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Fig. 1: Dynamic stereo video. First row: depth maps of the same region in three dif-
ferent frames. Second row: depth maps converted to globally aligned point clouds and
rendered with a camera displaced by 15 degree angles. Our method gives consistent
and accurate disparities without flickering.

Abstract. Dynamic stereo matching is the task of estimating consistent
disparities from stereo videos with dynamic objects. Recent learning-
based methods prioritize optimal performance on a single stereo pair,
resulting in temporal inconsistencies. Existing video methods apply per-
frame matching and window-based cost aggregation across the time di-
mension, leading to low-frequency oscillations at the scale of the window
size. Towards this challenge, we develop a bidirectional alignment mech-
anism for adjacent frames as a fundamental operation. We further pro-
pose a novel framework, BiDAStereo, that achieves consistent dynamic
stereo matching. Unlike the existing methods, we model this task as local
matching and global aggregation. Locally, we consider correlation in a
triple-frame manner to pool information from adjacent frames and im-
prove the temporal consistency. Globally, to exploit the entire sequence’s
consistency and extract dynamic scene cues for aggregation, we develop a
motion-propagation recurrent unit. Extensive experiments demonstrate
the performance of our method, showcasing improvements in prediction
quality and achieving SoTA results on commonly used benchmarks.
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1 Introduction

Stereo matching is a fundamental computer vision task [32] of estimating the
disparity between two rectified stereo images. This task holds significance across
diverse applications, including 3D reconstruction [13], robot navigation [11], and
augmented reality (AR) [1]. It streamlines 3D scene reconstruction, enabling
seamless integration into virtual or mixed reality experiences, as well as facilitat-
ing mixed reality traversal. As consumer devices such as AR glasses and smart-
phones equipped with multiple cameras become increasingly prevalent, there is
a growing demand for advanced video stereo matching capabilities.

Deep learning based stereo matching methods have made significant strides in
terms of accuracy [22,24,45], efficiency [38,46], and robustness [17,36]. However,
achieving consistent disparity estimations from stereo video sequences remains
a challenge. Directly applying these methods to video often results in severely
flickering disparity maps, since the processing is done on a per-frame basis with-
out considering cross-frame information. As shown in Fig. 1, RAFTStereo [24],
which excels in performance on image-based stereo benchmarks [12,33,34], strug-
gles to generate consistent disparities on the real-world stereo video. This chal-
lenge is amplified in dynamic scenes where objects move and deform. In such
scenarios, multi-view constraints [15] are not applicable and disparities are not
translationally invariant. Even if correspondences are established, simply fusing
independent disparity maps of corresponding points is ineffective [23].

To this end, some recent approaches proposed to leverage cross-frame infor-
mation. Li et al . [23] first proposed a general pipeline CODD to break down this
problem into sub-modules for processing. It consists of a matching network for
per-frame disparity estimation, a motion network for SE3 transformation pre-
diction, and another network for temporal information fusion. This method is
limited as it only considers temporal information by using one past frame. To
expand the temporal receptive field, DynamicStereo [18] is designed with self
and cross attention mechanisms to extract and pool information over a range
of frames based on a transformer architecture. Although it achieves better per-
formance than per-frame methods, it applies per-frame matching and sliding
window-based aggregation (Fig. 2 (left)). This mechanism lacks temporal cor-
relation consistency and global sequence information, leading to low-frequency
oscillations at the scale of the temporal window size, as shown in Fig. 1. More-
over, since the position of matching point pairs in stereo videos is changing across
the time dimension, directly applying temporal attention in aggregation for dif-
ferent time steps’ cost volumes without alignment is sub-optimal. Thus, the key
goal for our research is to design a framework capable of effectively leveraging
temporal information in the correlation and aggregation process.

