E 3 tops the DSG
scores likely due to the low truncation-caused information loss with
its context length of 4k characters, in contrast to Imagen’s 128 tokens
and SDXL’s 77 tokens. We provide detailed error analysis in Appendix E.

Text-to-Image Reconstruction The detailed descriptions in the DOCCI
dataset enable a benchmarking of text-to-image models’ ability to recreate origi-
nal images (meaning: compare a generated image to a reference image). This is an
analysis not possible with prompt-only evaluation sets such as Parti Prompts [65]
or Drawbench [52]. We utilize 5,000 test descriptions from the dataset to gen-
erate images using Imagen, DALL-E 3, and SDXL. The fidelity of these re-
constructions to the original images is quantified using two metrics: CLIP (ViT-
L/14@336px) [47] (image-to-image) and DreamSim [18], a newer metric designed
to assess the resemblance of generated images to a reference. The resulting CLIP
similarity scores—85.1 for SDXL, 82.8 for DALL-E 3, and 85.8 for Imagen and
DreamSim scores—53.7, 54.1, and 51.6, respectively—while suggesting models
perform comparably at a high level, conceal nuanced deficits in their under-
standing and recreation of complex imagery. Clearly, more work is needed on
automatic metrics with respect to the level of detail given in DOCCI.
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In-depth analysis reveals further insights, exemplified in Figure 8: (a) High
similarity instances, depicted in the top row, where all models achieve close
resemblance to the original images, typically occur with comprehensive descrip-
tions. (b) The middle row showcases mixed similarity scenarios, highlighting
certain models’ superiority over others and exposing their relative strengths and
weaknesses. (c) The bottom row presents cases of low similarity, where the gener-
ative models struggle due to underspecified visual features [24]. These perfor-
mance variations pinpoint the current models’ limitations and estab-
lish DOCCI as useful means to identify the strengths and weaknesses
in visual reconstruction by these models.

6 Related Work
Over the past decade, the vision-language research community has developed
various image-text datasets. In the early years, datasets such as Flickr30k [63],
COCO [10, 36], and Visual Genome [32] provided annotations in the form of
human-written captions for images depicting common objects from everyday
scenes. Since then, captioning datasets have been evolving, for example, no-
caps [2] annotated captions to more diverse objects [30], Localized Narratives [46]
used more modalities (e.g., mouse tracking) for annotation, Stanford Visual
Paragraphs [31] annotated dense and descriptive captions, and WIT [55] and
Crossmodal 3600 [57] considered multilinguality. Another line of research fo-
cuses on scale, building much larger image-text pair datasets. YFCC100M [58]
includes 100M images/videos that have been collected from the web. Conceptual
Captions [7,54] collected up to 12M images together with alt-text. RedCaps [15]
provides 12M image text pairs collected from Reddit. WIT [55] is large scale
as well as multilingual, providing 11.5M images with text in 108 languages.
CLIP [47] and ALIGN [26] have been trained on large-scale web datasets con-
taining 400M and 1.8B image alt-text pairs respectively. This trend continues
further: LAION-5B [53] extended its size to 5B and WebLI [9] consists of 10B
image-text pairs from 109 languages.

DOCCI primarily focuses on the density and quality of descriptions and is
directly comparable with prior work such as Stanford Visual Paragraphs [31] and
DCI [59], which have a similar balance of size and density. DAC [16] improves the
quality of descriptions using an LLM and achieves higher performance on down-
stream tasks. However, our human evaluation results (Section 4) indicate that
human annotations still have an advantage over (proprietary) machine gener-
ated/elaborated dense descriptions in terms of detail and lack of hallucinations.

7 Conclusion
In this work, we introduced Descriptions of Connected and Contrasting
Images (DOCCI), a new vision-language dataset that consists of 15k newly
curated images with detailed descriptions annotated by humans. Using DOCCI,
we showcased outstanding problems in T2I models and evaluation such as their
limited input length and the unreliability of automatic metrics. We encourage
the research community to develop improved model architectures and evaluation
metrics that are better suited for detailed visual descriptions in future work.
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