SceneScript: Supplementary Material

A Aria Synthetic Environments

Fig. 1: Randomly selected scenes from Aria Synthetic Environments. (top) Birds eye
view renderings demonstrating room layouts and furniture arrangements. (bottom)
Ego-centric close-up renderings showing scene details.

A.1 Large Scale Training Dataset

Aria Synthetic Environments consists of 100k training pairs with photo-realistically
rendered indoor scenes coupled with structured language commands. In addition
to these training sequences, Aria Synthetic Environments also provides an addi-
tional 1k scenes for testing. Figure [1| presents example scenes from the dataset.
To the best of our knowledge, this is the largest synthetically generated and
annotated dataset to date.

Specifically, a training pair for SceneScript consists of a 3D scene model
represented through a rendered video sequence (input) and associated with a
sequence of commands (ground truth). An example training pair for our method
is shown in Figure

Generation. Each of our synthetic indoor scenes are generated in the following
way:
1. Start with:
— A floor plan defining the layout of all rooms
— A corresponding 3D model (room & object geometry, materials and il-

lumination)
2. A trajectory is estimated going through the 3D scene model, simulating an
agent walking around wearing an Aria sensor
3. A photo-realistic RGB rendering of the trajectory is generated with addi-
tional annotation data (depth and instance segmentation maps)
4. A SLAM-based point cloud inferred from the synthetic video sequence and
aligned with the initial 3D scene model/floor plan

- make_wall, id=0, a_x=2.1, a_y=3.9, a_z=0.0,
b_x=7.8, b_y=3.9, b_z=0.0, height=2.7
- make_wall, id=1, a_x=7.8, a_y=3.9, a_z=0.0,
b_x=7.8, b_y=0.3, b_z=0.0, height=2.7
- make_wall, id=2, a_x=7.8, a_y=0.3, a_z=0.0,
b_x=2.1, b_y=0.3, b_z=0.0, height=2.7
- make_wall, id=3, a_x=2.1, a_y=0.3, a_z=0.0,
b_x=2.1, b_y=3.9, b_z=0.0, height=2.7
- make_door, id=4, wall0_id=1, wall1_id=-1,
position_x=7.8, position_y=1.5, position_z=1.0, width=1.0, height=1.9
- make_window, id=5, wall0_id=2, wall1_id=-1,
position_x=5.3, position_y=0.3, position_z=1.4, width=2.3, height=2.5
- make_window, id=6, wall0_id=3, wall1_id=-1,
position_x=2.1, position_y=2.1, position_z=1.4, width=2.2, height=2.1

Fig. 2: Example of training data pair. A scene with objects is shown on the left, while
the respective GT SceneScript language description is shown on the right.

Table 1: Comparison between existing indoor datasets. P-R: Photo-realistic; Ego: Ego-
centric; Camera: Either Fisheye(F) or Pinhole(P), or panorama photo(360); Seg: object
and layout segmentations rendered to images; L-GT: Layout entity ground-truth, such
as individual wall/window/door parameters.

‘Type‘ Name ‘ Scenes ‘Trajectory P-R Ego Camera Depth Seg L-GT‘ License ‘
ASE (Ours) 100k v v Y/ F v Agreement needed
ProcTHOR 10k X X v P Vv Vv v Apache2.0

HyperSim 461 v v P v % X Special license
Syn | Structured3D 3,500 X VY P v v Vv MIT
SceneNet RGB-D 57 v VoV P % v X Special license
InteriorNet 10k/1.7M % vV F, P v v X Agreement needed
Zillow Indoor 2,564 X v X 360 X X Y Apache 2.0
Real HM3D 1,000 X v X P v X X MIT
ScanNet 1,513 v v X P v v x |Special license (data)

SceneScript 3

Dataset Properties. An overview of properties of existing indoor datasets is given
in Table[I] Note that we define ego-centric as wearing a real camera on the head
or chest or having a synthetic camera with similar trajectory. In particular, we
follow the Aria ego-centric specifications [19]. Also note that InteriorNet con-
tains 15k sequences rendered from 10k randomly selected layouts and 5M images
from 1.7M randomly selected layouts, with 3 images per layout. Aria Synthetic
Environments is especially useful for machine learning tasks not just due to its
sheer scale (allowing algorithms to generalize well), but also the wide variety of
available ground truth annotations. For example, the layout ground truth (L-
GT) is critical for training SceneScript, but not included in the majority of
other datasets.