To tackle these challenges, we highlight the significance of frame alignment in
video stereo matching, and develop a novel framework based on Bi-Directional
Alignment, namely BiDAStereo, to achieve consistent dynamic stereo matching.
As shown in Fig. 2 (right), we apply the bidirectional alignment for two pur-
poses. Firstly, points occluded in one camera at a given time step may become
visible from both cameras in adjacent time steps. To leverage temporal informa-
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Fig. 2: Illustration of the difference between existing methods (left) and our proposed
method (right). Existing methods separate video sequences into fixed segments for
processing, adopt a per-frame matching operation to build the cost volumes and apply
the sliding window for aggregation, thus limiting the information propagation to a fixed
time length. Our method adopts bidirectional alignment for local matching, where the
cost volumes are built within the neighboring frames. A self-update mechanism is
proposed to update the current state via bidirectional alignment and propagate global
consistency across the whole sequence. Details of the self-update can be seen in Sec. 3.2.

tion from neighboring frames (local matching), we align the frames towards the
center frame and build the cost volumes via a triple-frame correlation layer. Sec-
ondly, to exploit information from the entire sequence and extract dynamic cues
(global aggregation), we develop a Motion-propagation Recurrent Unit (MRU).
Within the MRU updates, bidirectional motion features from neighboring frames
are aligned and fused towards the center frame to update the center frame. This
approach allows for the recurrent propagation of global consistency, expanding
the temporal receptive field and enabling the model to exploit a broader range
of temporal information. This provides a significant advantage, particularly in
dynamic scenes, as ambiguity and insufficient information in per-frame estima-
tion are mitigated when multiple frame information is effectively utilized, as
illustrated in Fig. 1.

The main contributions of this paper are as follows:

– The bidirectional alignment mechanism is developed as an effective operation
for enforcing temporal consistency in dynamic stereo vision.

– A triple-frame correlation layer is proposed to align adjacent frames and
build cost volumes, extracting local temporal receptive field cues.

– A novel motion-propagation recurrent unit is proposed to exploit the global
temporal information in dynamic scenes.

– The proposed method achieves SOTA performance on dynamic stereo match-
ing results among a variety of benchmarks.

2 Related Works

In this section, we first review per-frame stereo matching and then discuss recent
methods for stereo video.
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2.1 Per-frame Stereo Matching

Stereo matching remains a classic and intricate problem extensively researched
in computer vision in recent years. Most of the traditional approaches can be
categorized into local and global. Local methods divide images into patches,
calculate matching costs between these patches, and subsequently perform local
aggregation [3,16,44]. In contrast, global methods formulate the task as an energy
optimization problem, employing an explicit cost function [5,21,39,49], which is
optimized by belief propagation or graph cut algorithms.

Zbontar and LeCun [51] were pioneers in leveraging convolutions for match-
ing cost computation. Mayer et al . [26] further propelled this field forward by
introducing the first end-to-end network. Subsequently, research on end-to-end
networks has branched into two main directions. One direction focuses on uti-
lizing 2D convolutions, where innovative mechanisms and modules have been
proposed, such as cascaded connection [28], group-wise correlation [14], adap-
tive aggregation [47], and hierarchical connection [40]. Alternatively, another
direction involves constructing 4D cost volumes and leveraging 3D convolutions
for aggregation. Various techniques like 3D hourglass aggregation module [19],
spatial pyramid connection [7], semi-global guided aggregation [52], and high-
resolution targeted multi-scale layer [48] have been introduced. In addition to
accuracy, there are also some methods focusing on other properties important in
real-world scenarios, such as efficiency [38, 46], robustness [17, 36], and domain
generalization [8, 29,30].

Most recently, iterative mechanism has showcased its effectiveness [24, 41].
Building on this, Li et al . [22] proposed adaptive correlation and incorporated
attention mechanism, yielding performance improvements. Xu et al . [45] com-
bined geometry encoding volume with the backbone of [24] and used the results
from 3D aggregation network as the initial input to the iterative refinement.
Despite these notable strides, these methods primarily address per-frame stereo
matching, neglecting temporal information in video sequences. Direct applica-
tion of these methods to video frames often results in poor temporal consistency,
notably manifested as severe flickering in the output disparities.

2.2 Video Stereo Matching

Matching stereo videos, particularly with dynamic scenes, is a crucial yet rel-
atively unexplored area. Conventional approaches, exemplified by Patchmatch
Stereo [4], operate under the assumption of shared planes among neighboring
frames, employing 3D spatial windows and temporal propagation to estimate
disparities. Zhong et al . [54] introduced an LSTM-based approach for stereo
videos, which focused on unsupervised learning for limited real-world annota-
tions, neglecting the temporal information.

