
Supplementary Material: Compensation Sampling
for Improved Convergence in Diffusion Models

Hui Lu1, Albert Ali Salah1, and Ronald Poppe1

Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
{h.lu1, a.a.salah, r.w.poppe}@uu.nl

We first give an overview of our implementation in Section 1 to allow repli-
cation of our network and training process. Upon acceptance of the paper, our
Github repository will be made available publicly. Next, we provide an analysis
of the effect of the number of training epochs of the compensation module (Sec-
tion 2). We then present additional quantitative and qualitative results for the
three tasks in the main paper: unconditional face generation (Section 3), face in-
painting (Section 4), and face de-occlusion (Section 5). Finally, we demonstrate
the merits of our compensation sampling approach beyond tasks related to face
reconstruction, and present additional experiments on unconditional general im-
age generation using CIFAR-10 (Section 6).

1 Implementation details

1.1 Model architecture

Our diffusion model is based on the DDIM model, the Ablated Diffusion Model
(ADM) (publicly available at https://github.com/openai/guided-diffusion).
We summarize the architecture in Table 1.

Fig. 1: Training and inference of our diffusion model during the denoising pro-
cess. (a) Accelerated training process using the compensation module (b) Inference
process for sampling from noise xt

.

1.2 Training and inference pipeline

We show the pipeline of training and inference of our diffusion model in Figure 1.
For training in Figure 1(a), during the denoising process, the input noise data xt

https://github.com/openai/guided-diffusion


2 Hui Lu, Albert Ali Salah, and Ronald Poppe

Compensation Module

UNet Block

nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
nn.BatchNorm2d(out_channels)

nn.ReLU()
nn.MaxPool2d(kernel_size=2, stride=2)

UNet Up Block
nn.ConvTranspose2d(in_channels_up, out_channels_up, kernel_size=2, stride=2))

UNetBlock(out_channels_up, out_channels_up//2)
torch.cat(dim=1)

Initial Layer UNet Block(in_channels=3, out_channels=initial channel)

Down Sampling

UNet Block(in_channels=channel multiplier[0], out_channels=channel_multiplier[1])
UNet Block(in_channels=channel_multiplier[0], out_channels=channel_multiplier[1])
UNet Block(in_channels=channel_multiplier[0], out_channels=channel_multiplier[1])
UNet Block(in_channels=channel_multiplier[0], out_channels=channel_multiplier[1])

Up Sampling

UNet Up Block(channel_multiplier_up[0], channel_multiplier_up[1])
UNet Up Block(channel_multiplier_up[0], channel_multiplier_up[1])
UNet Up Block(channel_multiplier_up[0], channel_multiplier_up[1])
UNet Up Block(channel_multiplier_up[0], channel_multiplier_up[1])

Output Layer nn.Conv2d(channel_multiplier_up[0], channel_multiplier_up[1], kernel_size=1)

Reconstruction Module

Residulal Block

Conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
bn = nn.BatchNorm2d(in_channels)

Conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
identity = x

out = self.bn1(self.Conv1(x)).relu()
out = self.bn(Conv2(out))

out += identity
out = self.relu(out)

Residual Up Block
nn.ConvTranspose2d(in_channels_up, out_channels_up, kernel_size=2, stride=2))

Residual Block(out_channels_up, out_channels_up//2)
torch.cat(dim=1)

Initial layer Residulal Block(in_channels=3, out_channels=initial channel)

Down Sampling

Residulal Block(in_channels=channel multiplier[0], out_channels=channel_multiplier[1])
Residulal Block(in_channels=channel_multiplier[0], out_channels=channel_multiplier[1])
Residulal Block(in_channels=channel_multiplier[0], out_channels=channel_multiplier[1])
Residulal Block(in_channels=channel_multiplier[0], out_channels=channel_multiplier[1])

Up Sampling

Residual Up Block(channel_multiplier_up[0], channel_multiplier_up[1])
Residual Up Block(channel_multiplier_up[0], channel_multiplier_up[1])
Residual Up Block(channel_multiplier_up[0], channel_multiplier_up[1])
Residual Up Block(channel_multiplier_up[0], channel_multiplier_up[1])