Aria Synthetic Environments is made publicly available to the research com-
munity. Users must agree to a standard licence to prevent data misuse and it is
to be used for non-commercial purposes only.

A.2 Semi-dense Point Clouds from Video Sequences

We utilize the open-source Machine Perception Services (MPS) from Project
Aria [1] to estimate a SLAM trajectory and generate a point cloud map of
the scene. Similarly to LSD-SLAM [5] they maximize the extracted geometric
information from a video sequence by estimating points for all image regions
with non-negligible gradient. Each point is parameterized by an inverse distance
and its associated Gaussian uncertainty in the frame in which it is first observed.
KLT-based [24] epipolar line-searches in subsequent frames provide sub-pixel ac-
curate short and large-baseline measurements that are absorbed using a Kalman
filter update. While points are associated with a final estimated uncertainty, they
consider utilizing this information in a probabilistically-sound way as beyond the
scope of their work, and instead choose to sub-select points whose uncertainty
is below a predefined threshold.

B Structured Language Commands

Command parameters can have data types such as float or int. The full list
of parameters for each command can be found in Table 1 of the main paper.
Below, we provide detailed descriptions of each parameter:

— Wall parameters
e id: The ID of the wall.
e (a_x,a_y,a_z)/ (b_x,b_y,b_z): The z,y, 2z coordinates of the first / second
corner of the wall.
e height: The height of the wall. Note that we assume the walls are straight and
gravity-aligned.
— Door/Window parameters
e id: The ID of the door/window.
e wallO_id,walll_id: The IDs of the (potentially two) walls that a door/win-
dow is attached to.

e position_x,position_y,position_z: The x,y, z coordinates of the centre of
the door/window.
e width, height: The width and height of the door/window.

C Network Architectures

C.1 Point Cloud Encoder

The point cloud encoder is essentially a ResNet-style [7] encoder that employs
sparse 3D convolutions |22}23] in place of standard 3D convolutions. It uses a
total of 5 down convolutional layers with a kernel size of 3 and a stride of 2. This
architecture effectively reduces the number of points (i.e. active sites) by ~ 1000.
As a result, the feature sizes are manageable in terms of size and can be used
effectively in the subsequent Transformer decoder [26]|. The point cloud encoder
consists of ~ 20M optimizable parameters, which contribute to its capacity and
ability to capture intricate geometric information.

C.2 Transformer Decoder

Our implementation includes a transformer decoder consisting of 8 layers, each
with 8 heads for multi-head attention, and a feature dimension of 512. This
configuration results in a relatively modest set of ~ 35M parameters. Our vo-
cabulary size is 2048, which we also use as the maximum sequence length of
tokens. While we could theoretically increase the vocabulary size to accommo-
date a larger number of tokens, in practice the majority of the released rendered
scenes can be accurately represented using significantly fewer tokens than 2048.

In some scenarios, we employ nucleus sampling [8] with a top-p probability
mass during autoregressive inference. By using nucleus sampling, we limit the
selection of next tokens to a subset with a cumulative probability threshold, al-
lowing for greater exploration at inference time. Quantitative results are decoded
greedily.

D Training Methodology

We use the AdamW optimizer with a default initial learning rate of 104 and
weight decay as well as dropout enabled. For the image-only Raytran-based
encoder model [25|, we found that an initial learning rate of 10=2 provided
better convergence. We train all our methods with an effective batch size of
64, which may be distributed across multiple nodes. During training, the only
augmentations we perform are: 1) up to 360 degrees of rotation around the z-axis
(since the scenes are assumed to be gravity-aligned), and 2) random subsampling
of point clouds up to a specificed maximum number of points (500k). Training
times lasted approximately between 3 and 4 days.

Our training loss is the standard cross-entropy loss on next token prediction,
similar to how most LLMs are trained [15/21].