Towards dynamic scenes, Li et al . [23] first proposed CODD emphasizing
temporal consistency. Expanding upon a per-frame stereo network, they intro-
duced separate motion and fusion networks to align and aggregate current and
past estimated disparities. Zhang et al . [53] developed a coarse-to-fine network
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that leverages past context, enhancing predictions in challenging scenarios such
as occlusions and reflective regions. Cheng et al . [9] contributed to the field
by generating a synthetic dataset in an indoor XR scenario and designing a
framework to reduce computational costs through temporal cost aggregation.
However, these methods are limited in their ability to propagate temporal in-
formation solely within the past neighboring frame, thereby constraining the
temporal receptive field. Moreover, they heavily rely on auxiliary camera mo-
tions or pre-given scene geometries for fusing temporal information, restricting
the choice of training datasets. Karaev et al . [18] enlarged the receptive field by
introducing a transformer-based architecture featuring time, stereo, and tem-
poral attention mechanisms. Despite achieving improved results through sliding
window processing, temporal information remains confined within a fixed pre-set
range, falling short of encompassing the entire sequence. Additionally, lacking
alignment operations, it proves suboptimal for cost aggregation.

3 Methods

Given a pair of rectified stereo sequences {ItL, ItR}t∈(1,T ) ∈ RH×W×3, the task of
dynamic stereo matching is to estimate a sequence of disparity maps {dt}t∈(1,T ) ∈
RH×W aligned with the left one, where T is the number of frames. The chal-
lenge lies in devising a model that is capable of efficiently propagating consistency
across the whole sequence. Existing methods often apply per-frame matching and
window-based aggregation across frames T , neglecting the fundamental align-
ment operation between adjacent frames. Since the position of matching points
in stereo images is moving across time, relying solely on temporal attention with-
out alignment is sub-optimal. Towards this limitation, we propose BiDAStereo
based on bidirectional alignment for dynamic stereo matching. As illustrated in
Fig. 3, the framework consists of three modules: a feature extraction module, an
optical flow module, and an update module for disparity estimations.

To simplify the process, we exemplify the input with three frames (the center
and its neighboring frames) but the same approach can be applied to the cases
with more than three frames. In the left part of Fig. 3, the input stereo sequences
are processed by two shared-weight convolutional feature extraction modules.
Multi-scale feature maps {Ft

L,F
t
R}s ∈ RsH×sW×C are extracted, where s ∈

{1/16, 1/8, 1/4} represents down-sampled scales, and C is the channel number.
Bidirectional optical flow {ff , fb} ∈ RH×W×2 are simultaneously estimated and
downsampled to the corresponding resolution of the feature maps. Subsequently,
the extracted features and the optical flow maps traverse three cascaded stages of
the update module, which consists of a Triple-Frame Correlation Layer (TFCL)
and a Motion-propagation Recurrent Unit (MRU). In the TFCL, cost volumes
are built using the adjacent aligned features and input into the MRU, iteratively
refining disparity predictions. Initialized from a blank disparity map, the output
disparities from the previous update stage are fed into the next stage. The same
update module is used in each stage to reduce overall parameters. Finally, the
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Fig. 3: Left: The overall pipeline of the proposed method. Given a pair of stereo
sequences, bidirectional optical flows are estimated and feature maps are extracted
at three scales. In each scale, the predicted disparities are refined iteratively in the
update module, and the final output of the former stage is fed to the next one as an
initialization. The same update module is reused in each stage. Right: The architecture
of the update module. For each iteration, the Triple-Frame Correlation Layer (TFCL) is
used to compute cost volumes from triple-frame feature maps. The motion-propagation
Recurrent Unit (MRU) is used for global cost aggregation and disparity estimations.

predicted disparities at the last stage are re-scaled to the original resolution
using convex up-sampling [41].

3.1 Triple-Frame Correlation Layer

Bidirectional alignment. Building cost volumes among multiple frames can
enrich the perception information of scenes since occluded points in a given
frame could be visible in the adjacent frames. Directly establishing multi-frame
correlation is a naive approach and sub-optimal for cost aggregation, since the
unaligned features have different position thus introduce noise. Therefore, align-
ment is indispensable to ensure that corresponding matching points in different
frames are positioned identically. As shown in the left part of Fig. 4, given the
bidirectional optical flow maps in corresponding resolution {ff , fb}, the right fea-
tures

{
Ft−1

R ,Ft+1
R

}
are first warped towards the center frame {Ft

R} via bilinear

warping W to obtain aligned features
{
F̂t−1

R , F̂t+1
R

}
, formulated as follows,

F̂t−1
R = W(Ft−1

R , ff ), F̂t+1
R = W(Ft−1

R , fb). (1)