Output Layer nn.Conv2d(channel_multiplier_up[0], channel_multiplier_up[1], kernel_size=1)

Table 1: Network architecture of our diffusion model with compensation module.

first passes through the reconstruction module (with ADM backbone in Table 1)
to produce the initial clean data reconstruction x̂0. x̂0 and t is further processed
by the compensation module. The output of compensation module and x̂0 is
integrated following our compensation sampling algorithm, and outputs xt−1.
The pipeline iteratively works until the diffusion model outputs the final recon-
struction x0. For inference in Figure 1(b), our approach aligns entirely with that
of DDIM, but utilizes the reconstruction module for sampling.

2 Effect of compensation module training epochs

In the main paper, we use a single training epoch for the compensation module
in the unconditional generation experiment, so that we can introduce additional
noise to increase the diversity of the generation. In the face inpainting and face
de-occlusion tasks, we use more training epochs for the compensation module, so
the compensation term will generate pixels close to human faces, thus we have
a higher chance to get realistic human faces.

Considering the compensation term will encourage more faithful reconstruc-
tion of the original image x0, it has the possibility to memorize images from
the training set. Although the generated diverse samples can qualitatively prove
this is not the case, to further quantify the distribution coverage and show the



Title Suppressed Due to Excessive Length 3

CelebA-64 FFHQ-256

Iterations FID Precision Recall FID Precision Recall

1 2.12 0.79 0.71 11.89 0.76 0.65
2 2.13 0.79 0.69 11.89 0.76 0.64
5 2.15 0.82 0.52 11.93 0.78 0.55
10 2.15 0.83 0.48 11.87 0.78 0.50
20 2.13 0.84 0.44 11.93 0.80 0.45
40 2.12 0.85 0.41 11.92 0.80 0.43
80 2.12 0.85 0.40 11.89 0.79 0.43

Table 2: Effect of training epochs of the compensation module on uncondi-
tional and conditional generation.

diversity of our approach, we use the improved precision and recall proposed
in [3], and experiment with the unconditional generation task with CelebA-64
and FFHQ-256 dataset with increasing number of training epochs. The results
are summarized in Table 2.

From Table 2, on CelebA-64, it follows that the initial precision is 0.79, and
the recall is 0.71. When increasing the number of iterations, the FID remains
stable, but the recall starts decreasing from 0.71 to 0.44 at 20 iterations, and
it remains stable when further increasing the number of iterations. Similarly,
on FFHQ-256 dataset, the initial precision is 0.76, and recall is 0.65. When
increasing the iterations, the recall decreases from 0.65 to 0.45 at 20 iterations,
and stays more or less the same for increasing numbers of iterations.

Based on the analysis we can see that the diversity is connected to the training
epochs of compensation term since it will learn the data distribution to some
extent, so we can choose a lower number of epochs during the unconditional
generation to increase the diversity of results, and choose a higher number of
epochs to generate pixels similar to human faces for face inpainting tasks.

3 Unconditional face generation

3.1 Additional qualitative results

We show more generation results on CelebA-64 and FFHQ-256 in Figures 2 and
3 with the same setting in the main paper. Again, the diversity of the faces
becomes apparent. With a close-up in Figure 4, we can see the high quality
details of the generated image. In particular, we observe realistic facial hair and
wrinkles around the eyes and mouth.

3.2 Failure cases

We also present some failure cases of DDIM and our model in Figures 5 and 6
to better analyze the patterns. Similar to DDIM, our method’s failures mainly



4 Hui Lu, Albert Ali Salah, and Ronald Poppe

Fig. 2: Unconditional face generation on CelebA-64. More samples with com-
pensation sampling.

focus on the details of face or hands. Symmetry is not always warranted and the
generation of realistic hair remains challenging. In addition, DDIM tends to have
structural errors, where the face shapes are corrupted. For example, the first and
third faces of DDIM in Figure 5 have an improbable neck, and the second face
of DDIM in Figure 6 is missing an eye.