SceneScript 5

make_wall, make_door, make_wa

make_window make_window,

Fig. 3: An illustrative example of how the expressiveness of SceneScript’s reconstruc-
tion increases through the addition of new commands. (left) Layout commands only:
walls, doors and windows. (middle, left) Addition of make_bbox enriches the scene
reconstruction with bounding boxes for detected objects. (middle, right) Addition of
make_prim adds volumetric primitives for detected chairs, sofas and tables. (right)
Close-up illustrating the fidelity possible with just these five commands.

E Tokenization Details

The conversion of a parameter x into an integer token t is determined by two
factors: its data type and its magnitude. In general, parameters with int and
bool data types are converted using the t = int(x) operation. For float pa-
rameters, the conversion involves t = round(x/res), where res represents the
resolution. Note that by designing the SceneScript language, we also design the
tokenization. This is notably different from standard NLP tokenization, which
involves Byte-Pair Encodings (BPE) [15].

F Additional Results: Layout Prediction

In this section, we present additional qualitative results, comparisons with re-
lated works and more evaluations with respect to extending SceneScript.

F.1 Visualization of High-Level Commands

Figure [3] presents a visual example of how the fidelity of SceneScript’s re-
construction can be increased through the addition of new commands. Ini-
tially, structural room layouts are represented by three commands: make_wall;
make_door; and make_window. Just through the addition of make_bbox, scene
content is now present in the reconstruction in the form of object detections.
Finally for the commands discussed in the main paper, make_prim for the three
selected target classes enables not just the capture of the scene’s overall structure
and content, but also much finer reconstruction of scene objects themselves.

Importantly, each of these levels of detail is enabled without change to
SceneScript’s network architecture, and instead just by increasing the expres-
siveness of the structured language it infers.

Note that the volumetric primitive commands for detected objects are a proof
of concept. We trained our models for the object primitive commands only on
a subset of the available object types from the Aria Synthetic Environments.
Supported object class labels are “chair”, “sofa” and “table”. Objects with these

0:500 }Y
0.775
0.750

~
Ww0.725
o

g
£0.700

Ave

0.675
0.650 —— Ppoints-only
0.625 Images-only

—— Lifted Features

0.600
1.0 15 20 2.5 3.0 3.5 4.0 4.5 5.0

Number of rooms

Fig. 4: F1-Score model performance graphs for our various encoder variants as func-
tions of the number of rooms in a scene.

labels are modeled by cuboid and cylinder primitives. Detected bounding boxes
of object instances with unsupported classes remain empty.

F.2 Model Performance with respect to Scene Complexity

The Average Fl-score graphs of Figure [f] demonstrate the performance of our
SceneScript model with varying encoders as a function of the number of rooms
in a scene. Our SceneScript model performs constantly well when inputting
points only or lifted features. As opposed to this, performance drops drastically
with increasing room number when encoding scenes only using images. We posit
that the decrease in performance is due to the model’s lack of occlusion reasoning.
With increasing number of layout elements, the rays linked to image observations
traverse more scene space by going through a higher number of rooms when
ignoring wall intersections. This likely results in our model falsely attending to
occluded image observations.

F.3 Failure Cases

In this section, we detail observed failure types for the task of layout estimation
on Aria Synthetic Environments. Aside from expected errors such as slightly
incorrect wall corner, window and door placement, or entirely missed, we observe
two notable failure modes for SceneScript.

The more common of the two occurs due to non-complete exploration of the
target scene. In this scenario there are significant portions of the scene struc-
ture that are poorly observed, potentially not at all, making the ground truth
structure near unpredictable.

An especially interesting failure mode is the reconstruction of accurate room
structure, but at an incorrect Z-value. For the point cloud-based encoder config-
urations, we suspect that this failure mode is caused by particular sensitivity to
noise to point outliers in the Z-direction. This failure mode is also observed in
the image-only encoder configuration, suggesting it also exhibits more sensitivity
to in the Z direction than XY.

SceneScript 7

Prediction

Ground Truth Prediction (Side View)

%)
[=
.2
=]
o)
o
o
9]
I
8
=)
X
()
<
)

Incorrect Z

Fig. 5: Examples from two notable failure types observed in SceneScriptpredictions.
(top) Limited exploration of the scene makes the ground truth difficult, or in some
cases potentially impossible to predict. (bottom) Accurate overall room structure is
predicted, but at an incorrect Z value.