Correlation. Following bidirectional alignment, cost volumes are constructed
employing the local correlation mechanism [22]. We extend this mechanism to
a triple-frame version. In particular, for the n-th iteration, the intermediate
disparity map dt

n−1 from the previous iteration is employed to warp right features
towards the left feature map:

[F̃t−1
R , F̃t

R, F̃
t+1
R ] = W([F̂t−1

R ,Ft
R, F̂

t+1
R ],dt

n−1). (2)
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Fig. 4: The architecture of TFCL and MRU. For TFCL, bidirectional alignment is
conducted from the adjacent right frames to the center frame. Cost volumes are built
among the left frame and the aligned right frame. For MRU, convolutional encoders
are adopted for correlations, disparities, and motion features. A motion hidden state
feature is introduced for each frame as an auxiliary context in global propagation. In
each iteration, adjacent motion hidden state features are aligned towards the center
one, updating the center one and propagating wider temporal information.

Then, the cost volumes Ct→t′

n (p) between the left feature map Ft
L and the

warped right features F̃t′

R at position p can be formulated as follows,

Ct→t′

n (p) = Concat
r∈R

{⟨Ft
L(p) · F̃t′

R(p+ r)⟩}, (3)

where t′ ∈ {t− 1, t, t+ 1}. R is the search range of the current pixel, where
(±4, 0) and (±1,±1) are alternatively adopted for horizontal and vertical direc-
tions in practical implementation. ⟨·⟩ represents channel-wise product operation.

It is worth noting that only a single left frame is utilized in the correlation
layer. In multiple-frame matching, constructing cost volumes across different
source (right) frames increases potential matching options as auxiliary informa-
tion. Conversely, considering multiple reference (left) frames merely results in
ambiguity, lacking a clear physical location of features and potentially introduc-
ing noise that can impact the matching performance. This is further corroborated
by the ablation study in Section 4.4.

3.2 Motion-propagation Recurrent Unit

With TFCL, the model can utilize temporal information from neighboring two
frames. However, the extent of information propagation is still confined to a local
range. To facilitate the propagation of global consistency, it’s essential to estab-
lish a state variable representing each frame and fuse it across adjacent frames.
While feature maps from images are commonly used as state variables in tasks
like video super-resolution and denoising [25], they are not well-suited for stereo
matching, as fusion with other frames could significantly impact matching accu-
racy. Instead, motion features, which provide context, are more appropriate for
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global propagation and dynamic scenes. As illustrated in Fig. 4, we propose a
motion-propagation mechanism designed to exploit contextual information from
the entire sequence. During the update iteration, a motion hidden state M is
introduced to cache the state for each frame. This involves bidirectional align-
ment of neighboring states to iteratively update itself. As a result, information
in each frame undergoes recurrent propagation throughout the entire sequence.
Detailed elaboration on each module will be provided in subsequent subsections.
Motion propagation. A motion hidden state feature Mt ∈ RsH×sW×C0 is
introduced for the t-th frame in the MRU, where C0 is the channel number. For
the first iteration at the first stage, Mt

0 is randomly initialized and undergoes
learnable updates. For the n-th iteration, the motion hidden state features Mt−1

n−1

and Mt+1
n−1 from adjacent frames are aligned towards the center one Mt

n−1 via
bidirectional optical flow maps {ff , fb}, formulated as follows,

M̂t−1
n−1 = W(Mt−1

n−1, ff ), M̂t+1
n−1 = W(Mt+1

n−1, fb). (4)

Then, the aligned features {M̂t−1
n−1, M̂

t+1
n−1} and the center one Mt

n−1 are fused by
a motion-propagation encoder to obtain the motion propagation feature Ft

n(mop):

Ft
n(mop) = MoP-Enc(M̂t−1

n−1,M
t
n−1, M̂

t+1
n−1). (5)

Across various update scales, the motion hidden state is not re-initialized, and
the final output hidden state from the previous level is up-sampled as the initial
input for the next level.
Encoder blocks. After building the cost volumes Ct→t′

n (p), the correlation
feature Ft

n(corr) is obtained using a convolutional correlation encoder (Corr-Enc).
The disparity encoder (Disp-Enc) is applied to acquire Ft

n(disp):