4 Face inpainting on CelebA-HQ

We show more face inpainting results on CelebA-HQ-256 in Figures 7 and 8,
where Figure 7 shows the input and the ground truth, and Figure 8 shows the
generation results. Similar to the previous face inpainting task, we use more
epochs to train the compensation module to generate pixels close to human
faces, which can reduce the diversity of results to some extent. The failures
mainly happen when large areas are occluded. In some cases, the eyes are not
realistically recovered.

5 Face de-occlusion on FSG

Similar to the face inpainting task, and with the same settings, we show more
face de-occlusion results on the FSG dataset in Figures 9, 10, and 11. Figure 9



Title Suppressed Due to Excessive Length 5

Fig. 3: Unconditional face generation on FFHQ-256. More samples with com-
pensation sampling.

shows the input, Figure 10 the ground truth, and Figure 11 shows the results
generated with our model. Our results seem blurred, and failure cases occur
especially when the top face area is occluded.

6 Unconditional generation on CIFAR-10

6.1 Experimental setting

To evaluate on a non-face generation task, we use the more general CIFAR-10
(60k images) [2] dataset. For fair comparison, our training hyper-parameters
including batch size and decay rate are the same as in DDPM [1]. We again use
Gaussian noise as our corruption mechanism, and adopt the fixed linear variance



6 Hui Lu, Albert Ali Salah, and Ronald Poppe

Fig. 4: Close-up of sample face generated after training on FFHQ-256. Note the
realistic details in all parts of the face.

Fig. 5: Failure cases of DDIM and our model on CelebA-64.

schedule β1, ..., βT as in DDPM for the prior noising process. In line with the
experiments on unconditional face generation, we reduce the training time steps
for our model to T = 100. Both the compensation module and diffusion model
use the Adam optimizer. Experiments are conducted on 4 NVIDIA Tesla A100
GPUs.

6.2 Qualitative results

We show generated images of our method for CIFAR-10 in Figure 12. We observe
a wide diversity of our method, and the images generally have good realism and
quality.

6.3 Failure cases

We show and compare failure cases of DDIM and ours on CIFAR-10 in Figure 13
to better understand the limitations of either model.



Title Suppressed Due to Excessive Length 7

Fig. 6: Failure cases of DDIM and our model on FFHQ-256.

Both DDIM and our model can generate images that are hard to classify.
Specifically, DDIM tends to generate unknown animals, while our method tends
to generate images of animals that combine features from different animals.
For example, the first picture in the top row seems a combination of a horse
and a deer. Considering that the network has not seen additional classification
information, conditioning the generation on the class may largely prevent this
issue. For both models, we observe that images of classes without articulation,
such as cars and planes, are typically more realistically generated.

References

1. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems 33, 6840–6851 (2020)

2. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.,
University of Toronto (2009)

3. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision
and recall metric for assessing generative models. Advances in Neural Information
Processing Systems 32 (2019)



8 Hui Lu, Albert Ali Salah, and Ronald Poppe

Fig. 7: Inputs for face inpainting experiment. Each column represents a different
person.



Title Suppressed Due to Excessive Length 9

Fig. 8: Results on face inpainting obtained with our model trained on CelebA-HQ-
256. Each column represents a different person.



10 Hui Lu, Albert Ali Salah, and Ronald Poppe

Fig. 9: Inputs for face de-occlusion experiment from FSG.

Fig. 10: Ground truth for face inpainting obtained with our model trained on
FSG.



Title Suppressed Due to Excessive Length 11

Fig. 11: Results on face inpainting obtained with our model trained on FSG.



12 Hui Lu, Albert Ali Salah, and Ronald Poppe

Fig. 12: Generated images from our model trained on CIFAR-10. Note the
diversity of the various classes.



Title Suppressed Due to Excessive Length 13

Fig. 13: Failure cases of DDIM and ours on CIFAR-10.


	Supplementary Material: Compensation Sampling for Improved Convergence in Diffusion Models