We visualize a couple of examples for each of these failure types in Figure
Worth noting is that this figure is comprized of scenes taken from the worst 10
predictions out of the 1000 scene test set, as defined by wall entity distance.
Therefore, while clearly illustrating the failures described, they should not be
taken as representative of general prediction quality.

F.4 Quantitative Evaluation of Layout Predictions

We include an additional breakdown of the entity distance accuracy metrics
in Table [2l This breakdown of accuracy makes apparent that the improvement
offered by lifting image features onto the semi-dense point cloud comes largely
in the prediction of windows and doors. Following the same trend as the results
included in the main paper, we observe that windows appear to be the most
challenging class to predict accurately. However in spite of this challenge, the
90th percentile of window predictions falls within 0.5m of the ground truth for
all encoder setups tested.

Table 2: Accuracy reported as raw entity distance for the encoder setups tested for
SceneScript.

Entity Distance (cm)
Wall Door | Window

Method med. p90 jmed. p90|med. p90
Point Cloud | 4.7 72|50 6.7/ 6.9 37.6

Lifted Features| 4.8 7.1| 4.8 6.1| 5.9 26.2
Image-only | 6.7 17.3] 5.8 8.9] 9.0 45.7

G Additional Results: Object Detection

G.1 Implementation Details

Training Details of SceneScript. As outlined in the paper, a significant ad-
vantage of SceneScript lies in its seamless adaptability to other tasks through
the addition of new language commands. Here, for instance, we integrate make_bbox
to denote 3D oriented bounding boxes.

Notably, no architectural changes to SceneScript have been implemented
to facilitate training for object detection. We utilize the point cloud encoder and
language decoder detailed in Section [C} The entire training objective is a single
cross-entropy loss, which stands as the de facto-standard in training LLMs. The
model is trained for ~ 200k iterations using an effective batch size of 64. For
this experiment, we only trained a point cloud version of SceneScript.

Baseline Implementation Details. We list implementation details for each
method below:

3DETR [14)]: We downloaded the weights for both 3DETR and 3DETR-m,
trained for 1080 epochs on ScanNet, from the official Github repository. We
evaluated both models on each ScanNet validation examples, subsampled to 40k
points. Predictions were thresholded at probability 0.5. We attemped to run
NMS in 3D, but achieved worse results, thus the numbers reported in the main
paper do not include NMS.

We trained 3DETR (not 3DETR-m) on Aria Synthetic Environments using
almost the same configuration as trained on ScanNet. The differences include: a
batch size of 128, a PointNet set aggregation downsampling to 4096 (compared
to 2048 for ScanNet), 512 furthest point samples as detection queries (compared
to 256 for ScanNet), and 200k points per example.

Cube R-CNN [5]: This method predicts 3D bounding boxes from a single RGB
image. To obtain 3D bounding box predictions for an entire scene, we accu-
mulate per-frame predictions via a matching-based tracker. At a high-level, we
match predictions of the same class between frames with Hungarian matching
with a cost based on IoU and bounding box distances. Then the final bounding

SceneScript 9

box parameters are computed as a running average of the matched and tracked
predictions. For evaluation, the accumulated predicted boxes were thresholded
at probability 0.5.

ImVozelNet [18]: This model predicts 3D bounding boxes from a set of RGB
images. We trained this method using 10 consecutive frame snippets from Aria
Synthetic Environments. During evaluation, we run the model on overlapping 10-
frame snippets and apply the same bounding box tracker as described for Cube
R-CNN. For evaluation, the accumulated predicted boxes were thresholded at
probability 0.1.

SoftGroup [27]: Since this is primarily a 3D semantic instance segmentation
method, we extract axis-aligned bounding boxes from the predictions by utiliz-
ing the predicted instance masks and computing the minimum and maximum
extents of the point set belonging to each instance. The geometric mean of these
extents serves as the box center, and the difference between the maximum and
minimum extents provides the box scale. Since the bounding boxes are intended
to be axis-aligned, the angle is kept at 0. By combining this information with the
predicted semantic class, one can conduct evaluations over 3D bounding boxes.
We used a publically available checkpoint provided by the authors to conduct in-
ference and extract bounding boxes for evaluation following the aforementioned
procedure.