Ft
n(corr) = Corr-Enc

t′∈{t−1,t,t+1}
(Ct→t′

n (p)),

Ft
n(disp) = Disp-Enc(dt

n−1).
(6)

Subsequently, these two features are concatenated with the motion propagation
feature Ft

n(mop) and processed by the motion encoder (Mot-Enc) to generate the
motion feature Ft

n(mot), hidden state hn [24], and the updated motion hidden
state feature M̂t

n:

Ft
n(mot),hn, M̂

t
n = Mot-Enc(Ft

n(corr),F
t
n(disp),F

t
n(mop)). (7)

Super kernel updater. The hidden state hn and the motion feature Ft
n(mot)

are passed through a super kernel updater to get the predicted disparities resid-
uals ∆dt

n, which are added to the current disparities dt
n−1 and obtained dt

n,
iteratively refining the disparity predictions. Motivated by [18], 3D convolutions
are used in the updater for video sequences to enhance temporal consistency.
Different from the regular updater with kernel size 1 × 1 × 5, we introduce an
extra convolution layer with a super kernel size 1 × 1 × 15. The proposed layer
is only adopted for the horizontal direction to expand the receptive field along
the epipolar line.
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3.3 Discussion of Alignment

The alignment of different time steps can be regarded as multi-view stereo
matching (MVS), which utilizes explicit geometry information. In MVS, the
plane sweep algorithm [50] is commonly employed to project source images onto
fronto-parallel planes of the reference image using homography. However, due
to the presence of dynamic objects, the triangulation rule typically applied in
MVS becomes inapplicable. Furthermore, MVS methods necessitate camera pose
information and a pre-calculated depth range obtained through Structure from
Motion (SfM). The estimation of these items would significantly augment the
complexity of the overall pipeline and accumulate errors.

An alternative approach is leveraging scene flow [42], which estimates pixel-
wise 3D motions and obviates the need for camera pose estimation. Alignment
can be achieved through a SE3 transformation, akin to the method proposed
in [23]. However, estimating scene flow requires depth of source images or Lidar
information, thereby leading to a chicken-and-egg problem for our task. Although
iterative optimization techniques can be employed to tackle this issue, the final
performance is largely contingent upon the accuracy of the scene flow estimation,
as demonstrated in [23].

In comparison to the aforementioned explicit methods, optical flow can be
viewed as an implicit alignment method devoid of geometry guidance. It estab-
lishes correspondences between 3D points in two camera coordinates directly,
making it suitable for both dynamic and static objects. In our method, optical
flow aligns adjacent features in the TFCL and serves as a verification mechanism
for correlation. Consequently, matching points in adjacent frames should occupy
the same position post-alignment. Additionally, it facilitates the connection of
adjacent motion features, ensuring seamless motion-propagation updates.

3.4 Loss Function

In the training process, T frames are used, and for each frame, N disparity
predictions are generated after iterations. All disparity predictions are supervised
by l1 distance with ground truth disparities in an end-to-end manner. The last
disparity prediction is selected as the final output. The total loss is formulated
as follows:

L =

T∑
t=1

N∑
n=1

γN−n||dt
gt − dt

n||, (8)

where γ is set as 0.9 and dt
gt is the ground truth for the t-th frame. Upsampling

is used for lower resolution disparities to the resolution of ground truth.

4 Experiments

This section presents BiDAStereo’s evaluation datasets and implementation de-
tails, demonstrates its out-of-domain and in-domain temporal consistency, and
performs ablation studies to confirm the effectiveness of its components.
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4.1 Datasets

For training, SceneFlow [26] and Dynamic Replica training set [18] are used.
For evaluation, following the previous methods, we adopt the commonly used
benchmarks, including Sintel clean and final pass [6] and the first 150 frames of
Dynamic Replica test set [18].
SceneFlow (SF) is comprised of three subsets: FlyingThings3D, Driving and
Monkaa. FlyingThings3D is an abstract dataset featuring moving shapes against
colorful backgrounds. It includes 2,250 sequences, each with 10 frames. Driving
involves 16 sequences depicting driving scenarios, with each sequence having 300
to 800 frames. Monkaa consists of 48 sequences in cartoon scenarios, with frame
counts ranging from 91 to 501.
Dynamic Replica (DR) introduced in [18], is notable for its longer sequences
and inclusion of non-rigid objects like animals and people. The dataset includes
484 training sequences each with 300 frames, 20 validation sequences each with
300 frames, and 20 test sequences each with 900 frames.
Sintel is derived from computer-animated movies and comprises 23 sequences
for both clean and final passes. Each sequence contains 20 to 50 frames.