Note that for ScanNet [4], we use the axis-aligned bounding boxes for ground
truth as extracted in [14,/17].

G.2 Sparse Encoder with 3DETR Head

Table 3: Replacing the 3DETR encoder with a SparseCNN results in better perfor-
mance on Aria Synthetic Environments.

F1
Method Input |@.25 ToU @.50 ToU
3DETR '21 [14] Points| 0201 0.078
SparseCNN [22| + 3DETR [14]|Points| 0.381 0.191

We run an experiment that confirms that 3DETR’s standard settings are
well-suited to ScanNet [4] and SUN RGB-D [20], but perform poorly on Aria
Synthetic Environments. For this experiment, we use the same sparse point cloud
encoder that SceneScript uses (see Section while using the 3DETR decoder.
Similar to the pure 3DETR model trained on Aria Synthetic Environments, we
increased the number of detection queries to 512, and used 200k points per
example for training. We denote this model as SparseCNN+3DETR. Due to
lack of resources, this model was only partially trained.

10

3DETR SparseCNN + 3DETR Cube R-CNN ImVoxelNet SceneScript (Ours) Ground Truth

Fig. 6: Qualitative results of predicted bounding boxes on Aria Synthetic Environ-
ments. Each bounding box is colored by its class. The colors are: , sofa, shelf, chair,

, loor mat, exercise weight, cutlery, , clock, , , , ,
pillow, mount, lamp, ladder, , cabinet, jar, picture frame, mirror, ,
dresser, clothes rack, , air _conditioner,

In Table 3] we show that replacing 3DETR’s Transformer encoder with a
sparse CNN encoder |22)23] results in stronger performance. We hypothesis that
this is due to the non-uniformity of the point clouds arising from Project Aria’s
semi-dense point clouds from its Machine Perception Services [1]. The first two
columns of Figures [and [7] qualitatively demonstrates more accurate predictions
with this encoder replacement.

G.3 Qualitative Results on Aria Synthetic Environments

In Figure[6] we show qualitative results of all the methods trained on Aria Syn-
thetic Environments. This figure demonstrates the difficult of predicting objects
in Aria Synthetic Environments as it is very cluttered. Also, due to the generated
trajectories not necessarily visiting every part of the scene, some ground truth
bounding boxes have very little points associated with them (see the ground
truth in row 3. The lower right corner has very few points yet there are bound-
ing boxes present).

Most methods tend to correctly predict the larger categories (e.g. and
sofa). However, the small object categories (e.g. and) are much
harder to detect, thus the ground truth for these categories typically have 0

SceneScript 11

3DETR SparseCNN + 3DETR Cube R-CNN ImVoxelNet SceneScript (Ours) Ground Truth

Fig. 7: Qualitative results of predicted bounding boxes on Aria Synthetic Environ-
ments. Each bounding box is colored by its IoU with its matched ground truth bound-
ing box. The color is interpolated from green () to yellow () to red
(IoU = 0).

IoU with predictions (see Figure [7| for qualitative predictions visualised with
IoU scores). This leads to relatively low F1 scores for some of the baselines
(e.g. 3DETR) due to averaging the F1 scores across classes, while visually
the predictions look relatively reasonable. We also include results from Spar-
seCNN+3DETR (details can be found in Section [G.2)). It can be seen from
Figures [6] and [7] that it qualitatively performs better on Aria Synthetic Environ-
ments than a pure 3SDETR model.

Table 4: mAP for baselines trained on Aria Synthetic Environments.

mAP
Method Input [@.25 IoU @.50 IoU
3DETR 21 [14] Points| 0.148 0.040
SparseCNN [22| + 3DETR |[14]|Points| 0.308 0.115
Cube R-CNN "23 3] RGB| 0383 0.181
ImVoxelNet 22 [18| RGB | 0.648 0.572

12

G.4 mAP Metrics for Baselines trained on Aria Synthetic
Environments

In Table[d] we list the mAP values for methods trained on Aria Synthetic Envi-
ronments.

G.5 Discussion of Average Precision Metric

Average precision (AP) has become a standard metric for measuring 3D object
detection performance. A general outline of the procedure required to calulate
this metric is to collect detections across a number of scenes, rank each by de-
scending confidence. Average precision is then computed from this detection pool
by framing it as an information retrieval task: order of retrieval determined by
the confidence ranking; success of a retrieval determined by an IoU threshold
(typically 0.25 or 0.5 for 3D object detection). This framing enables the gen-
eration of a precicision-recall curve for the detector, with the average precision
given by an approximation of the area underneath this curve.

A drawback of this information retrieval framing is that it is order variant,
and requires that the relative certainty of detections across scenes be deter-
minable. While many prior detection methods regress a logit that can naturally
represent this certainty, e.g. the classification logit is often used, SceneScript’s
detections are more binary: either the object is present in the predicted sequence
or not. Within a single scene, we may be able to leverage a heuristic such as se-
quence order to determine relative certainty, i.e. most certain detections appear
sooner in the prediction order (although we have not investigated whether this
actually occurs). However, to determine a similar heuristic between scenes would
require too many assumptions to be considered a robust and fair evaluation con-
figuration.

Precision

04

Fig. 8: Precision-recall variance with scene order. The precision-recall curves are plot-
ted for SceneScript’s predictions of the table class on the same 10 scenes, however
the order of those scenes is shuffled for each evaluation. The inability sort predictions
across scenes leaves the AP@Q.5IoU metric sensitive to the order that scenes are eval-
uated.

SceneScript 13

Table 5: Illustration of how average precision is negatively affected by the inability
to sort across scenes. Two idential sets of detections are produced by detectors 1 and
2. Detector 1 outputs an absolute measure of confidence allowing for sorting across
scenes. However, it is only possible to determine the relative confidence of predictions
within a scene for detector 2. This results in a lower AP, as there is no opportunity to
rank good predictions from scene B above bad predictions from scene A. We assume
there are 3 GT entities in each scene for AP and F1 computation.

Detector 1 Detector 2
w/ absolute conf. relative conf. only
Sccne | A B B A B A|AAABB B
Certainty|high high high med. low low|- - - - - -
Success | 1 1 1 0 0 010011 O
AP 0.5 0.34
F1 0.5 0.5

To further illustrate this point, we consider an evaluation setup where we use
prediction order within scenes as a proxy for relative certainty, without sorting
across scenes. In Figure [8| we show precision-recall curves computed over 10
scenes from Aria Synthetic Environments validation set using the assumption.
Importantly, each curve on this graph are the same detections on the same
scenes, but with the scenes simply evaluated in a new, random order each time.
Not only is the resulting metric variant with the order of scenes, but low certainty
predictions at the end of ascene’s predictions may appear earlier in the ranked
pool of detections than high certainty predictions from another scene. If these
are incorrect, they will arteficially lower the precision achievable, and in turn
lower the average precision for a method. A toy example of this is included in
Table B

For these reasons, in the main paper we choose to use a Fl-score-based
metrics to evaluate detection performance. These are not sensitive to ordering
as also illustrated in Table [l

H Further Extensions of SceneScript

H.1 Extending SceneScript with Curved Entities

In previous layout estimation work, such as [6}/12], methods leverage a pla-
nar assumption and use robust estimation procedures custom tailored to planar
primitive fitting. Extending such methods to more complex, non-planar entities
is non-trivial and requires significant effort. In contrast, we show that our struc-
tured language-based approach makes it straightforward to extend to curved
walls, as for example extruded Bezier curves [13|, simply by defining a new
make_curved_wall command.

The curved wall command is a simple Bezier parametrisation consisting of
4 additional parameters: the x,y values of the 2 control points that define the
wall curvature. Explicitly, our planar wall command changes to:

14

Curved Entities Composite Entities

Input

GT

Prediction

Fig. 9: Non-planar wall geometry extensions to SceneScript. Examples of input point
clouds (top row), the prediction 3D shape (middle row), and ground truth wall shape
(bottom row). (left) Examples of Bezier parameterisation for curved walls. (right) Re-
sults for wall primitive compositions. We observe that both simple extensions to the
parameterisation of the walls can be accurately described and predicted by SceneScript.

make_curved_wall: a_x, a.y, a_z, b_x, b_y, b_z, cl_x,
c2_y, c2_x, c2_y, height, thickness

where ¢1,,¢1,,¢2,,c2, are the Bezier control points.