4.2 Implementation Details

We implement BiDAStereo in PyTorch and train on NVIDIA A100 GPUs.
RAFT [41] is used for the optical flow module. We first pretrain the model
with a batch size of 16 and resolution 256× 256, and further finetune it with a
batch size of 8 and resolution 256 × 512. We use AdamW optimizer [20] with a
standard learning rate of 0.0004 and the default setting. We also adopt the one-
cycle learning rate schedule [37]. The pretraining process is set to 60k iterations
for the SF version and 80k iterations for the SF+DR version. The finetuning pro-
cess is set to 40k iterations for the SF version and 60k iterations for the SF+DR
version. The whole training process takes about 5 days. The optical flow module
is frozen in pretraining and trainable in finetuning. Following [18], multiple data
augmentation techniques including random crop, rescaling, and shifts in satu-
ration are used in training. The length of the sequences is set to T = 5 during
training, T = 20 for DR, and full sequence length for Sintel evaluation. The
number of iterations is set to 10 in training and 20 in evaluation.

4.3 Temporal Consistency

To evaluate temporal consistency, we compute the temporal end-point-error
(TEPE) 1, which measures the variation of the end-point-error across time di-
mension. δtn−px represents the proportion of pixels with TEPE higher than the n
threshold. Lower values on both metrics indicate greater temporal consistency.
Out-of-domain evaluation. In Tab. 1, when trained on the SceneFlow dataset,
our method gives the best results in terms of accuracy and temporal consis-
tency. Specifically, our BiDAStereo outperforms DynamicStereo [18] by 5.2% and

1 TEPE(d,dgt) =
√∑T−1

t=1 ((dt − dt+1)− (dt
gt − dt+1

gt ))2
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Table 1: Out-of-domain evaluation on Sintel clean and final pass datasets [6]. SF -
SceneFlow [26], K - KITTI [27], M - Middlebury [31], DR - Dynamic Replica [18]. 7
datasets include SceneFlow [26], Sintel [6], Falling Things [43], InStereo2K [2], Carla
[10], AirSim [35], and CREStereo dataset [22]. Lower values are better for all metrics.

Training Data Method
Sintel

clean final

δt1px δt3px TEPE δ3px δt1px δt3px TEPE δ3px

SF

CODD [23] 10.78 5.65 1.44 8.68 18.56 9.79 2.32 17.5
RAFTStereo [24] 9.33 4.51 0.92 6.12 13.69 7.08 2.10 10.4

DynamicStereo [18] 8.41 3.93 0.77 6.10 11.95 5.98 1.45 8.97
BiDAStereo (ours) 8.29 3.79 0.73 5.94 11.65 5.53 1.26 8.78

SF + DR
RAFTStereo [24] 9.07 4.40 0.89 5.83 13.56 7.02 1.91 9.83

DynamicStereo [18] 8.46 3.93 0.76 5.77 11.93 5.92 1.42 8.68
BiDAStereo (ours) 8.03 3.76 0.75 5.75 11.04 5.30 1.22 8.52

SF + M + K CODD [23] 12.16 6.23 1.33 9.11 16.16 8.64 2.01 11.90
SF + M RAFTStereo [24] 8.79 4.13 0.85 5.86 12.40 6.23 1.63 8.47

7 datasets (incl. Sintel) CREStereo [22] 6.36 3.26 0.67 4.58 12.29 6.87 1.90 8.17
SF + DR BiDAStereo (ours) 8.03 3.76 0.75 5.75 11.04 5.30 1.22 8.52

Table 2: In-domain evaluation on the Dynamic Replica test set [18].