We generate a synthetic curved walls dataset to train SceneScript. Exam-
ple Bezier walls with a qualitative evaluation are in Figure El (left). The predic-
tions are nearly indistinguishable compared to ground truth, indicating that our
method can learn to predict such complex primitives.

In a synthetic test bed, we evaluate the capability of our model to infer the
control points of walls parameterized on extruded Bezier curves. Quantitative
results are shown in Table

H.2 Extending SceneScript to Compositions of Wall Primitives

To demonstrate the extensibility of SceneScript’s structured language, and
similarly to the reconstruction of object primitives explored in the main paper,

SceneScript 15

Fig. 10: Results for detecting door state estimation. We visualize the predicted layout
on top of the input point cloud.

Table 6: Quantitative assessment of the reconstruction of curved walls using extruded
Bezier curves as parameters. Token accuracies gauge performance based on a tokenized
1D sequence of the structured language, allowing for a specified slack of + /- N tokens.
The IOU is calculated by comparing the interpreted geometry with the GT geometry.
We achieve virtually error-free results indicating efficient interplay between parameter-
ization and modelling capability of our method.

Token Acc. Slack 1|Token Acc. Slack 3| I0U
0.993 \ 1.0 0.990

we demonstrate representing complexly shaped walls as compositions of cuboids.
We define a new parametrization for this class of walls as follows:

make_wall: a_x, a_y,
make_wall_prim: pos_x, pos_y, pos_z, size_x, size_y,
size_z

where the make_wall_prim command describes a cuboid to be composed with its
parent wall entity. We added such cuboid compositions to a base wall in Figure[J]
(right). In this proof-of-concept, the results of Table m clearly demonstrate the
ability of the network to infer compositions of cuboids on base walls only from
a noisy surface point cloud.

Table 7: Correctly predicted parameters of composite walls as a percentage . Slack n
indicates estimation of composite wall parameters within bounds of n * 5¢cm.

Occlusion Levels
No |Light| High

= 1]99.6[95.9] 92.6
%3199.9] 96.4 | 93.3
“51100]98.2 | 95.5

16

Input Images

Prediction

Fig. 11: Two real-world inferences based on a Blender Geometry Node [3] obtained
online. Input RGB images are recorded on an Aria device. We visualize a subset of the
predicted language as well as the geometry obtained by inputting that prediction into
the Geometry Node.

H.3 Extending SceneScript to Object States

Yet another simple extension to our SceneScript language allows us to represent
door states, w.r.t their opening configuration. For this, we simply change the
original door representation to include a list of parameters that define door
state as follows:

make_door: id, wall_id, pos_x, pos_y, pos_z, width,
height, open_degree, hinge_side, open_direction

hinge_side represents which side of the door the hinge is on, open_direction
determines whether the door opens into the room or outside of the room, and
open_degree is the angle of the opening. In Figure [10] (second), we qualitatively
demonstrate object state estimation. We annotated our doors with a new com-
mand parameterisation extended by door hinge position, wall opening side and
opening angle. As with our other extensions, our model is able to handle this sit-
uation without issue. This small GT language extension demonstrates effective
state estimation while the input and network architecture remain unchanged.

H.4 Extending SceneScript to Blender Parametric Object Models

Parametric modelling offers detailed high-quality geometry representations along
with interpretability and editability by design [9H11L|16]. The Blender commu-
nity offers readily accessible Geometry Nodes of diverse object categories as a
procedural language. We investigate the use of a particular Geometry Node for
tables [2]. Not only can we directly incorporate this parametric model into our
SceneScript language, but we can also use it to generate data by randomly
sampling its parameters similar to [16].

SceneScript 17

We design a simple proof-of-concept experiment where we render synthetic

RGB images of random tables, composite them on a random image background,
and learn to predict the ground truth Blender procedural language. In Figure [IT]
we demonstrate two real-world inferences of tables using this language, showing
our method is capable of predicting reasonable parameters to reconstruct these
tables. Interestingly, in the second example the model predicts a high sides_num
to approximate the circular tabletop, which was not on the training set.

References

10.

11.

12.

13.

14.

15.

Aria, P.: Project aria machine perception services (2023), https://
facebookresearch . github . io /projectaria _tools/docs/data_utilities/
core_code_snippets/mps, accessed: 2023-11-27

Bash, B.: Procedural table with geometry nodes in blender (2023), https://
blenderbash.gumroad.com/1/daghsw, accessed: 2023-05-23

Brazil, G., Kumar, A., Straub, J., Ravi, N., Johnson, J., Gkioxari, G.: Omni3D: A
large benchmark and model for 3D object detection in the wild. In: CVPR. IEEE,
Vancouver, Canada (June 2023)

Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Niefsner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE (2017)

Engel, J., Schops, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular
SLAM. In: European Conference on Computer Vision (ECCV) (September 2014)
Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interi-
ors from images. In: 2009 IEEE 12th international conference on computer vision
(2009)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751 (2019)

Jones, R.K., Barton, T., Xu, X., Wang, K., Jiang, E., Guerrero, P., Mitra, N.J.,
Ritchie, D.: Shapeassembly: Learning to generate programs for 3d shape structure
synthesis. ACM Transactions on Graphics (TOG) 39(6), 1-20 (2020)

Jones, R.K., Charatan, D., Guerrero, P., Mitra, N.J., Ritchie, D.: Shapemod: macro
operation discovery for 3d shape programs. ACM Transactions on Graphics (TOG)
40(4), 1-16 (2021)

Jones, R.K., Walke, H., Ritchie, D.: Plad: Learning to infer shape programs with
pseudo-labels and approximate distributions. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2022)

Liu, C., Kim, K., Gu, J., Furukawa, Y., Kautz, J.: Planercnn: 3d plane detection
and reconstruction from a single image (2019)

Loop, C., Blinn, J.: Resolution independent curve rendering using programmable
graphics hardware. In: ACM SIGGRAPH 2005 Papers, pp. 1000-1009 (2005)
Misra, 1., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3d object
detection. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 2906-2917 (2021)

OpenAl: Gpt-4 technical report (2023)

https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
https://blenderbash.gumroad.com/l/daghsw
https://blenderbash.gumroad.com/l/daghsw

18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Pearl, O., Lang, 1., Hu, Y., Yeh, R.A., Hanocka, R.: Geocode: Interpretable shape
programs (2022)

Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detec-
tion in point clouds. In: proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 9277-9286 (2019)

Rukhovich, D.; Vorontsova, A., Konushin, A.: Imvoxelnet: Image to voxels projec-
tion for monocular and multi-view general-purpose 3d object detection. In: Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
pp. 2397-2406 (2022)

Somasundaram, K., Dong, J., Tang, H., Straub, J., Yan, M., Goesele, M., Engel,
J.J., De Nardi, R., Newcombe, R.: Project aria: A new tool for egocentric multi-
modal ai research. arXiv preprint arXiv:2308.13561 (2023)

Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding bench-
mark suite. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 567-576 (2015)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks (2014)

Tang, H., Liu, Z., Li, X., Lin, Y., Han, S.: TorchSparse: Efficient Point Cloud In-
ference Engine. In: Conference on Machine Learning and Systems (MLSys) (2022)
Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching Efficient
3D Architectures with Sparse Point-Voxel Convolution. In: European Conference
on Computer Vision (ECCV) (2020)

Tomasi, C., Kanade, T.: Detection and tracking of point. Int J Comput Vis 9(137-
154), 3 (1991)

Tyszkiewicz, M.J., Maninis, K.K., Popov, S., Ferrari, V.: Raytran: 3d pose esti-
mation and shape reconstruction of multiple objects from videos with ray-traced
transformers. In: Computer Vision-ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23-27, 2022, Proceedings, Part X. pp. 211-228. Springer
(2022)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)

Vu, T., Kim, K., Luu, T.M., Nguyen, X.T., Yoo, C.D.: Softgroup for 3d instance
segmentation on 3d point clouds. In: CVPR (2022)

	SceneScript: Supplementary Material