Training Data Method Dynamic Replica (first 150 frames)

δt1px δt3px TEPE δ1px

SF + DR
RAFTStereo [24] 0.84 0.27 0.082 1.88

DynamicStereo [18] 0.68 0.23 0.075 3.32
BiDAStereo (ours) 0.61 0.22 0.062 2.81

SF + M + K CODD [23] 2.16 0.77 0.152 10.03
SF + M RAFTStereo [24] 1.34 0.41 0.114 3.46

7 datasets (incl. Sintel) CREStereo [22] 0.88 0.29 0.088 1.75
SF + DR BiDAStereo (ours) 0.61 0.22 0.062 2.81

13.1%; RAFTStereo [24] by 20.7% and 40.0% in TEPE on Sintel clean and final
pass, respectively. For models trained with SceneFlow and Dynamic Replica,
our method achieves the top rank across all metrics, with an improvement of
14.1% and 36.1% in TEPE on the Sintel final pass compared to DynamicStereo
and RAFTStereo. The incorporation of Dynamic Replica as an additional train-
ing set enhances the temporal consistency of all models. Notably, our method
exhibits better performance on the final pass, underscoring its enhanced ro-
bustness. We further present the results of the methods trained with diversified
datasets. Compared to CODD [23] and RAFTStereo trained with real-world
per-frame datasets Middlebury and KITTI, our method trained solely on syn-
thetic datasets still demonstrates superior performance. Moreover, BiDAStereo
exhibits even better temporal consistency than CREStereo [22] on the final pass,
which is a per-frame method trained including the Sintel test set. The qualitative
comparative results on Sintel final pass are presented in Fig. 5.
In-domain evaluation. As shown in Tab. 2, our method outperforms prior
methods on temporal consistency, achieving 0.062 TEPE on the Dynamic Replica
test set. Trained on two synthetic datasets, our method shows better tempo-
ral performance compared to CREStereo [22], which is trained on 7 diversified
datasets. This indicates the effectiveness of utilizing temporal information. In
Fig. 6, we visualize the rendered images using the disparity predictions of Dy-
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Left frame DynamicStereo BiDAStereo (ours)

Fig. 5: Qualitative comparisons on Sintel final dataset [6].

Left frame DynamicStereo BiDAStereo (ours)

Fig. 6: Qualitative comparisons on Dynamic Replica test set [18].

namicStereo [18] and our BiDAStereo to show the superior performance of our
approach. The red boxes highlight where our method handles ambiguity better
especially in areas with weak textures such as glass. In contrast, DynamicStereo
produces blurry predictions with visible distortions. The results further support
our claim that employing local matching and global aggregation via bidirectional
alignment can guide the network to enforce temporal consistency.
Real-world static scene. Although our method is designed for dynamic stereo
scenes, following [18], we present a qualitative comparison of temporal consis-
tency on a real-world static scene. In Fig. 7, images are converted to point clouds
using depth predictions and rendered with a camera displaced by 15 degree an-
gles. We compute the mean and variance across image reconstructions. We color
the pixels of the mean image with variance higher than 40 px2 into red. Smaller
red regions illustrate lower variance thus better consistency of our method.

4.4 Ablation Studies

As shown in Tab. 3, we study the specific components of our approach in isolation
and bold the settings used in the final model. The baseline is a per-frame model
with 2D 1×5 convolutions in the updater and shared weights update module. We
train the models on SceneFlow [26] and Dynamic Replica [18] with the hyper-
parameters described in Sec. 4.2. We evaluate these models on the final pass of
Sintel [6] and on the test split of Dynamic Replica [18].
Updater convolution. We first compare 2D and 3D convolutions in the it-
erative updater (Sec. 3.2). As can be seen from the table, compared with the
baseline model, using 3D convolutions benefits the temporal consistency, with a
large improvement in TEPE from 1.74 to 1.34. This illustrates the effectiveness
of processing multiple frames simultaneously. We also find that the accuracy of
the method with 3D convolutions decreases slightly. This may be due to the
fusion of unaligned features across time. While prior works use 1 × 1 × 5 con-
volutions in the updater, we find it beneficial to enlarge the kernel size of the
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Mean Image RAFTStereo DynamicStereo BiDAStereo (ours)

Fig. 7: Temporal consistency comparisons. Visualization on a 40-frame reconstructed
real-world static stereo video. All models are trained on DR & SF. We first predict
disparity for each frame and convert it to globally aligned point clouds. They are
further rendered with a camera displaced by 15 degree angles. Mean and variance
across all images are computed and pixels with variance higher than 40 px2 are shown
in red. Our method shows a lower variance, indicating better consistency.

updater across horizontal dimensions. This results in a general improvement in
accuracy and temporal consistency.
Update module. We conducted experiments on shared and separated weights
for the update modules in three resolutions. According to the results for sepa-
rated weights there is no obvious improvement but the number of parameters is
three times larger than for the shared weights.
Bidirectional alignment. After adding the bidirectional alignment to the cor-
relation layer, we observed significant performance improvements across all met-
rics. We experimented with constructing triple-frame cost volumes for both,
adjacent aligned left frames and their corresponding aligned right frames (multi-
multi). However, this strategy resulted in a performance drop, likely due to the
extra noise from more than one reference image. For the task of pixel-level match-
ing, the fixed reference image and the expanded temporal receptive field of the
source images led to better results.
Motion hidden state. In the proposed method, motion propagation is devel-
oped to leverage the global temporal information from the whole sequences. The
motion hidden state from the previous update module was upscaled to the next
one (shared), which proved to be effective, as shown in Tab. 3. We also report
results for separating and re-initializing the motion hidden state in each resolu-
tion (separated). However, this leads to an unstable training and a significant
performance drop.
Inference settings. Different iteration times and number of frames are also
investigated. As shown in Tab. 3, 20 iterations were optimal for inference. Pro-
cessing more frames at once during inference improved the results.

4.5 Parameter, Memory, and MAC Counts

As shown in Fig. 8, we compare the methods in terms of parameters, inference
GPU memory and multiply–accumulate (MAC). Our method strikes a balance
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Table 3: Ablation Study on Sintel datasets [6] and Dynamic Replica [18]. Settings used
in the final model are bold. (+) represents combined with all the above bold settings.
(−) represents the experiment that has been conducted but not adopted to the final
model. Lower values indicate better results for all metrics. See Sec. 4.4 for details.

Method Experiment Sintel Final Dynamic Replica Parameters

δt1px δt3px TEPE δ3px δt1px δt3px TEPE δ1px

Baseline (2D Conv; 1 × 5; Shared) 12.83 6.50 1.74 8.45 0.84 0.27 0.091 2.40 5.0M

(+) Updater 3D Conv 11.22 5.61 1.34 8.64 0.69 0.23 0.082 3.38 5.4M

(+) Kernel size 1 × 3 × 3 13.41 5.99 1.43 8.93 0.91 0.27 0.087 3.48 6.3M
1 × 1 × 15 11.19 5.56 1.33 8.59 0.69 0.23 0.079 3.26 6.9M

(−) Weights Separated 11.17 5.61 1.34 8.57 0.69 0.23 0.079 3.23 18.5M

(+) Alignment Single-Multi 11.10 5.38 1.31 8.53 0.64 0.22 0.067 2.91 12.2M
Multi-Multi 11.30 5.77 1.39 8.66 0.74 0.25 0.082 3.28 12.2M

(+) Motion hidden state Separated 20.36 12.08 2.82 20.38 3.84 2.25 0.511 6.07 12.2M
Shared 11.09 5.33 1.24 8.55 0.61 0.22 0.062 2.81 12.2M

(+) Inference iterations
12 11.30 5.43 1.26 8.41 0.61 0.22 0.061 2.88 12.2M
20 11.09 5.33 1.24 8.55 0.61 0.22 0.062 2.81 12.2M
32 11.10 5.30 1.23 8.61 0.62 0.22 0.063 2.90 12.2M

(+) Inference frames 10 11.38 5.47 1.32 8.74 0.66 0.24 0.081 2.81 12.2M
20 11.09 5.33 1.24 8.55 0.61 0.22 0.062 2.81 12.2M
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Fig. 8: (a) δt1px on DR vs. parameters. (b) δt1px on DR vs. inference GPU memory (20
frames × 768 × 1024). (c) δt1px on Sintel vs. MACs (436 × 1024).

in these three criteria while giving the lowest error. The main overheads of our
method in inference memory and MAC are from the optical flow module.

5 Conclusion and Future Work

In this paper, we show that the bidirectional alignment improves the consistency
of dynamic stereo matching. Based on this, we propose BiDAStereo, which inte-
grates a triple-frame correlation layer and a motion-propagation recurrent unit
to effectively extract both local and global temporal cues. Experimental results
show that our approach performs well on various datasets, especially on out-of-
domain scenes. A common limitation among our work and existing works is the
inability to explicitly distinguish between dynamic and static areas, which is the
key to ensuring consistency. Moving forward, our focus lies in exploring how to
integrate our method with explicit geometry priors to enhance the performance
and in developing a lightweight version of the model.
Acknowledgments. This work was funded by the Imperial College-China Schol-
arship Council.
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